
Classes and Objects

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner https://www.risc.jku.at 1/71

Classes as Record Types

We will repeat and deepen the basic concepts of “classes” and “objects”
that have been briefly introduced at the end of the last semester.

class Date {
public: // access specifier

int day;

char *month;

};

Date date; // an object

date.day = 24;

date.month = "December";

Date *dptr = new Date; // a pointer to an object

dptr->day = 1;

dptr->month = "January";

delete dptr;

The keywords struct and class mean (almost) the same; however,
class values are called “objects” (rather than “structures”).

Wolfgang Schreiner https://www.risc.jku.at 2/71

1. Classes as Namespaces

2. Classes as Object Types

3. Objects with Functions

4. Objects and Arrays

5. Objects and Information Hiding

6. The Standard Class string

Wolfgang Schreiner https://www.risc.jku.at 3/71

Classes as Namespaces

// Date.h

class Date

{
...

// declarations of static members

// data members

static const int thisDay = 1;

static char* thisMonth;

// member functions

static Date* create() {
Date* d = new Date;

d->day = thisDay;

d->month = thisMonth;

return d;

}

static void print(Date *date);

};

// Date.cpp

#include <iostream>

#include "Date.h"

// definitions of static data members

const int Date::thisDay;

char* Date::thisMonth = "January";

// definitions of static member functions

void Date::print(Date *date) {
std::cout << date->day << "/"

<< date->month;

}

// Main.cpp

#include "Date.h"

int main(int argc, char* argv[]) {
Date::thisMonth = "February";

Date* d = Date::create();

Date::print(d);

return 0;

}
Wolfgang Schreiner https://www.risc.jku.at 4/71

Classes as Namespaces

Classes can serve as namespaces.
Static data members and member functions are “bound” to a class.

They are also called class variables and class functions.
There exists only one instance of the static members (independently
of the number of objects of the class to which the members belong).

Names of static members must be qualified by the class name.
Class::member

Other static members in the same class may use the short name.
A static data member is only declared in the class.

Must have a corresponding definition/initialization somewhere else.
Constant members of integral types may be initialized in class.

A static member function may be also defined in the class.
Then the definition may be inlined at the point of every application.
If not, there must exist a corresponding definition somewhere else.

Static member definitions outside of class must not use static.
For global variables/functions, static means “internal linkage”.

Use static members rather than variables/functions on namespace level.
Wolfgang Schreiner https://www.risc.jku.at 5/71

File Organization

Typically there are two files related to a class Class .

File Class.h contains the class definition.

Contains declarations of all members of a class.
Must be included by every other file that wants to access members.

#include "Class.h"

If the class declaration changes, all files that include Class.h must
be recompiled.

File Class.cpp contains the corresponding member definitions.

Must include Class.h
If some member definition changes, only this file must be recompiled
(and the program must be relinked).

Any change to a member function that is defined in a class declaration
may cause a lot of recompilations.

Wolfgang Schreiner https://www.risc.jku.at 6/71

File Organization

// C.h: declaration of C and its members

#ifndef C_H_

#define C_H_

class C {

static T x; // declaration, no definition

static T f(...); // declaration, no definition

static T g(...) { ... } // declaration with definition

}

#endif /* C_H_ */

// C.cpp: definitions of members of C

#include "C.h"

T C::x;

T C::f(...) { ... }

// Main.cpp: use of C

#include "C.h"

int main() { ... C::x ... C::f(...) ... C::g(...) ... }

Wolfgang Schreiner https://www.risc.jku.at 7/71

1. Classes as Namespaces

2. Classes as Object Types

3. Objects with Functions

4. Objects and Arrays

5. Objects and Information Hiding

6. The Standard Class string

Wolfgang Schreiner https://www.risc.jku.at 8/71

Nonstatic Data Members

class Date

{
public:

int day;

char *month;

};

Non-static data members “belong to” an object of the class.

They are also called object variables.

For every object of the class, the exists a separate instance of the
object variable.

Names of nonstatic data members must be qualified by an object.

object.member

objectptr->member

Data members with access specifier public can be freely used like the
variables of a structure.

Wolfgang Schreiner https://www.risc.jku.at 9/71

Constructors

class Date // Date.h

{
...

// inline declaration

Date(int d, char *m)

{
day = d;

month = m; // danger!

}
};

Date date(24, "December"); // calls Date(int, char*)

Date *dptr = new Date(26, "October"); // calls Date(int, char*)

class Date // Date.h

{
...

Date(int d, char *m);

};

Date::Date(int d, char *m) // Date.cpp

{
day = d;

month = m; // danger!

}

A constructor is a method that initializes an object’s data members.

Wolfgang Schreiner https://www.risc.jku.at 10/71

Constructors

A constructor is a special method that is declared in a class.

The constructor has the same name as the class.
It has no return type (also not void).

A constructor is bound to an object.

Called after the space for the object has been allocated.
Executed in the context of the object.

Can access all data members without qualification.

There may be multiple constructors with different argument types.

Same constraints as for function overloading.

If defined inside the class, the constructor is inlined.

Same effect as if using the keyword inline.

A constructor may execute arbitrary code.

Not only initializations of data members.

Objects should be initialized by calling constructors.

Wolfgang Schreiner https://www.risc.jku.at 11/71

The this Pointer

class Date // Date.h

{
...

Date(int day, char* month);

};

Date::Date(int day, char *month) // Date.cpp

{
this->day = day;

this->month = month; // danger!

}

The keyword this is a pointer to the current object.

Can be used e.g. inside the body of a constructor.
Can be used e.g. to resolve name ambiguities.

We will see later the general rules for the use of this.

Wolfgang Schreiner https://www.risc.jku.at 12/71

The Default Constructor

class Date // Date.h

{
...

Date() {
day = 1;

month = "January";

}
};

Date date; // calls Date()

Date date(); // WRONG: declares function date()

Date *dptr1 = new Date; // calls Date()

Date *dptr2 = new Date(); // calls Date()

Date darray[10]; // calls Date() for each object

Date *darr = new Date[10]; // calls Date() for each object

class Date // Date.h

{
...

Date();

};

Date :: Date() { // Date.cpp

day = 1;

month = "January";

}

All objects are initialized with the default constructor of their class.
Wolfgang Schreiner https://www.risc.jku.at 13/71

The Default Constructor

A default constructor can be called without arguments.
Is called for object declarations without initializers.
Is called for initialization of array elements.
Is called for initialization of non-static data members before a
user-defined constructor is called.
Is called for initializing static data members when program is started.

If a class has no user defined constructor, an implicit default
constructor is automatically generated.

Calls the default constructors of all non-static data members.

If a class has user defined constructors, only these may be called.
If some constructor is defined, also a default constructor has to
(respectively should) be explicitly defined.
Without a default constructor, it is not possible to declare a variable
of this type without initialization (and thus no arrays with this base
type can be created).

All objects are automatically initialized by constructors.
Wolfgang Schreiner https://www.risc.jku.at 14/71

Initialization Lists

class Date // Date.h

{
...

Date(int d, char* m);

};

// explicit initialization of non-static data members

Date::Date(int d, char *m): day(d), month(m) // danger!

{
// executed after data members have been initialized

...

}

The preferred way of initializing non-static data members (avoids calling
their default constructors).

Wolfgang Schreiner https://www.risc.jku.at 15/71

Special Operations

There are three special operations attached to every class:

Copy constructor:

Initializes a new object from another object of the same type.

Copy assignment operator:

Updates an existing object from another object of the same type.

Destructor:

Cleans up the object before its memory is freed.

The default definitions of these operations are automatically generated
and may be overwritten by the programmer; however, if one operation is
redefined, there are good reasons to redefine all three (“rule of three”).

Wolfgang Schreiner https://www.risc.jku.at 16/71

The Copy Constructor

class Date // Date.h

{
...

Date(const Date date&);

};

// the copy constructor (automatically generated)

Date::Date(const Date& d): day(d.day), month(d.month) // danger!

{ }

static void print(Date date);

Date date0; // calls default constructor

Date date1(date0); // calls copy constructor

Date date2 = date0; // calls copy constructor

print(date0); // calls copy constructor

return date0; // calls copy constructor

An object duplicate is created with the copy constructor of the class.
Wolfgang Schreiner https://www.risc.jku.at 17/71

The Copy Constructor

The copy constructor of a class can be called with a reference to an
object of this class as argument.

If the actual object were the argument, the copy constructor
would have to call itself in an infinite recursion.

Is called in variable initializations

Here the token “=” does here not denote assignment.

Is called when passing objects as function arguments.
Is called when returning objects as function results.

Default definition of the copy constructor:
Copies every non-static data member as prescribed by its type.
Class type: calls the copy constructor of that class.
Builtin type or pointer type: invokes the builtin assignment operator.

If some data members have pointer types, object duplication should be
controlled by a user-defined copy constructor (otherwise both copies
point to the same data).

Wolfgang Schreiner https://www.risc.jku.at 18/71

The Copy Assignment Operator

class Date // Date.h

{
...

Date& operator=(const Date& date);

};

// the copy assignment operator (automatically generated)

Date& operator=(const Date& date)

{
day = date.day;

month = date.month; // danger!

return *this;

}

Date date0(4, "July"); // calls Date(int, char*)

Date date1 = date0; // calls copy constructor

date1 = date0; // calls copy assignment operator

Object assignment is performed with the copy assignment operator.
Wolfgang Schreiner https://www.risc.jku.at 19/71

The Copy Assignment Operator

The copy assignment operator of a class can be called with a
reference to an object of this class as argument.

Is called in (destructive) object assignments.

Not in object initializations!

Default definition of the copy assignment operator:

Assigns to every non-static data member as prescribed by its type.
Class type: calls the copy assignment operator of that class.
Builtin type or pointer type: invokes the builtin assignment operator.

If some data members have pointer types, object assignment should be
controlled by a user-defined copy assignment operator (otherwise both
copies point to the same data).

Wolfgang Schreiner https://www.risc.jku.at 20/71

The Destructor

class Date {
...

Date(int d, char *m);

~Date();

};

Date::Date(int d, char *m): day(d), month(new char[100]) {
strncpy(month, m, 100);

}

// the destructor (user defined)

Date::~Date() { delete[] month; } // TODO: rule of three!

{
Date date(24, "December"); // calls Date(int, char*)

} // calls destructor

Date *dptr = new Date(14, "July"); // calls Date(int, char*)

delete dptr; // calls destructor

Destructor frees memory, thus the pointer must be exclusively owned!
Wolfgang Schreiner https://www.risc.jku.at 21/71

The Destructor

The destructor of a class can be called without arguments.

Is called on local variable when declaration scope is left.
Is called on dynamically allocated objects when delete is called.
Is called on statically allocated objects when program is terminated.
Is called on every array element, if an array is destroyed.
The destructor is never explicitly called!

Default definition of the destructor operator:

Cleans up every non-static data member as prescribed by its type.
Class type: calls the destructor of that class.
Builtin type or pointer type: no action!

If some data members have pointer types, destruction should be
controlled by a user-defined destructor (otherwise memory leaks arise).

Wolfgang Schreiner https://www.risc.jku.at 22/71

Pointers as Data Members

class C {
T* ptr;

void copy(T* p) { ptr = new T; *ptr = *p; } // object function (later)

public:

C(T* p) { copy(p); }
C(const C& obj): { copy(obj.ptr); }
C& operator=(const C& obj) {

if (&obj == this) return *this;

delete ptr; copy(obj.ptr);

return *this;

}
~C() { delete ptr; }

};

The constructors ensure exclusive ownership of the pointer; the copy
assignment operator and the destructor ensure that the object referenced
by the pointer is properly deallocated.

Wolfgang Schreiner https://www.risc.jku.at 23/71

Revision of class Date

class Date {
...

void copy(char *m) { month = new char[100]; strncpy(month,m,100); }
};

Date::Date(int d, char *m): day(d) { copy(m); }
Date::Date(const Date& date): day(date.day) { copy(date.month); }
Date& operator=(const Date& date)

{
if (&date == this) return;

day = date.day;

delete[] month;

copy(date.month);

return *this;

}
Date::~Date() { delete[] month; }

Now we have followed the “rule of three”.

Wolfgang Schreiner https://www.risc.jku.at 24/71

1. Classes as Namespaces

2. Classes as Object Types

3. Objects with Functions

4. Objects and Arrays

5. Objects and Information Hiding

6. The Standard Class string

Wolfgang Schreiner https://www.risc.jku.at 25/71

Non-Static Member Functions

class Date // Date.h

{
...

void print();

void set(int d, char* m);

int getDay() const;

char* getMonth() const;

};

// main program

Date date(1, "January");

date.print();

date.set(2, "January");

Date *dptr = &date;

dptr->print();

dptr->set((dptr->getDay())+1, dptr->getMonth());

// Date.cpp

#include <iostream>

#include "Date.h"

void Date::print() {
std::cout << day << " " << month;

}

void Date::set(int d, char* m) {
day = d; month = m;

}

int Date::getDay() const { return day; }

char* Date::getMonth() const { return month; }

Objects can have member functions “attached”.

Wolfgang Schreiner https://www.risc.jku.at 26/71

Non-Static Member Functions

A non-static member function is “bound to” a particular object.

Such a function is also called an object function.

Every object of a class has an instance of this function attached.

The function operates “within” the object to which it is bound.

It can access all non-static data members of the object without object
qualification (and also all static data members of the class without
class qualification).
The data members are “global variables” for the function.

A member function declared as const does not change the object.

May be called on objects declared as const.

Constructors/destructors/copy assignment operators are special
cases of non-static member functions.

With non-static member functions objects can be used without exposing
their internal representation.

Wolfgang Schreiner https://www.risc.jku.at 27/71

Calling Non-Static Member Functions

class Date // Date.h

{
...

void nextDay();

};

void Date::nextDay() {
int d = getDay();

char* m = getMonth();

set(d+1, m); // stupid, of course

}

Date date(28, "February");

date.nextDay();

The non-static member functions of a class may call each other without
object qualification; then they refer to the same object.

Wolfgang Schreiner https://www.risc.jku.at 28/71

Calling Non-Static Member Functions

class Date // Date.h

{
...

void copyDay(Date date);

};

void Date::copyDay(Date date) {
int d = date.getDay();

char* m = getMonth();

set(d, m);

}

Date date1(28, "February");

Date date2(15, "March");

date1.copyDay(date2);

To call the member function of another object, explicit qualification by
the object is necessary.

Wolfgang Schreiner https://www.risc.jku.at 29/71

The this Pointer

In a non-static context, this is a pointer to the “current” object.
Initialization expressions of non-static data members.
Bodies of constructors/destructors/non-static member functions.

Any plain (unqualified) reference to a non-static member is implicitly
extended to a qualified reference by adding this.

var → this->var
fun(. . .) → this->fun(. . .)
From static contexts, such unqualified references are not allowed.

For a non-static data member, this is just the address of the
structure in which the member is looked up.
For a non-static member function, this is just an additional
parameter whose value is provided by the caller.

fun(. . .) { . . . } → fun(this, . . .) { . . . }
object.fun(. . .) → fun(&object, . . .)

The difference between static and non-static members is just the
availability of the this pointer.

Wolfgang Schreiner https://www.risc.jku.at 30/71

Operators as Non-Static Member-Functions

How to implement operators on objects?

class BigNumber { ... public: int sign() const; ... };
BigNumber a = ... ; BigNumber b = ...;

BigNumber c = a+b; // operator call

Solution 1: operator as a global function.
BigNumber operator+(const BigNumber& x, const BigNumber& y) {
... x.sign() ... y.sign() ...

}
Solution 2: operator as a non-static member function.
class BigNumber { ...

public: ...

BigNumber operator+(const BigNumber& y) {
... sign() ... y.sign() ...

}
}

Operator call is for both solutions identical.
Wolfgang Schreiner https://www.risc.jku.at 31/71

1. Classes as Namespaces

2. Classes as Object Types

3. Objects with Functions

4. Objects and Arrays

5. Objects and Information Hiding

6. The Standard Class string

Wolfgang Schreiner https://www.risc.jku.at 32/71

Objects as Array Elements

// default constructions, then creation and assignments of new objects

Class a[N]; // objects initialized by default constructor

for (int i=0; i < N; i++) a[i] = Class (...);

// new objects initialized by arbitrary constructor

Class* b[N]; // uninitialized pointers

for (int i=0; i < N; i++) b[i] = new Class (...);

// default constructions, then creation and assignments of new objects

Class *c = new Class [N]; // objects initialized by default constructor

for (int i=0; i < N; i++) c[i] = Class (...);

// new objects initialized by arbitrary constructor

Class * *d = new Class *[N]; // uninitialized pointers

for (int i=0; i < N; i++) d[i] = new Class (...);

Be sure to have array objects appropriately initialized.

Wolfgang Schreiner https://www.risc.jku.at 33/71

Example: Phone Book

Write a program that reads a sequence of at most N phone book entries
consisting of a name and a phone number. The program then reads
sequences of names and prints the corresponding phone numbers.

const int N = 100;

void mainPhoneBook()

{

Entry* book[N];

int n = readPhoneBook(book, N);

usePhoneBook(book, n);

deletePhoneBook(book, n);

}

Central data structure is an array of (pointers to) objects.

Wolfgang Schreiner https://www.risc.jku.at 34/71

A Phone Book Entry

class Entry {
public:

const char *name;

const char *number;

Entry() { }
Entry(char* na, char *nu): name(copy(na)), number(copy(nu)) { }
~Entry() { delete[] name; delete[] number; }

const char* getName() const { return name; }
const char* getNumber() const { return number; }

};

static const char* copy(char *str) {
int n = strlen(str);

char* result = new char[n+1];

strncpy(result, str, n+1);

return result;

}
Wolfgang Schreiner https://www.risc.jku.at 35/71

Constructing a Phone Book

int readPhoneBook(Entry **book, int N)

{
for (int i=0; i<N; i++)

{
Entry *entry = readEntry();

if (entry == nullptr) return i;

book[i] = entry;

}
return N;

}

Entry* readEntry()

{
cout << "Another entry (y/n)? ";

char ch[2]; cin.getline(ch, 2); if (ch[0] != ’y’) return nullptr;

cout << "Name: "; char name[100]; cin.getline(name, 100);

cout << "Number: "; char number[100]; cin.getline(number, 100);

return new Entry(name, number);

}
Wolfgang Schreiner https://www.risc.jku.at 36/71

Using a Phone Book

void usePhoneBook(Entry** book, int n) {
while (true) {
cout << "Another lookup (y/n)? ";

char ch[2]; cin.getline(ch, 2); if (ch[0] != ’y’) return;

cout << "Name: "; char name[100]; cin.getline(name, 100);

const char *number = getNumber(book, n, name);

if (number == nullptr) { cout << "Name not found\n"; continue; }
cout << "Number: " << number << "\n";

}
}

const char* getNumber(Entry **book, int n, char *name) {
for (int i=0; i<n; i++) {
Entry *entry = book[i];

if (strcmp(name, entry->getName()) == 0)

return entry->getNumber();

}
return nullptr;

}
Wolfgang Schreiner https://www.risc.jku.at 37/71

Deleting a Phone Book

void deletePhoneBook(Entry **book, int n)

{
for (int i=0; i<n; i++)

delete book[i];

}

Solution has various disadvantages:

Fixed maximum N of number phone book entries.

Number of actual entries n has to be passed around.

No abstraction from representation of phone book as Entry**.

Application directly operates on phone book entries.

Explicit deallocation of allocated phone book entries.

Not yet a really “object-oriented” solution.

Wolfgang Schreiner https://www.risc.jku.at 38/71

Objects Containing Arrays

A “naked” array is usually not sufficient to represent program data.

Typically a data structure consists of various bits and pieces.

All these should be packaged together into a single object.

Object provide via methods “high-level” access to its data.

Typically arrays are just part of an object representation.

Wolfgang Schreiner https://www.risc.jku.at 39/71

Prime Number Computation

Print all prime numbers up to n.

void printPrimes(int n)

{
if (n < 2) return;

cout << 2 << "\n";
PrimeTable p; // table to hold all odd primes computed so far

for (int c = 3; c <= n; c += 2)

{
if (!p.isPrime(c)) continue;

cout << c << "\n";
p.add(c);

}
}

Core functionality is packed into a “prime table”.

Wolfgang Schreiner https://www.risc.jku.at 40/71

A Prime Table

class PrimeTable {
public:

int N; // the size of the table

int n; // the number of elements actually contained in it

int *p; // the table itself

PrimeTable(); // create the table

~PrimeTable(); // delete the table

// omittted: copy constructor and copy assignment operator

bool isPrime(int c); // check whether candidate c is prime

void add(int c); // add a new prime c to the table

void resize(); // make table bigger

};

PrimeTable::PrimeTable(): N(100), n(0), p(new int[N]) { }
PrimeTable::~PrimeTable() { delete[] p; }

Wolfgang Schreiner https://www.risc.jku.at 41/71

A Prime Table

bool PrimeTable::isPrime(int c) {
for (int i=0; i<n; i++)

if (c % p[i] == 0) return false;

return true;

}

void PrimeTable::add(int c) {
if (n == N) resize();

p[n] = c;

n = n+1;

}

void PrimeTable::resize() {
int N0 = 2*N+1;

int *p0 = new int[N0];

for (int i=0; i<n; i++) p0[i] = p[i];

delete[] p;

N = N0; p = p0;

}

Wolfgang Schreiner https://www.risc.jku.at 42/71

The Phone Book Revisited

Now let us make the phone book really “object-oriented”.

void mainPhoneBook()

{
PhoneBook book; // empty book is created by default constructor

readPhoneBook(book); // book is filled

usePhoneBook(book); // book is used

} // book is destroyed by destructor

void readPhoneBook(PhoneBook& book) {
while (true)

{
cout << "Another entry (y/n)? ";

char ch[2]; cin.getline(ch, 2); if (ch[0] != ’y’) return;

cout << "Name: "; char name[100]; cin.getline(name, 100);

cout << "Number: "; char number[100]; cin.getline(number, 100);

book.add(name, number); // an entry is added to the book

}
}

Wolfgang Schreiner https://www.risc.jku.at 43/71

The Phone Book Revisited

void usePhoneBook(PhoneBook& book)

{
while (true)

{
cout << "Another lookup (y/n)? ";

char ch[2]; cin.getline(ch, 2); if (ch[0] != ’y’) return;

cout << "Name: "; char name[100]; cin.getline(name, 100);

const char *number = book.search(name); // name looked up in book

if (number == nullptr) { cout << "Name not found\n"; continue; }
cout << "Number: " << number << "\n";

}
}

Core functionality is now completely hidden in the phone book.

Wolfgang Schreiner https://www.risc.jku.at 44/71

The New Phone Book

class PhoneBook {
public:

int N; // the size of the book

int n; // the number of entries allocated in it

Entry **b; // the book itself, a table of entry *pointers*

PhoneBook(); // construct the book

~PhoneBook(); // delete the book, omitted: copy const./ass.op.

void add(char *name, char *number); // add an entry

const char* search(char *name); // search for a number

void resize(); // make the book bigger

};

PhoneBook::PhoneBook(): N(100), n(0), b(new Entry*[N]) { }
PhoneBook::~PhoneBook() {

for (int i=0; i<n; i++) delete b[i]; // delete entry

delete[] b; // delete book itself

}
Wolfgang Schreiner https://www.risc.jku.at 45/71

The New Phone Book

void PhoneBook::add(char *name, char *number) {
if (n == N) resize();

b[n] = new Entry(name, number);

n = n+1;

}

const char* PhoneBook::search(char *name) {
for (int i=0; i<n; i++) {
Entry *entry = b[i];

if (entry->hasName(name)) return entry->getNumber();

}
return nullptr;

}

void PhoneBook::resize() {
int N0 = 2*N+1; Entry **b0 = new Entry*[N0];

for (int i=0; i<n; i++) b0[i] = b[i]; // only *pointers* are copied

delete[] b; N = N0; b = b0;

}
Wolfgang Schreiner https://www.risc.jku.at 46/71

The New Phone Book Entry

class Entry {
public:

const char *name;

const char *number;

Entry() { }
Entry(char* na, char *nu): name(copy(na)), number(copy(nu)) { }
~Entry() { delete[] name; delete[] number; }

const char* getName() const { return name; }
const char* getNumber() const { return number; }
bool hasName(char *name) const { return strcmp(name, this->name) == 0; }

static const char* copy(char *str) {
int n = strlen(str);

char* result = new char[n+1];

strncpy(result, str, n+1);

return result;

}
};

Wolfgang Schreiner https://www.risc.jku.at 47/71

Objects versus Pointer to Objects

Object values may become unhandy.
It is costly to copy full objects.
Objects should be mainly passed to functions by reference.

Use of reference parameters in method declarations is recommended.
Otherwise the copy constructor is invoked on each function call with
an object as argument to create a temporary copy of the object.

Object pointers are frequently preferred.
It is cheap to copy pointers to objects.
Objects referenced by pointers should be created on the heap by new.

It is unwise to use pointers to stack-allocated data.
However, such objects must be then explicitly destroyed by delete.

Otherwise “memory leaks” will arise in the program.
Destructors of objects must explicitly free the space of all objects
referenced by pointers (provided that there exist nowhere else
references to these objects, otherwise “dangling pointers” will arise).

If the representation of an object contains dynamically created objects,
these objects should be better “hidden” from the outside world.

Wolfgang Schreiner https://www.risc.jku.at 48/71

1. Classes as Namespaces

2. Classes as Object Types

3. Objects with Functions

4. Objects and Arrays

5. Objects and Information Hiding

6. The Standard Class string

Wolfgang Schreiner https://www.risc.jku.at 49/71

Access Specifiers

Special labels restrict who can access a member.
public Anyone can access public members.

protected Only the class, derived classes, and friends can access
protected members.

private Only the class and friends can access private members.
Derived classes and friends will be introduced later.

Without an access specifier, default access levels are used.
class Default is private.
struct Default is public.

While this is actually the only difference between class and
struct, the later is typically used for plain structures only.

Distinguish between a class’s interface and its implementation.
Interface: “contract” between user and implementor; members that
belong to the interface are declared public.
Implementation: “internals” of a particular realization; members that
belong to the implementation are declared private or protected.

Explicit access specifiers should be always used.
Wolfgang Schreiner https://www.risc.jku.at 50/71

Typical Class Layout

class Class {
private: // object representation

type var ;

...

public: // interface constructors/functions

Class (...) { }
type fun (...) { ...}
...

private: // implementation functions

type fun (...) { ...}
...

};

Data members should generally not be declared public.

Wolfgang Schreiner https://www.risc.jku.at 51/71

Example

class Entry {
private:

const char *name;

const char *number;

public:

Entry() { }
Entry(char* na, char *nu): name(copy(na)), number(copy(nu)) { }
~Entry() { delete[] name; delete[] number; }

const char* getName() const { return name; }
const char* getNumber() const { return number; }
bool hasName(char *name) const { return strcmp(name, this->name) == 0; }

private:

static const char* copy(char *str) {
int n = strlen(str);

char* result = new char[n+1];

strncpy(result, str, n+1);

return result;

}
};

Wolfgang Schreiner https://www.risc.jku.at 52/71

Friends

A class may declare an external entity as friend.
class Class {
...

friend type fun (...);

friend type C ::fun (...);

friend class D ;

...

};
Friend gets full access to all members of Class.

Function fun and member function C ::fun receive friend status.
All member functions of D receive friend status.

Friendship is not transitive.
A friend of a friend of Class is not automatically a friend of Class.

Friendship is not inherited.
The concept of “inheritance” will be introduced later.

Controlled break of access rules; use with care!
Wolfgang Schreiner https://www.risc.jku.at 53/71

Nested Classes

A class definition may contain the definition of another class.

class Outer {
...

class Inner {
...

};
...

};

Inner class may be externally referred as Outer ::Inner .
Similar to access of static class members.

However, an inner class also obeys access specifiers.
Private inner class can be only used by outer class and its friends.

The outer and the inner class are not automatically friends.
Each class can only refer to the non-public members of the other
class, if it is explicitly declared as friend.

Wolfgang Schreiner https://www.risc.jku.at 54/71

Nested Classes

A class definition may contain just the declaration of another class.

// Outer.h

class Outer {
...

class Inner ;

...

};

// Inner.h

class Outer ::Inner {
...

type fun (...);

};

// Inner.cpp

type Outer ::Inner ::fun (...) { ... }

If only type Inner* is used, definition of Inner needs not be included.
Wolfgang Schreiner https://www.risc.jku.at 55/71

Example: Dynamic Lists

// IntList.h

class IntList

{
class IntNode;

private:

IntNode *head;

int number;

public:

IntList();

~IntList();

// omit: copy c./ass.op.

int length() const;

IntList& insert(int e);

int get(int i) const;

};

#include <iostream>

#include "IntList.h"

using namespace std;

int main()

{
IntList l;

l.insert(2).insert(3).insert(5);

cout << l.length(); // 3

cout << l.get(2); // 5

return 0;

}

IntNode is only declared (not defined) in IntList.
Wolfgang Schreiner https://www.risc.jku.at 56/71

Example: Dynamic Lists

// IntList.cpp

#include "IntList.h"

class IntList::IntNode {
friend class IntList;

private:

int value; IntNode* next;

IntNode(int v, IntNode *n):

value(v), next(n) { }
}

IntList::IntList():

head(nullptr), number(0) { }

IntList::~IntList() {
IntNode *node = head;

while (node != nullptr) {
IntNode *node0 = node->next;

delete node;

node = node0;

}
}

int IntList::length() const {
return number;

}

IntList& IntList::insert(int e) {
IntNode* node = new IntNode(e, head);

head = node;

number = number+1;

return *this;

}

int IntList::get(int i) const {
IntNode *node = head;

for (int j=0; j<number-i-1; j++)

node = node->next;

return node->value;

}

Frequently used technique called
“Pointer to Implementation”.

Wolfgang Schreiner https://www.risc.jku.at 57/71

1. Classes as Namespaces

2. Classes as Object Types

3. Objects with Functions

4. Objects and Arrays

5. Objects and Information Hiding

6. The Standard Class string

Wolfgang Schreiner https://www.risc.jku.at 58/71

The Standard Class string

C++ has a much more convenient representation of strings than C.

C/C++: char[N] s

Strings as arrays of characters terminated by the null character.
Very rigid representation because each string has a fixed size.
Constructing new strings (reading, concatenating, . . .) is tedious.
There is the persistent danger that the allocated buffer is overwritten.

// reads up to 4 characters, may cause buffer overflow

char s[3]; cin.getline(s, 4);

C++: string s (#include <string>)

Strings as objects with associated operations.
No fixed length; easy construction and manipulation.
Automatic memory management hidden in class.

// reads safely text line of arbitrary length

string s; getline(cin, s);

Class string is strongly recommended for string processing in C++.

Wolfgang Schreiner https://www.risc.jku.at 59/71

String Input and Output

// reads line and places it in s (excluding the end of line marker)

istream& getline(istream& in, string& s);

// reads characters until delim occurs and places it in s (excluding delim)

istream& getline(istream& in, string& s, char delim);

// reads one word (excluding white space) and returns string

istream& operator>>(istream& in, const string& s);

// writes string

ostream& operator<<(ostream& out, const string& s);

The result of the input operations (converted to type bool) is false, if
and only if no (more) input was available.

Wolfgang Schreiner https://www.risc.jku.at 60/71

Other String Operators

// returns concatentation of strings, character sequences, characters

string& operator+(const string& s, const string& t);

string& operator+(const char* s, const string& t);

string& operator+(const string& s, char* t);

string& operator+(const string& s, char c);

// compares string

// - operator== for equality

// - operator!= for inequality

// - operator<, operator <=, operator >, operator >= for lexical ordering

bool operator==(const string& s, const string& t);

bool operator==(const char* s, const string& t);

bool operator==(const string& s, const char* t);

// swaps contents of strings

void swap(string& a, string& b);

Wolfgang Schreiner https://www.risc.jku.at 61/71

Constructors and Basic Access Functions

// the empty string

string();

// a copy of s

string(const string& s);

// a copy of the null-terminated character sequence s as a string

string(const char* s);

// denotes "no position" in several methods

static const int npos = -1;

// a substring of s starting at pos and having at most n characters

// (for n = npos everything up to the end of the string is copied)

string(const string& s, int pos, int n = npos);

// a copy of the first n characters of s as a string

string(const char* s, int n);

// number of characters in string and a test for emptiness

int length() const;

int size() const;

bool empty() const;
Wolfgang Schreiner https://www.risc.jku.at 62/71

Non-Destructive Member Functions

// reference to character at position i

char& operator[](int i);

// substring of this string starting at pos with at most n characters

string substr(int pos = 0, int n = npos);

// return string as a null-terminated sequence of characters

// (must not be modified and becomes invalid after modifying this string)

const char* c_str() const;

// copies from this string into the buffer up to n character starting at pos

int copy(char* buffer, int n, int pos = 0);

// compare (a substring of) this string with (a substring of) another string

// 0 if equal, <0 if this string is lexicographically smaller, >0 otherwise

int compare(const string& s) const;

int compare(const char* s) const;

int compare(int pos, int n, const string& s) const;

int compare(int pos, int n, const char* s) const;

int compare(int pos, int n, const string& s, int pos2, int n2) const;

int compare(int pos, int n, const char* s, int pos2, int n2) const;

Wolfgang Schreiner https://www.risc.jku.at 63/71

Destructive Member Functions

// erase characters in string

void clear();

// assign to this string another string, character sequence, or character

string& operator=(const string&s); // also: assign

string& operator=(const char* s); // also: assign

string& operator=(char c); // also: assign

// assign to this string the denoted substring to s

string& assign(const string& s, int pos, int n);

string& assign(const char* s, int pos);

// append to this string another string or character

string& operator+=(string& s); // also: append

string& operator+=(char *s); // also: append

string& operator+=(char c); // also: append

// append to this string the denoted substring of s

string& append(string& s, int pos, int n);

string& append(char *s, int pos, int n);

Wolfgang Schreiner https://www.risc.jku.at 64/71

Member Functions for Inserting/Replacing

// insert into this string at pos another string or character sequence

string& insert(int pos, const string& s);

string& insert(int pos, const char* s);

string& insert(int pos, int n, char c);

// insert into this string at pos the denoted substring

string& insert(int pos, const string& s, int pos2, int n2);

string& insert(int pos, char* s, int n);

// erases denoted substring from this string and inserts other string instead

string& replace(int pos, int n, const string& s);

string& replace(int pos, int n, const char* s);

// insert denoted substring instead

string& replace(int pos, int n, const string& s, int pos2, int n2);

string& replace(int pos, int n, const char* s, n2);

// insert n2 copies of character c instead

string& replace(int pos, int n, int n2, char c);

Wolfgang Schreiner https://www.risc.jku.at 65/71

Member Functions for String Searching

// search (starting at pos) for smallest position where s occurs in this string

// (npos, if s does not occur in this string)

int find(const string& s, int pos = 0) const;

int find(const char* s, int pos = 0) const;

int find(char c, int pos = 0) const;

// search for substring of s with at most n characters

int find(const char* s, int pos, int n) const;

// search (starting at pos) for largest position where s occurs in this string

// (npos, if s does not occur in this string)

int rfind(const string& s, int pos = npos) const;

int rfind(const char* s, int pos = npos) const;

int rfind(char c, int pos = 0) const;

// search for substring of s with at most n characters

int rfind(const char* s, int pos, int n) const;

Wolfgang Schreiner https://www.risc.jku.at 66/71

Member Functions for Character Searching

// search for smallest position where some chararacter of s occurs

// (does not occur) in this string

int find_first_of(const string& s, int pos = 0) const;

int find_first_of(const char *s, int pos = 0) const;

int find_first_not_of(const string& s, int pos = 0) const;

int find_first_not_of(const char *s, int pos = 0) const;

// search for largest position where some chararacter of s occurs

// (does not occur) in this string

int find_last_of(const string& s, int pos = npos) const;

int find_last_of(const char *s, int pos = npos) const;

int find_last_not_of(const string& s, int pos = npos) const;

int find_last_not_of(const char *s, int pos = npos) const;

For more functions and detailed information, see the class documentation.

Wolfgang Schreiner https://www.risc.jku.at 67/71

Examples

string lower = "abc..z";

string upper = "ABC..Z",

string letters = lower + upper;

cout << letters[26]; // ’A’

cout << letters.length(); // 52

cout << letters.substring(2, 3); // "cde"

cout << letters.find("cde"); // 2

cout << letters.find("xxx"); // npos

letters.insert(0, "<");

letters.append(">");

cout << letters; // "<abc..zABC..z>"

String line; // empty string

bool okay = getline(cin, line); // read one text line

if (!okay) return; // check for end of input

Flexible construction and manipulation of strings.

Wolfgang Schreiner https://www.risc.jku.at 68/71

Example: Text Processing

Write a program that reads a text (a sequence of lines) which contains
multiple words (sequences of letters) separated by other characters. The
program then prints all words of the text in separate lines in the order of
their occurrence in the text. For instance, the input

One, two, and three!

shall result in output

One

two

and

three

A simple example of text processing.

Wolfgang Schreiner https://www.risc.jku.at 69/71

Example: Text Processing

#include <string>

#include <iostream>

using namespace std;

void printWords(const string& text);

int main()

{

while (true)

{

string line;

bool okay = getline(cin, line);

if (!okay) break;

printWords(line);

}

}

Wolfgang Schreiner https://www.risc.jku.at 70/71

Example: Text Processing

const char LETTERS[] =

"abcdefghijklmnopqrstuvwxyz"

"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

void printWords(const string& text)

{

int i = 0;

int end = text.length();

while (i < end)

{

int a = text.find_first_of(LETTERS, i);

if (a == string::npos) break;

int b = text.find_first_not_of(LETTERS, a+1);

if (b == string::npos) b = end;

cout << text.substr(a, b-a) << "\n";

i = b+1;

}

}

Easy with the help of the existing string methods.

Wolfgang Schreiner https://www.risc.jku.at 71/71

	Classes as Namespaces
	Classes as Object Types
	Objects with Functions
	Objects and Arrays
	Objects and Information Hiding
	The Standard Class string

