Project Proposal TaxoLogic

Submitted in the frame of FFG-Call

"AI Ökosysteme 2025: AI for Tech & AI for Green"

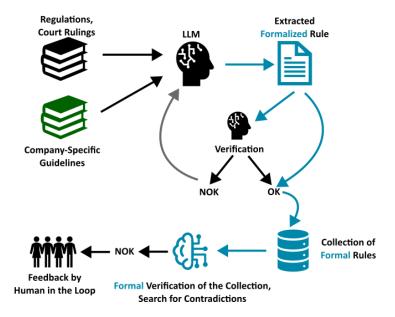
Wolfgang Windsteiger Seminar Formal Methods and Theorem Proving November 18, 2025

The Starting Point

Current Large Language Models (LLM):

- capable of processing and paraphrasing vast amounts of text BUT
- cannot reliably guarantee transparent, auditable, and legally defensible reasoning.

In domains where every decision must be explained, justified, and withstand regulatory scrutiny, the black-box character of probabilistic models becomes a critical weakness.


- Example: Tax law (transfer pricing, i.e., valuation of cross-border transactions within multinational enterprises)
 - Case descriptions and regulations in natural language, but
 - their interpretation is ultimately grounded in logic.

Project Idea

- Computer-support for this problem must go beyond the purely statistical learning paradigm.
- Hybrid form of AI that combines the strengths of data-driven models with symbolic reasoning.
- Sub-symbolic components such as LLMs:
 - decompose fiscal requirements into clearly distinct, verifiable individual statements and
 - □ transform them into machine readable representations.
- Symbolic reasoning operates on these representations to ensure that
 - legal rules, standards, and guidelines are applied consistently,
 - conflicts and exceptions are resolved explicitly, and
 - every inference step can be verified.

In this way, the efficiency and flexibility of LLMs are embedded within a framework that guarantees logical consistency and delivers reasoning paths that are transparent, traceable, and defensible before regulators, auditors, and courts.

At One Glance ...

Project Goals (Symbolic Part) I

- Apply rules in a controlled and logically sound fashion.
- As a logical basis we build upon the language of first-order predicate logic (FOL).
- Many reasoning tools available from computer science and mathematics are grounded in FOL.
- Versatile language with strong expressiveness at the cost of undecidability, i.e., there is no method that can, for arbitrary statements in FOL, decide whether the statement is true or false.
- Still, there are methods to formally prove statements provided they are true.
- Automation may become more powerful if we restrict the full power of FOL to certain subsets of the language (Horn-clauses → Prolog, modal or deontic logic?).

Project Goals (Symbolic Part) II

• Automated translation will result in formula-material, which then needs to be consolidated, analyzed, augmented, and corrected. SAT- and SMT-based methods can be employed in order to automatically detect and explain contradictions within the formula set.

Project Goals (Symbolic Part) III

- Contradictions will most probably remain in the formalized laws due to the inherent inconstancy of law → need specially adopted reasoning methods using the obtained formulas, because standard FOL reasoners are based on consistent, i.e., contradiction-free, theories.
- For instance, we cannot apply methods that use reasoning via "proof by contradiction", a perfectly valid and oftenused technique in mathematics.
- This excludes all SAT-based methods from this part of reasoning, because they are all essentially based on proof by contradiction.
- The goal within TaxoLogic is to find and adapt suitable reasoning methods that are resilient to inconsistent rule-bases.

Project Goals (Symbolic Part) IV

- Reasoning methods need to deliver explanations.
- Symbolic methods are trustworthy "by design", because they are built upon proven correct algorithms.
- Still, they do not by default explain every single step they do.
- For the case of reasoning: No off-the-shelf software.
- Adapt natural deduction-based methods in order to have a realistic chance to get human-understandable logic reasoning chains similar to how a tax expert would argue.

Theorema Formalization

```
DEFINITION (COURSE MODES)
        pass[s, T] :\Leftrightarrow passBE[s, T] \lor passWQ[s, T]
                                                                                                                                                (WQ or BE) \times
        passWQ[s, T] :\iff \begin{bmatrix} \forall \\ t=1,...,T \end{bmatrix} passTopic[s, t] \land passTotal[s, T] \land mode[s] == WQ
In[0]:=
                                                                                                                                                 (pass WQ) ×
```

(pass BE) ×

DEFINITION (WQ MODE)

∀ s,t,m,T In[0]:=

passTopic[s, t] :⇔ scoreTopic[s, t] ≥ 7.5 In[0]:=

In[0]:= m=3 t-2,...,3 t

In[0]:=

 $passTotal[s, T] :\Leftrightarrow \sum_{t=1,...,T} scoreTopic[s, t] \ge 60$ In[-]:=

(pass WQ topic) \times (pass WQ topic) ×

(module points) ×

(pass total) ×

DEFINITION (SCORE)

In[-]:=

score[S, m] := S_m In[0]:=

(extract score) ×

SCORES (JACK)

mode[Jack] := WQ In[0]:=

(Jack mode) ×

QuizP[Jack] := (5, 5, 4, 7, 5, 3, 8, 8, 1, 10, 2, 5) In[0]:=

(Jack quiz) ×

BonusP[Jack] := (0.5, 0.3, 1, 0.2, 0.1, 1, 0.4, 0.4, 0.7, 0.3, 0.2, 0.6)

(Jack bonus) ×

THEOREM (JACK PASS) pass[Jack, 4] In[-]:= (pass Jack) × ☑ Proof of (pass Jack) #1: Show proof knowledge built-in Restore settings $?WQ\ or\ BE?\ ,\ ?pass\ WQ?\ ,\ ?pass\ BE?\ ,\ ?pass\ WQ\ topic?\ ,\ ?pass\ WQ\ topic?\ ,$ $? module\ points?\ ,\ ? pass\ total?\ ,\ ? extract\ score?\ ,\ ? Jack\ mode?\ ,\ ? Jack\ quiz?\ ,\ ? Jack\ bonus?$