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Goals of this Thesis

extension of RISCTP/RISCAL by a saturation-based
automated theorem prover for first-order logic with
equality

the theoretical basis for such a prover and the support
for special theories (integer)

implementation of the prover

experiments and tests with the prover
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Goals of this Presentation

® review of the design for our prover
® show the implementation of our prover
® short software demonstration
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® variant of the superposition calculus (like the E Prover)
Design of

Prover ® given clause algorithm

® proof state represented by sets of processed and
unprocessed clauses

® at each traversal of main loop, a given clause c gets picked

® no unprocessed clauses left means the input set is
satisfiable

® if ¢ is the empty clause, the unsatisfiability has been shown

® all possible generating inferences between ¢ and processed
clauses get computed

® Discount loop
® unprocessed clauses never participate in simplifications
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RN W

22: end
23: Fa||ure Initial U is satisfiable, P describes model

Design of our Prover

U := {initial input clauses}; P := Q@
while U # @ begin

¢ := select__best(U)

U := U\ {c}; simplify(c, P)

if not redundant(c, P) then

(D

fi

if ¢ is the empty clause then
succeSS' clause set is unsatisfiable

else T:=0
for each p € P do

simplify(p, (P \ {p}) U {c})
done
T := generate(c, P)
P:=PU{c}
for each p € T do
p := cheap_simplify(p, P)
if not trivial(p, P) then
U:=UU{p}
d_onefI
i
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2:
3:
4:

select_best(U)

function select_best(U)

e :=min- , {eval(e)|c € U}

select ¢ arbitrarily from {¢ € Uleval(c) = e}
return ¢

Fig. 2. A simple select_best() function
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select_best(U) — Clauseweight

® most common evaluation functions are based on
symbol counting

® return number of function and variable symbols
(possibly weighted in some way) of a clause

® preferring clauses with a small number of symbols

Why is this approach successful?

® small clauses are typically more general than larger
clauses

® smaller clauses usually have fewer potential inference
positions — processing smaller clauses is more efficient

® clauses with fewer literal are more likely to degenerate
into the empty clause by appropriate simplifying
inferences
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® first-in first-out strategy
e ® new clauses are processed in the same order in which
they are generated
® evaluation function simply returns the value of a
counter that is incremented for each new clause

® pure FIFO performs very badly

Remark
If we ignore contraction rules, this heuristic will always find

the shortest possible proofs (by inference depth), since it
enumerates clauses in order of increasing depth.
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@ rewriting of positive literals

e s=t _u=vVR
s=tulp+o(t))]=vVR
if ulp =0(s), o(s) > o(t) for a substitution ¢

@® rewriting of negative literals
s=t u#vVvR
s=t ulpeo(t)) #vVR
if ulp =0(s), o(s) > o(t) for a substitution o

© negative simplify-reflect
s#t oc(s=t)VR
st R

for a substitution o.
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© deletion of duplicated literals

s=tVs=tVR
s=tVR
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Prover

® deletion of resolved literals
s#sVR
R

© destructive equality resolution
x#sVR
o(R)
if x € V and 0 = mgu(x,s).
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® clause subsumption

T RVS
T

if o(T) =S for a substitution o.
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St of where ¢ = mgu(s, t) and 0 (s # t) is eligible for resolution.
Frover s=tVS u#vVvVR
® oc(ulp+t]#AvVSVR)
where 0 = mgu(ulp, s),0(s) £ o(t), o(u) £ o(v),o(s # t) is eligible

for paramodulation, o(u # v) is eligible for resolution and u|, ¢ V.

(Equality resolution)

(Superposition into negative literals)

o s=tVS u=vVR

c(ulp+t]=vVSVR)

where 0 = mgu(ulp, s),0(s) £ o(t),o(u) £ o(v),o(s # t) is eligible
for paramodulation, o(u # v) is eligible for resolution and u|, ¢ V.

(Superposition into positive literals)

o s=tVu=vVR
c(t#£vVu=vVR)
where 0 = mgu(s, u),0(s) £ o(t) and o(s # t) is eligible for

paramodulation.

(Equality factoring)
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© syntactic tautology deletion 1
s=sVR

® syntactic tautology deletion 2
s=tVs#tVR
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Software-Demo

[0 Mainjava [ Resolutionjava X [J] PureEquatio.. [ Generatingl.. [ Simplifyingl. [l Pairjava [ Mainjava [ Term java
53
545
55  * Solve a problem in clausal form.
56 * @param problem the problem.
57 % @return true if the solution succeeded.
58 /
59 public boolean solve(ClauseProblem problem)
60
° 61 out.println("=== proof method 'res’ not completely implemented yet");
62
63 ProofProblem prob = problem.getProofProblem();
64
65 //(in)equality symbol
66 FunctionSymbol eq = prob.egualities.get(prob.boolSymbol);
67 FunctionSymbol neq = prob.inequalities.get(prob.boolSymbol);
68
69 //processed and unprocessed clauses as lists
70 // the clauses of the problem
7 List<Clause> unprocessed = problem.getClauses();
72 List<PureEquation> u = new Arraylist<>();
73 List<PureEquation> processed = new ArraylList<>();
74
75 //the input problem in form of PureEquations
76 for(Clause ¢ : unprocessed) {
77 u.add(new PureEquation(c, problem));
78 out.println("transforming clauseproblem to pureEquation");
79 }
80
81 // for every clause an evaluation gets calculated and stored with the clause
82 // unproc wird entsprechend der evaluation Function sortiert
83 List<Pair> unproc = evaluationFunction(u); //this should be done after the first initial simplification
84 sort(unproc, @, unproc.size()-1);
85
86 //Begin Hauptalgorithmus
87 while (unproc.size() > @) {
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Possible Future Work

Additional simplifying inference Rules
Experimenting with the term ordering
Integrating a literal selection function

Improve Clause Selection
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