A Saturation-Based Automated Theorem Prover for RISCAL

Viktoria Langenreither

Design of Prover

& Software-

Possible Future Wo

A Saturation-Based Automated Theorem Prover for RISCAL

Viktoria Langenreither

18.11.2025

Design of

& Software-Demonstration

Possible Future Wor

Goals of this Thesis

- extension of RISCTP/RISCAL by a saturation-based automated theorem prover for first-order logic with equality
- the theoretical basis for such a prover and the support for special theories (integer)
- implementation of the prover
- experiments and tests with the prover

Design o Prover

& Software-Demonstration

Possible Future Wor

Goals of this Presentation

- review of the design for our prover
- show the implementation of our prover
- short software demonstration

Design of Prover

& Software-Demonstration

Possible Future Wo

Strategy of our Prover

- variant of the superposition calculus (like the E Prover)
- given clause algorithm
 - proof state represented by sets of processed and unprocessed clauses
 - at each traversal of main loop, a given clause c gets picked
 - no unprocessed clauses left means the input set is satisfiable
 - ullet if c is the empty clause, the unsatisfiability has been shown
 - all possible generating inferences between c and processed clauses get computed
- Discount loop
 - unprocessed clauses never participate in simplifications

Design of Prover

& Software-Demonstration

Possible Future Worl

Design of our Prover

```
1: U := \{ initial input clauses \}; P := \emptyset
2: while U \neq \emptyset begin
3:
         c := \mathbf{select\_best}(U)
         U := U \setminus \{c\}; simplify(c, P)
         if not redundant(c, P) then
6:
               if c is the empty clause then
7:
8:
9:
                     success: clause set is unsatisfiable
               else T := \emptyset
               for each p \in P do
                       simplify(p, (P \setminus \{p\}) \cup \{c\})
10:
11:
12:
                 done
                 T := \mathbf{generate}(c, P)
                 P := P \cup \{c\}
13:
14:
                 for each p \in T do
15:
                       p := cheap\_simplify(p, P)
16:
                       if not trivial(p, P) then
                             U := U \cup \{p\}
17:
18:
19:
20:
21:
                       fi
                 done
fi
           fi
     Failure: Initial U is satisfiable, P describes model
```

Possible Future Wor select_best(U)

```
1: function select_best(U)
```

2:
$$e := \min_{\geq E} \{ \operatorname{eval}(c) | c \in U \}$$

3: select c arbitrarily from
$$\{c \in U | eval(c) = e\}$$

4: return c

Fig. 2. A simple select_best() function

Design of Prover

& Software-

Possible Future Wo

$select_best(U)$ — Clauseweight

- most common evaluation functions are based on symbol counting
- return number of function and variable symbols (possibly weighted in some way) of a clause
- preferring clauses with a small number of symbols

Why is this approach successful?

- small clauses are typically more general than larger clauses
- smaller clauses usually have fewer potential inference positions — processing smaller clauses is more efficient
- clauses with fewer literal are more likely to degenerate into the empty clause by appropriate simplifying inferences

Design of Prover

& Software-Demonstration

Possible Future Wor

$select_best(U)$ — FIFOweight

- first-in first-out strategy
- new clauses are processed in the same order in which they are generated
- evaluation function simply returns the value of a counter that is incremented for each new clause
- pure FIFO performs very badly

Remark

If we ignore contraction rules, this heuristic will always find the shortest possible proofs (by inference depth), since it enumerates clauses in order of increasing depth.

simplify

clause-clause simplifying inference rules:

rewriting of positive literals

$$\frac{s = t \quad u = v \vee R}{s = t, \ u[p \leftarrow \sigma(t)] = v \vee R}$$

if $u|_{p} = \sigma(s)$, $\sigma(s) > \sigma(t)$ for a substitution σ

rewriting of negative literals

$$\frac{s=t \qquad u\neq v\vee R}{s=t,\ u[p\leftarrow\sigma(t)]\neq v\vee R}$$
 if $u|_p=\sigma(s),\ \sigma(s)>\sigma(t)$ for a substitution σ

3 negative simplify-reflect

$$\frac{s \neq t \qquad \sigma(s=t) \vee R}{s \neq t, R}$$

for a substitution σ .

simplify & cheap_simplify

intra-clause simplifying inference rules:

deletion of duplicated literals

$$\frac{s = t \lor s = t \lor R}{s = t \lor R}$$

2 deletion of resolved literals

$$\frac{s \neq s \vee R}{R}$$

destructive equality resolution

$$\frac{x \neq s \vee R}{\sigma(R)}$$

if $x \in V$ and $\sigma = mgu(x, s)$.

Implementatio & SoftwareDemonstration

Possible Future Wor

redundant

clause subsumption

$$\frac{T \qquad R \vee S}{T}$$

if $\sigma(T) = S$ for a substitution σ .

generate

where $\sigma = \mathsf{mgu}(s,t)$ and $\sigma(s \neq t)$ is eligible for resolution.

 $2 \quad \frac{s = t \vee S \qquad u \neq v \vee R}{\sigma(u[p \leftarrow t] \neq v \vee S \vee R)} \text{ (Superposition into negative literals)}$

where $\sigma = \mathrm{mgu}(u|_p, s), \sigma(s) \not< \sigma(t), \sigma(u) \not< \sigma(v), \sigma(s \neq t)$ is eligible for paramodulation, $\sigma(u \neq v)$ is eligible for resolution and $u|_p \notin V$.

- $\frac{s=t \vee S}{\sigma(u[p \leftarrow t] = v \vee S \vee R)} \text{ (Superposition into positive literals)}$ where $\sigma = \text{mgu}(u|_p, s), \sigma(s) \not< \sigma(t), \sigma(u) \not< \sigma(v), \sigma(s \neq t) \text{ is eligible}$ for paramodulation, $\sigma(u \neq v)$ is eligible for resolution and $u|_p \notin V$.
 - $\frac{s = t \lor u = v \lor R}{\sigma(t \neq v \lor u = v \lor R)}$ (Equality factoring)

where $\sigma = \mathrm{mgu}(s, u), \sigma(s) \not< \sigma(t)$ and $\sigma(s \neq t)$ is eligible for paramodulation.

& Software-Demonstration

Possible Future Wor syntactic tautology deletion 1

$$s = s \vee R$$

2 syntactic tautology deletion 2

$$s = t \lor s \neq t \lor R$$

Implementation

& Software-Demonstration

Future Wo

Software-Demo

```
Main java
            Resolution.java × D PureEquatio...
                                             Generating ...
                                                              Simplifyingl...

    □ Pair iava

                                                                                         Term java
 540
        * Solve a problem in clausal form.
        * @param problem the problem.
        * @return true if the solution succeeded.
 58
      public boolean solve(ClauseProblem problem)
 598
 60
 61
         out.println("=== proof method 'res' not completely implemented yet"):
 62
         ProofProblem prob = problem.getProofProblem();
 64
 65
         //(in)equality symbol
 66
         FunctionSymbol eq = prob.equalities.get(prob.boolSymbol);
 67
         FunctionSymbol neq = prob.inequalities.get(prob.boolSymbol);
 68
 69
         //processed and unprocessed clauses as lists
 70
         // the clauses of the problem
        List<Clause> unprocessed = problem.getClauses();
        List<PureEquation> u = new ArrayList<>();
         List<PureEquation> processed = new ArrayList<>();
 74
 75
         //the input problem in form of PureEquations
 76
         for(Clause c : unprocessed) {
             u.add(new PureEquation(c, problem));
 78
             out.println("transforming clauseproblem to pureEquation");
 79
 80
 81
         // for every clause an evaluation gets calculated and stored with the clause
 82
         // unproc wird entsprechend der evaluation Function sortiert
 83
        List<Pair> unproc = evaluationFunction(u); //this should be done after the first initial simplification
 8/1
         sort(unproc. 0. unproc.size()-1):
 85
 86
         //Begin Hauptalgorithmus
 87
         while (unproc.size() > 0) {
```

Implementation & Software-Demonstration

Possible Future Work

Possible Future Work

- Additional simplifying inference Rules
- Experimenting with the term ordering
- Integrating a literal selection function
- Improve Clause Selection

& Software-Demonstration

Possible Future Work

References

- Stefan Schulz. "E a brainiac theorem prover". In: vol. 15. Al Communication, 2002, pp. 111–126. doi: 10.5555/1218615.1218621.
- Alexandre Riazanov and Andrei Voronkov. Limited resource strategyy in resolution theorem proving. Journal of Symbolic Computation. Oxford Road, Manchester M13 9PL, UK: Department of Computer Science, University of Manchester, 2003, pp. 101–115. doi: 10. 1016/S0747-7171(03)00040-3.
- Stephan Schulz. "Learning Search Control Knowledge for Equational Theorem Proving". In: KI 2001: Advances in Artificial Intelligence.
 Ed. by Franz Baader, Gerhard Brewka, and Thomas Eiter. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 320–334. isbn: 978-3-540-45422-9. doi: 10.1007/3-540-45422-5_23.
- Laura Kovacs and Andrei Voronkov. "First-Order Theorem Proving and VAMPIRE". In: Computer Aided Verification. Springer, Berlin, Heidelberg, 2013, pp. 1–35. doi: 10.1007/978-3-642-39799-8_1