
InProSSA:
Automatising Industrial Optimisation

Tereso del Río1

Formal Methods Seminar - January 13, 2026

1
Supported by the Austrian Research Promotion Agency (FFG), project no. 59218671:

“InProSSA: Industrial Problem Solving Using Symbolic and Subsymbolic AI”.

Tereso del Río InProSSA

Tereso del Río InProSSA

CURRENT industrial partner pipeline

Company Problem Approach

Discussion

Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

LLM
generated

Tereso del Río InProSSA

IDEAL industrial partner pipeline

Company Problem Approach

Discussion

Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

LLM
generated

Tereso del Río InProSSA

Focus on DSL

Company Problem Approach

Discussion

Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

LLM
generated

Tereso del Río InProSSA

DSL requirements

Familiar → Pythonic

Describe behaviour ≥ Express constraints

Modularity → Allows functions/predicates

Tereso del Río InProSSA

DSL requirements

Familiar → Pythonic

Describe behaviour ≥ Express constraints

Modularity → Allows functions/predicates

Tereso del Río InProSSA

DSL requirements

Familiar → Pythonic

Describe behaviour ≥ Express constraints

Modularity → Allows functions/predicates

Tereso del Río InProSSA

Domain Specific Language

Python Code

11

22 defdef filtering_machinefiltering_machine((list_to_filterlist_to_filter:: DSList DSList((N_PIECESN_PIECES,, Piece Piece)),,

33 keep_decisions keep_decisions:: DSList DSList((N_PIECESN_PIECES,, boolbool)),,

44))::

55 # Initialize filtered list with empty pieces# Initialize filtered list with empty pieces

66 filtered_list filtered_list :: DSList DSList((N_PIECESN_PIECES,, Piece Piece))

77 forfor i i inin rangerange((N_PIECESN_PIECES))::

88 ifif keep_decisions keep_decisions[[ii]]::

99 assertassert list_to_filter list_to_filter[[ii]]..quality quality ==== 11

1010 filtered_list filtered_list[[ii]] == list_to_filter list_to_filter[[ii]]

1111 elseelse::

1212 objective objective +=+= list_to_filter list_to_filter[[ii]]..lengthlength

1313 filtered_list filtered_list[[ii]] == {{"quality""quality":: 11,, "length""length":: 00}}

1414

1515 returnreturn filtered_list filtered_list

1616

Python Code

11 """Defines a filtering machine.""""""Defines a filtering machine."""

22

33 fromfrom IncrementalPipeline IncrementalPipeline..MachinesMachines..GenericMachine GenericMachine importimport GenericMachine GenericMachine

44 fromfrom IncrementalPipeline IncrementalPipeline..ObjectsObjects..piece piece importimport Piece Piece,, PieceVars PieceVars,, create_piece_var_list create_piece_var_list

55 fromfrom gurobipy gurobipy importimport GRB GRB,, quicksum quicksum

66

77

88 classclass FilteringMachineFilteringMachine((GenericMachineGenericMachine))::

99 """"""

1010 A machine that filters a list of pieces. A machine that filters a list of pieces.

1111

1212 This machine expects a list of Piece objects as input This machine expects a list of Piece objects as input

1313 and produces a list of Piece objects as output. and produces a list of Piece objects as output.

1414 """ """

1515

1616 defdef __init____init__((selfself,, idid:: strstr))::

1717 supersuper(())..__init____init__((idid==f"FilteringMachinef"FilteringMachine{{idid}}"",,

1818 input_type input_type==PieceVarsPieceVars,,

1919 output_type output_type==PieceVarsPieceVars))

2020

2121 defdef impose_conditionsimpose_conditions((selfself,, model model,, input_list input_list:: listlist)) -->> listlist::

2222 """"""

2323 Filters the input list of pieces based on some conditions. Filters the input list of pieces based on some conditions.

2424 For example, it can filter out pieces that are too short or too long. For example, it can filter out pieces that are too short or too long.

2525 """ """

2626

2727 n n == lenlen((input_listinput_list)) # Number of inputs# Number of inputs

2828

2929 # define one boolean decision variable for each input# define one boolean decision variable for each input

3030 # if the input is used, keep[i] = 1, if it's dropped keep[i] = 0# if the input is used, keep[i] = 1, if it's dropped keep[i] = 0

3131 keep keep == model model..addVarsaddVars((nn,, vtype vtype==GRBGRB..BINARYBINARY,, name name==f"f"{{selfself..idid}} keep piece" keep piece"))

3232

3333 # if piece quality is bad, then keep[i] must be 0# if piece quality is bad, then keep[i] must be 0

3434 forfor i i inin rangerange((nn))::

3535 model model..addGenConstrIndicatoraddGenConstrIndicator((

3636 input_list input_list[[ii]]..goodgood,,

3737 00,,

3838 keep keep[[ii]] ==== 00,,

3939 name name==f"f"{{selfself..idid}} good_constraint_ good_constraint_{{ii}}""

4040))

4141

4242 # define the output variables# define the output variables

4343 output_list output_list == create_piece_var_list create_piece_var_list((modelmodel,, n n,, id_prefix id_prefix==f"f"{{selfself..idid}} output " output "))

4444

4545 # create variables to link input and output# create variables to link input and output

4646 input_to_output input_to_output == model model..addVarsaddVars((nn,, n n,, vtype vtype==GRBGRB..BINARYBINARY,, name name==f"f"{{selfself..idid}} input_to_output" input_to_output"))

4747

4848 # if this variable is one then input[i] goes to output[j]# if this variable is one then input[i] goes to output[j]

4949 forfor i i inin rangerange((nn))::

5050 forfor j j inin rangerange((nn))::

5151 output_list output_list[[jj]]..conditional_equalityconditional_equality((modelmodel,,

5252 input_to_output input_to_output[[ii,, j j]],,

5353 11,,

5454 input_list input_list[[ii]]))

5555

5656 # if the sum of this variables for one output is cero# if the sum of this variables for one output is cero

5757 # then the piece has length 0# then the piece has length 0

5858

5959 is_output_filled is_output_filled == model model..addVarsaddVars((

6060 n n,,

6161 vtype vtype==GRBGRB..BINARYBINARY,,

6262 name name==f"f"{{selfself..idid}} is_output_filled" is_output_filled",,

6363 lb lb==00

6464))

6565 forfor j j inin rangerange((nn))::

6666 model model..addConstraddConstr((

6767 is_output_filled is_output_filled[[jj]] ==== quicksum quicksum((

6868 input_to_output input_to_output[[ii,, j j]] forfor i i inin rangerange((nn))

6969)),,

7070 name name==f"f"{{selfself..idid}} output_filled_ output_filled_{{jj}}""

7171))

7272 output_list output_list[[jj]]..conditional_equalityconditional_equality((

7373 model model,,

7474 is_output_filled is_output_filled[[jj]],,

7575 00,,

7676 Piece Piece((lengthlength==00,, good good==TrueTrue))

7777))

7878

7979 # input[i] goes to output[j] if input_to_output[i, j] == 1# input[i] goes to output[j] if input_to_output[i, j] == 1

8080 # we want this to happen when we keep j pieces before the ith input# we want this to happen when we keep j pieces before the ith input

8181 forfor i i inin rangerange((nn))::

8282 forfor j j inin rangerange((nn))::

8383 model model..addGenConstrIndicatoraddGenConstrIndicator((

8484 input_to_output input_to_output[[ii,, j j]],,

8585 11,,

8686 quicksum quicksum((keepkeep[[kk]] forfor k k inin rangerange((ii)))) ==== j j,,

8787 name name==f"f"{{selfself..idid}} input_to_output_indicator_ input_to_output_indicator_{{ii}}__{{jj}}""

8888))

8989

9090 # Only one output variable can be assigned to each input if we keep it# Only one output variable can be assigned to each input if we keep it

9191 forfor i i inin rangerange((nn))::

9292 model model..addConstraddConstr((

9393 quicksum quicksum((input_to_outputinput_to_output[[ii,, j j]] forfor j j inin rangerange((nn)))) ==== keep keep[[ii]],,

9494 name name==f"f"{{selfself..idid}} at most one output per input constraint [at most one output per input constraint [{{ii}}]"]"

9595))

9696

9797 # At most one input variable can be assigned to each output# At most one input variable can be assigned to each output

9898 forfor j j inin rangerange((nn))::

9999 model model..addConstraddConstr((

100100 quicksum quicksum((input_to_outputinput_to_output[[ii,, j j]] forfor i i inin rangerange((nn)))) <=<= 11,,

101101 name name==f"f"{{selfself..idid}} at most one input per output constraint [at most one input per output constraint [{{jj}}]"]"))

102102

103103 # If keep[i] == 0, then add length to objective function# If keep[i] == 0, then add length to objective function

104104 waste_added waste_added == model model..addVarsaddVars((nn,, vtype vtype==GRBGRB..CONTINUOUSCONTINUOUS,, name name==f"f"{{selfself..idid}} waste_added" waste_added"))

105105 forfor i i inin rangerange((nn))::

106106 model model..addGenConstrIndicatoraddGenConstrIndicator((

107107 keep keep[[ii]],,

108108 00,,

109109 waste_added waste_added[[ii]] ==== input_list input_list[[ii]]..lengthlength,,

110110 name name==f"f"{{selfself..idid}} waste_added_ waste_added_{{ii}}""

111111))

112112

113113 # Define objective function as the sum of the waste# Define objective function as the sum of the waste

114114 model model..setObjectivesetObjective((quicksumquicksum((waste_addedwaste_added[[ii]] forfor i i inin rangerange((nn)))),, GRB GRB..MINIMIZEMINIMIZE))

115115

116116 returnreturn keep keep,, output_list output_list

Tereso del Río InProSSA

Domain Specific Language

Python Code

11

22 defdef filtering_machinefiltering_machine((list_to_filterlist_to_filter:: DSList DSList((N_PIECESN_PIECES,, Piece Piece)),,

33 keep_decisions keep_decisions:: DSList DSList((N_PIECESN_PIECES,, boolbool)),,

44))::

55 # Initialize filtered list with empty pieces# Initialize filtered list with empty pieces

66 filtered_list filtered_list :: DSList DSList((N_PIECESN_PIECES,, Piece Piece))

77 forfor i i inin rangerange((N_PIECESN_PIECES))::

88 ifif keep_decisions keep_decisions[[ii]]::

99 assertassert list_to_filter list_to_filter[[ii]]..quality quality ==== 11

1010 filtered_list filtered_list[[ii]] == list_to_filter list_to_filter[[ii]]

1111 elseelse::

1212 objective objective +=+= list_to_filter list_to_filter[[ii]]..lengthlength

1313 filtered_list filtered_list[[ii]] == {{"quality""quality":: 11,, "length""length":: 00}}

1414

1515 returnreturn filtered_list filtered_list

1616

Python Code

11 """Defines a filtering machine.""""""Defines a filtering machine."""

22

33 fromfrom IncrementalPipeline IncrementalPipeline..MachinesMachines..GenericMachine GenericMachine importimport GenericMachine GenericMachine

44 fromfrom IncrementalPipeline IncrementalPipeline..ObjectsObjects..piece piece importimport Piece Piece,, PieceVars PieceVars,, create_piece_var_list create_piece_var_list

55 fromfrom gurobipy gurobipy importimport GRB GRB,, quicksum quicksum

66

77

88 classclass FilteringMachineFilteringMachine((GenericMachineGenericMachine))::

99 """"""

1010 A machine that filters a list of pieces. A machine that filters a list of pieces.

1111

1212 This machine expects a list of Piece objects as input This machine expects a list of Piece objects as input

1313 and produces a list of Piece objects as output. and produces a list of Piece objects as output.

1414 """ """

1515

1616 defdef __init____init__((selfself,, idid:: strstr))::

1717 supersuper(())..__init____init__((idid==f"FilteringMachinef"FilteringMachine{{idid}}"",,

1818 input_type input_type==PieceVarsPieceVars,,

1919 output_type output_type==PieceVarsPieceVars))

2020

2121 defdef impose_conditionsimpose_conditions((selfself,, model model,, input_list input_list:: listlist)) -->> listlist::

2222 """"""

2323 Filters the input list of pieces based on some conditions. Filters the input list of pieces based on some conditions.

2424 For example, it can filter out pieces that are too short or too long. For example, it can filter out pieces that are too short or too long.

2525 """ """

2626

2727 n n == lenlen((input_listinput_list)) # Number of inputs# Number of inputs

2828

2929 # define one boolean decision variable for each input# define one boolean decision variable for each input

3030 # if the input is used, keep[i] = 1, if it's dropped keep[i] = 0# if the input is used, keep[i] = 1, if it's dropped keep[i] = 0

3131 keep keep == model model..addVarsaddVars((nn,, vtype vtype==GRBGRB..BINARYBINARY,, name name==f"f"{{selfself..idid}} keep piece" keep piece"))

3232

3333 # if piece quality is bad, then keep[i] must be 0# if piece quality is bad, then keep[i] must be 0

3434 forfor i i inin rangerange((nn))::

3535 model model..addGenConstrIndicatoraddGenConstrIndicator((

3636 input_list input_list[[ii]]..goodgood,,

3737 00,,

3838 keep keep[[ii]] ==== 00,,

3939 name name==f"f"{{selfself..idid}} good_constraint_ good_constraint_{{ii}}""

4040))

4141

4242 # define the output variables# define the output variables

4343 output_list output_list == create_piece_var_list create_piece_var_list((modelmodel,, n n,, id_prefix id_prefix==f"f"{{selfself..idid}} output " output "))

4444

4545 # create variables to link input and output# create variables to link input and output

4646 input_to_output input_to_output == model model..addVarsaddVars((nn,, n n,, vtype vtype==GRBGRB..BINARYBINARY,, name name==f"f"{{selfself..idid}} input_to_output" input_to_output"))

4747

4848 # if this variable is one then input[i] goes to output[j]# if this variable is one then input[i] goes to output[j]

4949 forfor i i inin rangerange((nn))::

5050 forfor j j inin rangerange((nn))::

5151 output_list output_list[[jj]]..conditional_equalityconditional_equality((modelmodel,,

5252 input_to_output input_to_output[[ii,, j j]],,

5353 11,,

5454 input_list input_list[[ii]]))

5555

5656 # if the sum of this variables for one output is cero# if the sum of this variables for one output is cero

5757 # then the piece has length 0# then the piece has length 0

5858

5959 is_output_filled is_output_filled == model model..addVarsaddVars((

6060 n n,,

6161 vtype vtype==GRBGRB..BINARYBINARY,,

6262 name name==f"f"{{selfself..idid}} is_output_filled" is_output_filled",,

6363 lb lb==00

6464))

6565 forfor j j inin rangerange((nn))::

6666 model model..addConstraddConstr((

6767 is_output_filled is_output_filled[[jj]] ==== quicksum quicksum((

6868 input_to_output input_to_output[[ii,, j j]] forfor i i inin rangerange((nn))

6969)),,

7070 name name==f"f"{{selfself..idid}} output_filled_ output_filled_{{jj}}""

7171))

7272 output_list output_list[[jj]]..conditional_equalityconditional_equality((

7373 model model,,

7474 is_output_filled is_output_filled[[jj]],,

7575 00,,

7676 Piece Piece((lengthlength==00,, good good==TrueTrue))

7777))

7878

7979 # input[i] goes to output[j] if input_to_output[i, j] == 1# input[i] goes to output[j] if input_to_output[i, j] == 1

8080 # we want this to happen when we keep j pieces before the ith input# we want this to happen when we keep j pieces before the ith input

8181 forfor i i inin rangerange((nn))::

8282 forfor j j inin rangerange((nn))::

8383 model model..addGenConstrIndicatoraddGenConstrIndicator((

8484 input_to_output input_to_output[[ii,, j j]],,

8585 11,,

8686 quicksum quicksum((keepkeep[[kk]] forfor k k inin rangerange((ii)))) ==== j j,,

8787 name name==f"f"{{selfself..idid}} input_to_output_indicator_ input_to_output_indicator_{{ii}}__{{jj}}""

8888))

8989

9090 # Only one output variable can be assigned to each input if we keep it# Only one output variable can be assigned to each input if we keep it

9191 forfor i i inin rangerange((nn))::

9292 model model..addConstraddConstr((

9393 quicksum quicksum((input_to_outputinput_to_output[[ii,, j j]] forfor j j inin rangerange((nn)))) ==== keep keep[[ii]],,

9494 name name==f"f"{{selfself..idid}} at most one output per input constraint [at most one output per input constraint [{{ii}}]"]"

9595))

9696

9797 # At most one input variable can be assigned to each output# At most one input variable can be assigned to each output

9898 forfor j j inin rangerange((nn))::

9999 model model..addConstraddConstr((

100100 quicksum quicksum((input_to_outputinput_to_output[[ii,, j j]] forfor i i inin rangerange((nn)))) <=<= 11,,

101101 name name==f"f"{{selfself..idid}} at most one input per output constraint [at most one input per output constraint [{{jj}}]"]"))

102102

103103 # If keep[i] == 0, then add length to objective function# If keep[i] == 0, then add length to objective function

104104 waste_added waste_added == model model..addVarsaddVars((nn,, vtype vtype==GRBGRB..CONTINUOUSCONTINUOUS,, name name==f"f"{{selfself..idid}} waste_added" waste_added"))

105105 forfor i i inin rangerange((nn))::

106106 model model..addGenConstrIndicatoraddGenConstrIndicator((

107107 keep keep[[ii]],,

108108 00,,

109109 waste_added waste_added[[ii]] ==== input_list input_list[[ii]]..lengthlength,,

110110 name name==f"f"{{selfself..idid}} waste_added_ waste_added_{{ii}}""

111111))

112112

113113 # Define objective function as the sum of the waste# Define objective function as the sum of the waste

114114 model model..setObjectivesetObjective((quicksumquicksum((waste_addedwaste_added[[ii]] forfor i i inin rangerange((nn)))),, GRB GRB..MINIMIZEMINIMIZE))

115115

116116 returnreturn keep keep,, output_list output_list

This language does not express the constraints implied by
the machine’s behaviour.
It describes the machine’s behaviour directly.

Tereso del Río InProSSA

Translating DSL to MILP

Company Problem Approach

Discussion

Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

LLM
generated

Tereso del Río InProSSA

DSL ⇒ MiniZinc

a : int = 0 ⇒ constraint a[1] = 0;

Tereso del Río InProSSA

DSL ⇒ MiniZinc

a : int = 0 ⇒ constraint a[1] = 0;

a = a + 1 ⇒ constraint a[2] = a[1] + 1;

Tereso del Río InProSSA

DSL ⇒ MiniZinc

a : int = 0 ⇒ constraint a[1] = 0;

a = a + 1 ⇒ constraint a[2] = a[1] + 1;

if a > 0:
a = 3 ⇒

constraint (a[2] > 0) -> (a[3] = 3);
constraint not(a[2] > 0) -> (a[3] = a[2]);

Tereso del Río InProSSA

Future work: Looking for other strategies

Company Problem Approach

Discussion

Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

LLM
generated

Tereso del Río InProSSA

Thank You!
Happy to answer any questions

Tereso del Río InProSSA

Problems of interest

Industrial (e.g. wood cutting pipeline)

Combinatorial (e.g. TSP, binpacking...)

Combinations of those

Tereso del Río InProSSA

Problems of interest

Industrial (e.g. wood cutting pipeline)

Combinatorial (e.g. TSP, binpacking...)

Combinations of those

Tereso del Río InProSSA

Problems of interest

Industrial (e.g. wood cutting pipeline)

Combinatorial (e.g. TSP, binpacking...)

Combinations of those

Tereso del Río InProSSA

Problems of interest

Industrial (e.g. wood cutting pipeline)

Combinatorial (e.g. TSP, binpacking...)

Combinations of those

Tereso del Río InProSSA

Bin packing DSL formulationPython Code

11 N_BOXES N_BOXES :: intint == 44

22 N_ITEMS N_ITEMS :: intint == 55

33

44 defdef not_exceednot_exceed((assignments assignments :: DSList DSList((N_ITEMSN_ITEMS,, DSInt DSInt((11,, N_BOXES N_BOXES))))))::

55 """Checks that the assignments don't exceed the weights of the boxes""""""Checks that the assignments don't exceed the weights of the boxes"""

66 cap cap :: DSList DSList((N_BOXESN_BOXES,, DSInt DSInt((00,, sumsum((ITEM_WEIGHTSITEM_WEIGHTS))))))

77 forfor i i inin rangerange((11,, N_BOXES N_BOXES ++ 11))::

88 cap cap[[ii]] == 00

99 forfor j j inin rangerange((11,, N_ITEMS N_ITEMS ++ 11))::

1010 ifif assignments assignments[[jj]] ==== i i::

1111 cap cap[[ii]] == cap cap[[ii]] ++ ITEM_WEIGHTS ITEM_WEIGHTS[[jj]]

1212

1313 assertassert cap cap[[ii]] <=<= BOX_CAPACITIES BOX_CAPACITIES[[ii]]

1414 ifif cap cap[[ii]] >> 00::

1515 # If box i is used add 1 to the objective# If box i is used add 1 to the objective

1616 objective objective == objective objective ++ 11

1717

1818 objective objective :: intint == 00

1919

2020 BOX_CAPACITIES BOX_CAPACITIES :: DSList DSList((N_BOXESN_BOXES,, DSInt DSInt(()))) == [[55,, 55,, 55,, 55]]

2121 ITEM_WEIGHTS ITEM_WEIGHTS :: DSList DSList((N_ITEMSN_ITEMS,, DSInt DSInt(()))) == [[44,, 22,, 55,, 33,, 11]]

2222

2323 # Decision variables defined. Not value assigned# Decision variables defined. Not value assigned

2424 assignments assignments :: DSList DSList((N_ITEMSN_ITEMS,, DSInt DSInt((11,, N_BOXES N_BOXES))))

2525

2626 not_exceednot_exceed((assignmentsassignments))

Tereso del Río InProSSA

Demo

Tereso del Río InProSSA

Katharina’s Master Thesis

Company Problem Approach

Discussion

Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

Company Problem Approach

Discussion

DSL Solution

Implementation

A Bin
packing

Greedy
heuristic

B GTSP MILP

C Wood
cutting

Tree
search

Automatic

DSL
description

LLM
generated

Tereso del Río InProSSA

Incorporating AI - Monte-Carlo Tree Search

Generate DSL code with LLMs

Tereso del Río InProSSA

Incorporating AI - Monte-Carlo Tree Search

Generate DSL code with LLMs

Tereso del Río InProSSA

Pipeline

Tereso del Río InProSSA

Gurobi

Manually describing the constraints imposed by each
machine.

Manually describing the constraints imposed by the
pipeline.

Using Gurobi’s to solve it. [Demo]

Tereso del Río InProSSA

DSL

Pythonic DSL to describe components and the pipeline
(subset of Python).

DSL description translated to MiniZinc.

Interpreted to deduce constraints using Static Simple
Assignment (SSA). [Demo]

Tereso del Río InProSSA

Future work

... very soon

Finish translator

... a near future

Consider other problems

Differentiate decision variables

... Katharina’s project

Create DSL from Natural Language description

... uncertainty, dynamical solving, reusing solutions...

Tereso del Río InProSSA

Future work

... very soon

Finish translator

... a near future

Consider other problems

Differentiate decision variables

... Katharina’s project

Create DSL from Natural Language description

... uncertainty, dynamical solving, reusing solutions...

Tereso del Río InProSSA

Future work

... very soon

Finish translator

... a near future

Consider other problems

Differentiate decision variables

... Katharina’s project

Create DSL from Natural Language description

... uncertainty, dynamical solving, reusing solutions...

Tereso del Río InProSSA

Future work

... very soon

Finish translator

... a near future

Consider other problems

Differentiate decision variables

... Katharina’s project

Create DSL from Natural Language description

... uncertainty, dynamical solving, reusing solutions...

Tereso del Río InProSSA

