
JOHANNESKEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Neural LogicMachines

Formal Methods and Automated Reasoning Seminar
Acile Chahboun

https://jku.at/


Introduction

2026-01-11 2



Overview

Neural Logic Machines

ANeurosymbolic Architecture combiningNeural Networkswith Symbolic Logic
to enable both inductive learning and logical reasoning.
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Key Terminologys Machine Learning: Uses statistical models and optimization to learn patterns
from data and make predictions or classifications.s Symbolic Reasoning: Manipulates structured knowledge representations
using predefined logical rules to perform explicit, rule-based inference.s Multilayer Perceptron: Multi-Layer Perceptron (MLP) it’s a feedforward neural
network that consists fully connected dense layers that transform input data
from one dimension to another. It is called multi-layer because it contains an
input layer, one or more hidden layers and an output layer. The purpose of an
MLP is to model complex relationships between inputs and outputs.s Neuro-symbolic AI: Combines machine learning with symbolic
representations and logical reasoning to support both data-driven learning
and structured inference.

2026-01-11 Introduction 4



The core problem: Learning vs. Reasoning
Learning (Neural) Reasoning (Symbolic)

Acquires representations from data Derives conclusions from known facts
Adjusts parameters to reduce error Applies explicit rules and constraints
Statistical generalization Logical inference
Bottom-up Top-down
Approximate Exact
Implicit knowledge Explicit knowledge
Answers: What is likely? Answers: What must be true?

Struggles with explicit logic, long inference
chains, guarantees, and truthfulness (halluci-
nations)

Struggles with learning from data, perception,
noise, and scalability
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WhyNeuro-Symbolic AI?

Neuro-symbolic approaches address the limitations of purely neural and
purely symbolic methods by integrating learned patterns with explicit
reasoning, allowing a system to both learn from data and reason about that
data and the broader structure in which it exists.
This combination more closely reflects human intelligence, which relies on
both learning from experience and reasoning over abstract concepts.
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TheArchitecture
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Objective/thesis

This architecture shows that neural networks can approximate
forward-chaining relational reasoning with strong size generalization,
without explicit symbolic rules or proofs.
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BlockWorld Reasoning Task

Figure: Block world reasoning task (Dong et al., 2019).

s Objects are blocks described by logical predicatess Input: relations such as On(x,y), Clear(x), IsGround(x)s Goal: infer new predicates (e.g. Move(x,y)) to reach target worlds Reasoning is symbolic and relational, not perceptual
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Architecture Overview

Stage Intuition / Meaning

Input state A spreadsheet of facts about the world

Arity separation Facts about one object vs object pairs

Reduce “Is there something related to x?” (∃-like summary)

Expand Broadcast a fact across an additional variable

Concatenation Collect all relevant facts

MLP (rule) A learned numeric rule applied everywhere

Training Numbers adjusted to fit examples

Interpretation Humans assign logical meaning after training
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Architecture Overview

Figure: Overview of the Neural Logic Machine architecture (Dong et al., 2019;
arXiv:1904.11694).
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Architecture Details

Stage What happens Why this exists

Input state Objects and relations stored as
predicate tables

Logic operates on relations, not
vectors

Arity separation Predicates grouped by arity
(unary, binary, etc.)

Rules operate at specific arities

Reduce Aggregate higher-arity predi-
cates (max / min)

Summarize many relations into
one fact

Expand Broadcast lower-arity predicates
to higher arity

Align variables across predi-
cates

Concatenation Aligned predicates stacked to-
gether

Combine all available informa-
tion

MLP (rule) Shared neural network com-
putes new predicates

Learn how facts combine
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Logic Predicates as Tensorss Neural Logic Machines represent logical predicates as tensorss Predicate arity corresponds to tensor orderc Unary predicates→ vectorsc Binary predicates→matricesc Higher-arity predicates→ higher-order tensorss Each tensor entry corresponds to a grounded object tuples Values in [0, 1] represent (probabilistic) truth
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Neural Logic Machines: Example

s World: Objects {A,B,C}with facts: IsGround(A) = 1; On(B,A) = 1, On(C,B) = 1.s Unary tensor:
X(1) = [1, 0, 0]s Binary tensor (On(y, x)):

A B C
B 1 0 0
C 0 1 0
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Logic Rules as Neural Operators: Boolean Logics Meta-rule (1): Boolean logic over predicates

p̂(x1,… , xr)← expression(x1,… , xr)s Expression consists of logical operators (AND, OR, NOT)s All predicates have the same arity

Neural encoding (high-level):s Predicate tensors are concatenateds An MLP learns the boolean combinations Output is a new predicate tensor (same arity)

Example (BlockWorld):

Moveable(x)← ¬IsGround(x) ∧ Clear(x)
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Logic Rules as Neural Operators: Quantifications Meta-rule (3): Expansion (adds a variable)

p(x1,… , xr)→ p(x1,… , xr, xr+1)s Meta-rule (4): Reduction (removes a variable)

∀xr+1 p(x1,… , xr, xr+1)

Neural encoding (high-level):s Expansion: repeat predicate tensor along a new dimensions Reduction: aggregate over a dimension (e.g. max / min)s Enables interaction between predicates of different arity
Example (BlockWorld):

Clear(x)← ¬On(y, x)
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Neural Logic Machines: Example

s Reduce:
HasTop(x) = max

y
On(y, x) = [1, 1, 0]

s Concat (unary):
Z(x) = [IsGround(x), HasTop(x)]s MLP inputs: A : [1, 1], B : [0, 1], C : [0, 0]s MLP outputs:

[0, 0, 1]s Interpretation:
Clear(x) = [0, 0, 1]

The shared MLP learned a soft rule behaving like ¬IsGround(x) AND ¬HasTop(x).
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Neural Logic Machines

Figure: Computational block of a Neural Logic Machine layer (Dong et al., 2019).
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Layer Computation in Neural Logic Machines

Notation: O(r)
i denotes predicates of arity r at layer i, one layer corresponds to one

reasoning step.

Inter-group computation (Eq. 5)

I(r)i = Concat(Expand(O(r−1)
i−1 ) ,O

(r)
i−1,Reduce(O

(r+1)
i−1 ))

I(r)i combines information across arities, Expand increases arity, Reduce decreases arity.

Intra-group computation (Eq. 6)

O(r)
i = 𝜎(MLP(Permute(I(r)i ) ; 𝜃

(r)
i ))

Permute enforces variable-order invariance, 𝜃(r)i are trainable MLP parameters, 𝜎 maps
outputs to [0, 1].
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Neural Logic Machines: Example

s Target:
Moveable(x) = [0, 0, 1]s Learning:c Layer 1 forms Clear(x)c Layer 2 uses Clear(x) and IsGround(x)s Backprop: Gradients update MLP weights so patterns like [0, 0]→1 reduce

loss.s Why it generalizes: Shared weights + permutation invariance suppress
shortcuts.

Intermediate predicates survive only if they consistently reduce final error.
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Evaluation

2026-01-11 21



Baseliness Memory Networks (MemNN):Neural models with explicit memory and
attention for multi-hop fact retrieval.s Differentiable ILP (𝜕ILP): Softened ILP that enumerates clause templates and
learns continuous weights via gradient descent.

Experimental Taskss Family Tree: infer kinship relations from base facts.s Graph Reasoning: infer connectivity, degree, and adjacency.s BlocksWorld: plan moves under logical constraints.s Sorting: learn a swap-based sorting algorithm.s Shortest Path: choose actions to reach a target node.
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Neural Logic Machines: Experiments+results
Task Learning Train Test Comparison to Base-

lines
Family Tree Supervised 20 20, 100 NLM: 100% accuracy;

MemNN degrades with
size; 𝜕ILP accurate but
less scalable

Graph Reasoning Supervised 10 10, 50 NLM: 100% accuracy;
MemNN drops sharply;
𝜕ILP fails on higher-
arity rules

Blocks World Reinforcement
Learning

≤12 10, 50 NLM: 100% success;
MemNN: 0% success;
𝜕ILP not scalable
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Task Learning Train Test Comparison to Base-
lines

Sorting Reinforcement
Learning

≤12 10, 50 NLM: 100% success,
few swaps; MemNN
inefficient and fails to
scale

Shortest Path Reinforcement
Learning

≤12 Larger NLM: 100% suc-
cess, optimal paths;
MemNN/DNC low suc-
cess rates
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Neural Logic Machines: Strengths

s Learns lifted, size-invariant rules that generalize beyond training instances.s Combines symbolic structure (variables, arity, quantifiers) with neural learning.s Strong systematic generalization, outperforming standard neural baselines.s Supports both relational reasoning and decision-making / algorithmic tasks.s Fully differentiable and trainable end-to-end.s Architecture enforces interpretable reasoning stages (Expand, Reduce,
Boolean combination).
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Neural Logic Machines: Weaknesses

s Logic is soft and approximate, lacking strict logical guarantees.s Learned rules are implicit in weights, not explicit symbolic clauses.s No recursion or cyclic reasoning; depth and arity must be fixed in advance.s Computational cost increases rapidly with predicate arity.s Training can be fragile for RL tasks; relies on curriculum learning.s Practical scalability limited to moderate numbers of objects.s Each task requires a separately trained model.s Training instability (RL): Results often reported on graduated runs; success
depends on random seed, curriculum, and multiple restarts (non-trivial failure
rate despite perfect performance when training succeeds).
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Open Questions in Neuro-Symbolic AIs Rule extraction: How to reliably extract explicit, human-readable rules from
neural models.s Logical guarantees: How to combine differentiability with exact, sound logical
reasoning.s Recursion and depth: How to support recursive and unbounded reasoning
without fixed depth.s Scalability: How to scale reasoning to large numbers of objects and
knowledge bases.s Data efficiency: How to learn rules from sparse, weak, or noisy supervision.s Task transfer: How to reuse learned rules across tasks and domains.s Perception–reasoning integration: How to connect raw sensory inputs with
symbolic reasoning robustly.s Theory: What formal guarantees (soundness, completeness, expressiveness)
are possible.
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Conclusion

Neural Logic Machines demonstrate that neural networks can learn
structured, symbolic-style reasoning by fixing the reasoning structure and
learning how predicates are combined. This enables strong systematic
generalization compared to standard neural models.

However, the learned logic is soft and implicit in the weights, reasoning
depth is fixed, and explicit logical guarantees are not provided. This reflects
a broader tension in neuro-symbolic AI between learnability and semantic
control.

This naturally motivates Logic Tensor Networks, which take a
complementary approach by enforcing explicit logical constraints through
the learning objective and will be covered in the next presentation.
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