A Saturation-
Based
Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Design of A Saturation-Based Automated Theorem

Prover

Implementation Prover for RlSCAL

& Software

Demonstration

Possible

Future Work Viktoria Langenreither

18.11.2025

A Saturation-
Based
Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Goals of this Thesis

extension of RISCTP/RISCAL by a saturation-based
automated theorem prover for first-order logic with
equality

the theoretical basis for such a prover and the support
for special theories (integer)

implementation of the prover

experiments and tests with the prover

A Saturation-
Based
Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Goals of this Presentation

® review of the design for our prover
® show the implementation of our prover
® short software demonstration

A Saturation-
Based

Automated Strategy of Our PrOVer

Theorem
Prover for
RISCAL

Viktoria
Langenreither

® variant of the superposition calculus (like the E Prover)
Design of

Prover ® given clause algorithm

® proof state represented by sets of processed and
unprocessed clauses

® at each traversal of main loop, a given clause c gets picked

® no unprocessed clauses left means the input set is
satisfiable

® if ¢ is the empty clause, the unsatisfiability has been shown

® all possible generating inferences between ¢ and processed
clauses get computed

® Discount loop
® unprocessed clauses never participate in simplifications

A Saturation-
Based
Automated
Theorem
Prover for
RISCAL

Viktoria

Langenreither

Design of
Prover

RN W

22: end
23: Fa||ure Initial U is satisfiable, P describes model

Design of our Prover

U := {initial input clauses}; P := Q@
while U # @ begin

¢ := select__best(U)

U := U\ {c}; simplify(c, P)

if not redundant(c, P) then

(D

fi

if ¢ is the empty clause then
succeSS' clause set is unsatisfiable

else T:=0
for each p € P do

simplify(p, (P \ {p}) U {c})
done
T := generate(c, P)
P:=PU{c}
for each p € T do
p := cheap_simplify(p, P)
if not trivial(p, P) then
U:=UU{p}
d_onefI
i

A Saturation-
Based
Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Design of
Prover

Implementation
& Software-
Demonstration

Possible
Future Work

1:
2:
3:
4:

select_best(U)

function select_best(U)

e :=min- , {eval(e)|c € U}

select ¢ arbitrarily from {¢ € Uleval(c) = e}
return ¢

Fig. 2. A simple select_best() function

A Saturation-
Based
Automated
Theorem
Prover for
RISCAL

Viktoria

Langenreither

Design of
Prover

select_best(U) — Clauseweight

® most common evaluation functions are based on
symbol counting

® return number of function and variable symbols
(possibly weighted in some way) of a clause

® preferring clauses with a small number of symbols

Why is this approach successful?

® small clauses are typically more general than larger
clauses

® smaller clauses usually have fewer potential inference
positions — processing smaller clauses is more efficient

® clauses with fewer literal are more likely to degenerate
into the empty clause by appropriate simplifying
inferences

A Saturation-
Based

Automated select_best(U) — FIFOweight

Theorem
Prover for
RISCAL

Viktoria
Langenreither

® first-in first-out strategy
e ® new clauses are processed in the same order in which
they are generated
® evaluation function simply returns the value of a
counter that is incremented for each new clause

® pure FIFO performs very badly

Remark
If we ignore contraction rules, this heuristic will always find

the shortest possible proofs (by inference depth), since it
enumerates clauses in order of increasing depth.

A Saturation-
Based . | .F
Automated
Theorem SI m p | y
Prover for

RISCAL
clause-clause simplifying inference rules:

Viktoria
Langenreither

@ rewriting of positive literals

e s=t _u=vVR
s=tulp+o(t))]=vVR
if ulp =0(s), o(s) > o(t) for a substitution ¢

@® rewriting of negative literals
s=t u#vVvR
s=t ulpeo(t)) #vVR
if ulp =0(s), o(s) > o(t) for a substitution o

© negative simplify-reflect
s#t oc(s=t)VR
st R

for a substitution o.

A Saturation-

Based
A d i I [.
wtomate simplify & cheap_simplify
Prover for
RISCAL
Lonpneiher intra-clause simplifying inference rules:

© deletion of duplicated literals

s=tVs=tVR
s=tVR

Design of
Prover

® deletion of resolved literals
s#sVR
R

© destructive equality resolution
x#sVR
o(R)
if x € V and 0 = mgu(x,s).

A Saturation-
Based d d
Automated
Theorem re u n a nt
Prover for
RISCAL

Viktoria

Langenreither

Design of
Prover

® clause subsumption

T RVS
T

if o(T) =S for a substitution o.

A Saturation-
Based
Automated
Theorem generate
Prover for
RISCAL

Viktoria o ﬂ
Langenreither U(R)

St of where ¢ = mgu(s, t) and 0 (s # t) is eligible for resolution.
Frover s=tVS u#vVvVR
® oc(ulp+t]#AvVSVR)
where 0 = mgu(ulp, s),0(s) £ o(t), o(u) £ o(v),o(s # t) is eligible

for paramodulation, o(u # v) is eligible for resolution and u|, ¢ V.

(Equality resolution)

(Superposition into negative literals)

o s=tVS u=vVR

c(ulp+t]=vVSVR)

where 0 = mgu(ulp, s),0(s) £ o(t),o(u) £ o(v),o(s # t) is eligible
for paramodulation, o(u # v) is eligible for resolution and u|, ¢ V.

(Superposition into positive literals)

o s=tVu=vVR
c(t#£vVu=vVR)
where 0 = mgu(s, u),0(s) £ o(t) and o(s # t) is eligible for

paramodulation.

(Equality factoring)

A Saturation-
Based .. |
Automated
Theorem trIVI a
Prover for
RISCAL

Viktoria
Langenreither

Design of
Prover

© syntactic tautology deletion 1
s=sVR

® syntactic tautology deletion 2
s=tVs#tVR

A Saturation-
Based
Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Design of
Prover

Implementation
& Software-
Demonstration

Possible
Future Work

88

Software-Demo

[0 Mainjava [Resolutionjava X [J] PureEquatio.. [Generatingl.. [Simplifyingl. [l Pairjava [Mainjava [Term java
53
545
55 * Solve a problem in clausal form.
56 * @param problem the problem.
57 % @return true if the solution succeeded.
58 /
59 public boolean solve(ClauseProblem problem)
60
° 61 out.println("=== proof method 'res’ not completely implemented yet");
62
63 ProofProblem prob = problem.getProofProblem();
64
65 //(in)equality symbol
66 FunctionSymbol eq = prob.egualities.get(prob.boolSymbol);
67 FunctionSymbol neq = prob.inequalities.get(prob.boolSymbol);
68
69 //processed and unprocessed clauses as lists
70 // the clauses of the problem
7 List<Clause> unprocessed = problem.getClauses();
72 List<PureEquation> u = new Arraylist<>();
73 List<PureEquation> processed = new ArraylList<>();
74
75 //the input problem in form of PureEquations
76 for(Clause ¢ : unprocessed) {
77 u.add(new PureEquation(c, problem));
78 out.println("transforming clauseproblem to pureEquation");
79 }
80
81 // for every clause an evaluation gets calculated and stored with the clause
82 // unproc wird entsprechend der evaluation Function sortiert
83 List<Pair> unproc = evaluationFunction(u); //this should be done after the first initial simplification
84 sort(unproc, @, unproc.size()-1);
85
86 //Begin Hauptalgorithmus
87 while (unproc.size() > @) {

A Saturation-
Based
Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Possible
Future Work

Possible Future Work

Additional simplifying inference Rules
Experimenting with the term ordering
Integrating a literal selection function

Improve Clause Selection

A Saturation-
Based
Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Possible
Future Work

References

Stefan Schulz. “E - a brainiac theorem prover”. In: vol. 15. Al
Communication, 2002, pp. 111-126. doi: 10.5555/1218615.1218621.

Alexandre Riazanov and Andrei Voronkov. Limited resource strategyy
in resolution theorem proving. Journal of Symbolic Computation.
Oxford Road, Manchester M13 9PL, UK: Department of Computer
Science, University of Manchester, 2003, pp. 101-115. doi: 10.
1016/S0747-7171(03)00040-3.

Stephan Schulz. “Learning Search Control Knowledge for Equational
Theorem Proving”. In: KI 2001: Advances in Artificial Intelligence.
Ed. by Franz Baader, Gerhard Brewka, and Thomas Eiter. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 320-334. isbn:
978-3-540-45422-9. doi: 10.1007/3-540-45422-5_23.

Laura Kovacs and Andrei Voronkov. “First-Order Theorem Proving
and VAMPIRE". In: Computer Aided Verification. Springer, Berlin,
Heidelberg, 2013, pp. 1-35. doi: 10.1007/ 978-3-642-39799-8_1

	Design of Prover
	Implementation & Software-Demonstration
	Possible Future Work

