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Goals of this Thesis

• extension of RISCTP/RISCAL by a saturation-based
automated theorem prover for first-order logic with
equality
• the theoretical basis for such a prover and the support

for special theories (integer)
• implementation of the prover
• experiments and tests with the prover
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Goals of this Presentation

• review of the design for our prover
• show the implementation of our prover
• short software demonstration
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Strategy of our Prover

• variant of the superposition calculus (like the E Prover)
• given clause algorithm

• proof state represented by sets of processed and
unprocessed clauses

• at each traversal of main loop, a given clause c gets picked
• no unprocessed clauses left means the input set is

satisfiable
• if c is the empty clause, the unsatisfiability has been shown
• all possible generating inferences between c and processed

clauses get computed
• Discount loop

• unprocessed clauses never participate in simplifications
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Design of our Prover
1: U := {initial input clauses}; P := ∅
2: while U 6= ∅ begin
3: c := select_best(U)
4: U := U \ {c}; simplify(c, P)
5: if not redundant(c, P) then
6: if c is the empty clause then
7: success; clause set is unsatisfiable
8: else T := ∅
9: for each p ∈ P do
10: simplify(p, (P \ {p}) ∪ {c})
11: done
12: T := generate(c, P)
13: P := P ∪ {c}
14: for each p ∈ T do
15: p := cheap_simplify(p, P)
16: if not trivial(p, P) then
17: U := U ∪ {p}
18: fi
19: done
20: fi
21: fi
22: end
23: Failure: Initial U is satisfiable, P describes model



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Design of
Prover

Implementation
& Software-
Demonstration

Possible
Future Work

select_best(U)
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select_best(U) — Clauseweight

• most common evaluation functions are based on
symbol counting
• return number of function and variable symbols

(possibly weighted in some way) of a clause
• preferring clauses with a small number of symbols

Why is this approach successful?
• small clauses are typically more general than larger

clauses
• smaller clauses usually have fewer potential inference

positions — processing smaller clauses is more efficient
• clauses with fewer literal are more likely to degenerate

into the empty clause by appropriate simplifying
inferences
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select_best(U) — FIFOweight

• first-in first-out strategy
• new clauses are processed in the same order in which

they are generated
• evaluation function simply returns the value of a

counter that is incremented for each new clause
• pure FIFO performs very badly

Remark
If we ignore contraction rules, this heuristic will always find
the shortest possible proofs (by inference depth), since it
enumerates clauses in order of increasing depth.
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simplify
clause-clause simplifying inference rules:

1 rewriting of positive literals
s = t u = v ∨ R

s = t, u[p ← σ(t)] = v ∨ R
if u|p = σ(s), σ(s) > σ(t) for a substitution σ

2 rewriting of negative literals
s = t u 6= v ∨ R

s = t, u[p ← σ(t)] 6= v ∨ R
if u|p = σ(s), σ(s) > σ(t) for a substitution σ

3 negative simplify-reflect
s 6= t σ(s = t) ∨ R

s 6= t, R
for a substitution σ.
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simplify & cheap_simplify

intra-clause simplifying inference rules:
1 deletion of duplicated literals

s = t ∨ s = t ∨ R
s = t ∨ R

2 deletion of resolved literals
s 6= s ∨ R

R

3 destructive equality resolution
x 6= s ∨ R

σ(R)

if x ∈ V and σ = mgu(x , s).
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redundant

1 clause subsumption
T R ∨ S

T
if σ(T ) = S for a substitution σ.
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generate

1
s 6= t ∨ R (Equality resolution)

σ(R)

where σ = mgu(s, t) and σ(s 6= t) is eligible for resolution.

2
s = t ∨ S u 6= v ∨ R (Superposition into negative literals)
σ(u[p ← t ] 6= v ∨ S ∨ R)

where σ = mgu(u|p , s), σ(s) ≮ σ(t), σ(u) ≮ σ(v), σ(s 6= t) is eligible
for paramodulation, σ(u 6= v) is eligible for resolution and u|p /∈ V .

3
s = t ∨ S u = v ∨ R (Superposition into positive literals)
σ(u[p ← t ] = v ∨ S ∨ R)

where σ = mgu(u|p , s), σ(s) ≮ σ(t), σ(u) ≮ σ(v), σ(s 6= t) is eligible
for paramodulation, σ(u 6= v) is eligible for resolution and u|p /∈ V .

4
s = t ∨ u = v ∨ R (Equality factoring)

σ(t 6= v ∨ u = v ∨ R)

where σ = mgu(s, u), σ(s) ≮ σ(t) and σ(s 6= t) is eligible for
paramodulation.
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trivial

1 syntactic tautology deletion 1
s = s ∨ R

2 syntactic tautology deletion 2
s = t ∨ s 6= t ∨ R
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Software-Demo
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Possible Future Work

• Additional simplifying inference Rules

• Experimenting with the term ordering

• Integrating a literal selection function

• Improve Clause Selection
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