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Overview

Neural Logic Machines

A Neurosymbolic Architecture combining Neural Networks with Symbolic Logic
to enable both inductive learning and logical reasoning.

References

Dong, H., Mao, J,, Lin, T., Wang, C., Li, L., & Zhou, D. (2019).
Neural Logic Machines.

arXiv:1904.11694.

https://arxiv.org/abs/1904.11694

J! JOHANNES KEPLER )
UNIVERSITY LINZ 2026-01-11 Introduction

w


https://arxiv.org/abs/1904.11694

Key Terminology

¢ Machine Learning: Uses statistical models and optimization to learn patterns
from data and make predictions or classifications.

¢ Symbolic Reasoning: Manipulates structured knowledge representations
using predefined logical rules to perform explicit, rule-based inference.

¢ Multilayer Perceptron: Multi-Layer Perceptron (MLP) it's a feedforward neural
network that consists fully connected dense layers that transform input data
from one dimension to another. It is called multi-layer because it contains an
input layer, one or more hidden layers and an output layer. The purpose of an
MLP is to model complex relationships between inputs and outputs.

¢ Neuro-symbolic Al: Combines machine learning with symbolic
representations and logical reasoning to support both data-driven learning
and structured inference.
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The core problem: Learning vs. Reasoning

Learning (Neural)

Reasoning (Symbolic)

Acquires representations from data
Adjusts parameters to reduce error
Statistical generalization
Bottom-up

Approximate

Implicit knowledge

Answers: What is likely?

Derives conclusions from known facts
Applies explicit rules and constraints
Logical inference

Top-down

Exact

Explicit knowledge

Answers: What must be true?

Struggles with explicit logic, long inference
chains, guarantees, and truthfulness (halluci-
nations)

Struggles with learning from data, perception,
noise, and scalability
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Why Neuro-Symbolic Al?

Neuro-symbolic approaches address the limitations of purely neural and
purely symbolic methods by integrating learned patterns with explicit
reasoning, allowing a system to both learn from data and reason about that
data and the broader structure in which it exists.

This combination more closely reflects human intelligence, which relies on
both learning from experience and reasoning over abstract concepts.
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The Architecture
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Objective/thesis

This architecture shows that neural networks can approximate
forward-chaining relational reasoning with strong size generalization,
without explicit symbolic rules or proofs.
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Block World Reasoning Task

Move (x, )

on(z,y) Tueifzisony
IsGround(z) True if x is the ground
= Clear(z) True if there is no block on x
(x)
(2)

! Moveable —IsGround(z) A Clear(z)
Placeable IsGround(z) V Clear(x)

Initial World Target World
Figure 1: (Left) A graphical illustration of the blocks world. Given an initial and a target worlds, the

agent is required to move blocks to transform the initial configuration to the target one. (Right) A set
of sentences used throughout the paper to define the blocks world.

Figure: Block world reasoning task (Dong et al., 2019).

Objects are blocks described by logical predicates

Input: relations such as On(x,y), Clear(x), IsGround(x)

Goal: infer new predicates (e.g. Move(x, y)) to reach target world
e Reasoning is symbolic and relational, not perceptual

J! JOHANNES KEPLER )
UNIVERSITY LINZ 2026-01-11 The Architecture



Architecture Overview

Stage

Intuition / Meaning

Input state
Arity separation
Reduce
Expand
Concatenation
MLP (rule)
Training

Interpretation
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A spreadsheet of facts about the world

Facts about one object vs object pairs

“Is there something related to x?” (3-like summary)
Broadcast a fact across an additional variable
Collect all relevant facts

A learned numeric rule applied everywhere
Numbers adjusted to fit examples

Humans assign logical meaning after training
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Architecture Overview

Input (Pre-conditions) Output (Conclusions)
Nullary Predicates P
(Gilobal Propetties) =

Ep,Allearched ()
E 2 = I I —— 2 Neural Boolean Logic
(Neural Modules)
Binary Predicates _|
(Object Relations) S X

Unary Predicates
(Object Properties)
Eg, Moveable (x)

Breath

Neural Quantifiers
(Wiring Operations)

Figure 2: An illustration of Neural Logic Machines (NLM). During forward propagation, NLM takes
object properties and relations as input, performs sequential logic deduction, and outputs conclusive
properties or relations of the objects. Implementation details can be found in Section 2.3.

Figure: Overview of the Neural Logic Machine architecture (Dong et al., 2019;
arXiv:1904.11694).

J ! JOHANNES KEPLER
UNIVERSITY LINZ

2026-01-11 The Architecture



Architecture Details

What happens

Why this exists

Input state

Arity separation

Concatenation
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Objects and relations stored as
predicate tables

Predicates grouped by arity
(unary, binary, etc.)

Aggregate higher-arity predi-
cates (max / min)

Broadcast lower-arity predicates
to higher arity

Aligned predicates stacked to-
gether

Shared neural network com-

niitac naw nradiratac

2026-01-11

Logic operates on relations, not
vectors

Rules operate at specific arities

Summarize many relations into
one fact

Align variables across predi-
cates

Combine all available informa-
tion

Learn how facts combine
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Logic Predicates as Tensors

¢ Neural Logic Machines represent logical predicates as tensors
¢ Predicate arity corresponds to tensor order

o Unary predicates — vectors
o Binary predicates — matrices
o Higher-arity predicates — higher-order tensors

¢ Each tensor entry corresponds to a grounded object tuple
¢ Values in [0, 1] represent (probabilistic) truth
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Neural Logic Machines: Example

e World: Objects {A, B, C} with facts: IsGround(A) = 1; On(B, A) =1,0n(C, B) = 1.

e Unary tensor:

x"=11,0,0]
¢ Binary tensor (On(y, x)):
A B C
Bi{1 0O
c/lo10
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Logic Rules as Neural Operators: Boolean Logic
e Meta-rule (1): Boolean logic over predicates

p(x,, ..., x,) < expression(x,, ..., X,)
e Expression consists of logical operators (AND, OR, NOT)
e All predicates have the same arity

Neural encoding (high-level):

¢ Predicate tensors are concatenated
¢ An MLP learns the boolean combination
e Qutput is a new predicate tensor (same arity)

Example (Block World):

Moveable(x) « -IsGround(x) A Clear(x)
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Logic Rules as Neural Operators: Quantification
e Meta-rule (3): Expansion (adds a variable)

P(Xy, ey X.) = PXgy e, X0 X 4)
e Meta-rule (4): Reduction (removes a variable)

VXpq PIX, e, X0 X )

Neural encoding (high-level):

e Expansion: repeat predicate tensor along a new dimension
¢ Reduction: aggregate over a dimension (e.g. max / min)
¢ Enables interaction between predicates of different arity

Example (Block World):
Clear(x) « -On(y, x)

J z U JOHANNES KEPLER
UNIVERSITY LINZ 2026-01-11 The Architecture 16



Neural Logic Machines: Example

¢ Reduce:
HasTop(x) = maxOn(y, x) = [1, 1, 0]
y

Concat (unary):
Z(x) = [IsGround(x), HasTop(x)]

MLP inputs: A:[1,1],B:[0,1],C: [0, 0]
MLP outputs:

[0, O, 1]

Interpretation:
Clear(x) = [0, O, 1]

The shared MLP learned a soft rule behaving like =IsGround(x) AND -HasTop(x).
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Neural Logic Machines

i Expand

[m, ¢ — - (mm—1,c9)] . Concat _~ Permutation ——» Reduce

i Frmm s e e ' /

H \ T : /

j— MLP ! /

[m, m — 1,(}5}] —u._‘: &‘[ el @ 57'7 .

. i Reduce s __-’. vy Y ‘

mm—1,m-2,62] +—— - mm—126] — [m.m - 1,62 [m,m -1, = Expand
= Layer i .

Figure 3: An illustration of the computational block inside NLM for binary predicates at layer i. C fj )
denotes the number of output predicates of group j at layer i. [-] denotes the shape of the tensor.

Figure: Computational block of a Neural Logic Machine layer (Dong et al., 2019).
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Layer Computation in Neural Logic Machines

Notation: O?') denotes predicates of arity r at layer i, one layer corresponds to one
reasoning step.

Inter-group computation (Eq. 5)

I = Concat(Expand(OEZ"), o, Reduce(O,ﬁ”))

lfr) combines information across arities, Expand increases arity, Reduce decreases arity.
Intra-group computation (Eq. 6)

0" = o(MLP(Permute(/"); 6{"))
Permute enforces variable-order invariance, 9,“) are trainable MLP parameters, 0 maps

outputs to [0, 1].
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Neural Logic Machines: Example
e Target:
Moveable(x) = [0, O, 1]

¢ Learning:

o Layer 1 forms Clear(x)
o Layer 2 uses Clear(x) and IsGround(x)

e Backprop: Gradients update MLP weights so patterns like [0, 0] —» 1 reduce
loss.

¢ Why it generalizes: Shared weights + permutation invariance suppress
shortcuts.

Intermediate predicates survive only if they consistently reduce final error.
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Evaluation
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Baselines

¢ Memory Networks (MemNN): Neural models with explicit memory and
attention for multi-hop fact retrieval.

¢ Differentiable ILP (0ILP): Softened ILP that enumerates clause templates and
learns continuous weights via gradient descent.

Experimental Tasks

e Family Tree: infer kinship relations from base facts.

¢ Graph Reasoning: infer connectivity, degree, and adjacency.
¢ Blocks World: plan moves under logical constraints.

e Sorting: learn a swap-based sorting algorithm.

e Shortest Path: choose actions to reach a target node.
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Neural Logic Machines: Experiments+results

Task

Learning

Train

Test

Comparison to Base-
lines

Family Tree

Supervised

20

20,100

NLM: 100% accuracy;
MemNN degrades with
size; oILP accurate but
less scalable

Graph Reasoning

Supervised

10

10, 50

NLM: 100% accuracy;
MemNN drops sharply;
oILP fails on higher-
arity rules

Blocks World

Reinforcemer
Learning

t<12

10, 50

NLM: 100% success;
MemNN: 0% success;
oILP not scalable
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Task Learning Train Test Comparison to Base-
lines
Sorting Reinforcement<12 10, 50 NLM: 100% success,
Learning few swaps; MemNN
inefficient and fails to
scale
Shortest Path Reinforcement<12 Larger NLM: 100%  suc-
Learning cess, optimal paths;
MemNN/DNC low suc-
cess rates
JNXU RiVersity iz 2026-0111  Evaluation
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Neural Logic Machines: Strengths

e | earns lifted, size-invariant rules that generalize beyond training instances.

e Combines symbolic structure (variables, arity, quantifiers) with neural learning.
e Strong systematic generalization, outperforming standard neural baselines.

e Supports both relational reasoning and decision-making / algorithmic tasks.

¢ Fully differentiable and trainable end-to-end.

¢ Architecture enforces interpretable reasoning stages (Expand, Reduce,
Boolean combination).
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Neural Logic Machines: Weaknesses

Logic is soft and approximate, lacking strict logical guarantees.

Learned rules are implicit in weights, not explicit symbolic clauses.

¢ No recursion or cyclic reasoning; depth and arity must be fixed in advance.
e Computational cost increases rapidly with predicate arity.

¢ Training can be fragile for RL tasks; relies on curriculum learning.

¢ Practical scalability limited to moderate numbers of objects.

e Each task requires a separately trained model.

e Training instability (RL): Results often reported on graduated runs; success
depends on random seed, curriculum, and multiple restarts (non-trivial failure
rate despite perfect performance when training succeeds).
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Open Questions in Neuro-Symbolic Al

¢ Rule extraction: How to reliably extract explicit, human-readable rules from
neural models.

¢ Logical guarantees: How to combine differentiability with exact, sound logical
reasoning.

¢ Recursion and depth: How to support recursive and unbounded reasoning
without fixed depth.

¢ Scalability: How to scale reasoning to large numbers of objects and
knowledge bases.

¢ Data efficiency: How to learn rules from sparse, weak, or noisy supervision.

e Task transfer: How to reuse learned rules across tasks and domains.

¢ Perception-reasoning integration: How to connect raw sensory inputs with
symbolic reasoning robustly.

¢ Theory: What formal guarantees (soundness, completeness, expressiveness)
are possible.
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Conclusion

Neural Logic Machines demonstrate that neural networks can learn
structured, symbolic-style reasoning by fixing the reasoning structure and
learning how predicates are combined. This enables strong systematic
generalization compared to standard neural models.

However, the learned logic is soft and implicit in the weights, reasoning
depth is fixed, and explicit logical guarantees are not provided. This reflects
a broader tension in neuro-symbolic Al between learnability and semantic
control.

This naturally motivates Logic Tensor Networks, which take a

complementary approach by enforcing explicit logical constraints through
the learning objective and will be covered in the next presentation.
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