Graded Quantitative Narrowing

Mauricio Ayala Rincón¹ Thaynara Arielly de Lima² Georg Ehling³ Temur Kutsia³

> ¹Universidade de Brasília, Brazil ²Universidade Federal de Goiás, Brazil ³Research Institute for Symbolic Computation, JKU Linz, Austria

Formal Methods and Automated Reasoning Seminar November 4, 2025

Narrowing

Motivation

0

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

Conclusion

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$$

Narrowing

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$$

$$n+n=^{?}S(S(Z))$$

Narrowing

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{Z + x \to x, S(x) + y \to S(x + y)\}$$

$$\underline{n+n}=^{?}S(S(Z))$$

Narrowing

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{Z + x \rightarrow x, \underline{S(x) + y \rightarrow S(x + y)}\}$$

$$\underline{n+n}=^{?}S(S(Z))$$

Narrowing

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$$

Narrowing derivation:

$$n+n=? S(S(Z))$$

Substitution

$$\{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\}$$

Narrowing

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{ \vec{Z} + x \to x, \ S(x) + y \to S(x + y) \}$$

$$\frac{n+n}{n} = S(S(Z))$$
Substitution
$$S(x' + S(x')) = S(S(Z))$$

$$\{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\}$$

Narrowing

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$$

$$n + n = {}^{?}S(S(Z))$$
 Substitution
 $\leadsto S(x' + S(x')) = {}^{?}S(S(Z))$ $\{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\}$

Narrowing

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$$

$$n + n = {}^{?}S(S(Z))$$
 Substitution
 $\leadsto S(x' + S(x')) = {}^{?}S(S(Z))$ $\{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\}$

Conclusion

Motivation

rowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$$

$$n + n = {}^{?}S(S(Z))$$
 Substitution
 $\Rightarrow S(x' + S(x')) = {}^{?}S(S(Z))$ $\{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\}$

Narrowing

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$$

$$n + n = {}^{?}S(S(Z))$$
 Substitution
 $\leadsto S(\underline{x' + S(x')}) = {}^{?}S(S(Z))$ $\{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\}$
 $\{x' \mapsto Z, x \mapsto S(Z)\}$

Narrowing

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{ \underline{Z} + x \rightarrow x, \ S(x) + y \rightarrow S(x + y) \}$$

$$n + n = {}^{?}S(S(Z))$$
 Substitution
 $\leadsto S(\underline{x' + S(x')}) = {}^{?}S(S(Z))$ $\{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\}$
 $\leadsto S(S(Z)) = {}^{?}S(S(Z))$ $\{x' \mapsto Z, x \mapsto S(Z)\}$

Narrowing

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{Z + x \to x, S(x) + y \to S(x + y)\}$$

$$n + n = {}^{?}S(S(Z))$$
 Substitution
 $\leadsto S(x' + S(x')) = {}^{?}S(S(Z))$ $\{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\}$
 $\leadsto S(S(Z)) = {}^{?}S(S(Z))$ $\{x' \mapsto Z, x \mapsto S(Z)\}$

Narrowing

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{ \vec{Z} + x \rightarrow x, \ S(x) + y \rightarrow S(x + y) \}$$

$$n + n = {}^? S(S(Z))$$
 Substitution
 $\leadsto S(x' + S(x')) = {}^? S(S(Z))$ $\{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\}$
 $\leadsto S(S(Z)) = {}^? S(S(Z))$ $\{x' \mapsto Z, x \mapsto S(Z)\}$

Narrowing

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{Z + x \to x, S(x) + y \to S(x + y)\}$$

$$n + n = {}^{?}S(S(Z))$$
 Substitution
 $\leadsto S(x' + S(x')) = {}^{?}S(S(Z))$ $\{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\}$
 $\leadsto S(S(Z)) = {}^{?}S(S(Z))$ $\{x' \mapsto Z, x \mapsto S(Z)\}$
 $\leadsto \text{TRUE}$

Narrowing

Motivation

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n + n = 2.

TRS:
$$R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$$

Narrowing derivation:

$$n + n = {}^{?}S(S(Z))$$
 Substitution
 $\leadsto S(x' + S(x')) = {}^{?}S(S(Z))$ $\{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\}$
 $\leadsto S(S(Z)) = {}^{?}S(S(Z))$ $\{x' \mapsto Z, x \mapsto S(Z)\}$
 $\leadsto \text{TRUE}$

Computed Solution: $\{n \mapsto S(Z)\}$

Quantitative equational reasoning

Example

Motivation

Consider the equation n + 1 = 3n.

It does not have an exact solution in \mathbb{N} , but $\{n \mapsto 0\}$ and $\{n \mapsto 1\}$ could be considered approximate solutions.

- How can this idea (approximate solutions) be formalized? How can rewrite systems be extended to include quantitative information?
 - → Quantitative equational reasoning (Gavazzo & Di Florio 2023)
- How can narrowing be transferred to the quantitative scenario?
 - \rightarrow This work.

Quantitative equational reasoning

- Equip equations with degrees to measure similarity/proximity of terms rather than just equality: $\varepsilon \Vdash t \approx s$.
- Degrees could correspond to a probability, distance in a metric space, ...
- Main requirements: **compare** and **compose** degrees.

Quantitative equational reasoning

- Equip equations with degrees to measure similarity/proximity of terms rather than just equality: $\varepsilon \Vdash t \approx s$.
- Degrees could correspond to a probability, distance in a metric space, ...
- Main requirements: compare and compose degrees.

Definition (Quantale)

Quantale: $\Omega = (\Omega, \preceq, \otimes, \kappa)$, where

- $(\Omega, \kappa, \otimes)$ is a monoid;
- (Ω, \preceq) is a complete lattice (with join \vee and meet \wedge);
- distributivity laws hold:

$$\delta \otimes \left(\bigvee_{i \in I} \varepsilon_i\right) = \bigvee_{i \in I} (\delta \otimes \varepsilon_i), \qquad \left(\bigvee_{i \in I} \varepsilon_i\right) \otimes \delta = \bigvee_{i \in I} (\varepsilon_i \otimes \delta)$$

Quantitative equational reasoning

- Equip equations with degrees to measure similarity/proximity of terms rather than just equality: $\varepsilon \Vdash t \approx s$.
- Degrees could correspond to a probability, distance in a metric space, ...
- Main requirements: compare and compose degrees.

Definition (Quantale)

Quantale: $\Omega = (\Omega, \preceq, \otimes, \kappa)$, where

- $(\Omega, \kappa, \otimes)$ is a monoid;
- (Ω, \preceq) is a complete lattice (with join \vee and meet \wedge);
- distributivity laws hold:

$$\delta \otimes \left(\bigvee_{i \in I} \varepsilon_i\right) = \bigvee_{i \in I} (\delta \otimes \varepsilon_i), \qquad \left(\bigvee_{i \in I} \varepsilon_i\right) \otimes \delta = \bigvee_{i \in I} (\varepsilon_i \otimes \delta)$$

- We assume that we are working with Lawverean quantales, i.e. that
 - **3** \otimes is commutative, **2** $\kappa = \top$, **3** if $\varepsilon \otimes \delta = \bot$, then either $\varepsilon = \bot$ or $\delta = \bot$, **4** $\kappa \neq \bot$.

Examples of Lawverean quantales: L and I

Example (Lawvere quantale)

- $\mathbb{L} = ([0, \infty], \ge, +, 0).$
- Note the direction of the order: 0 is the top element, ∞ is the bottom element.
- View terms as elements of metric spaces, degrees as distances.
- Read $\varepsilon \Vdash t \approx s$ as "the distance between t and s is at most ε ".
- Corresponds to "Quantitative algebraic reasoning" (Mardare, Panangaden & Plotkin 2016).

Examples of Lawverean quantales: L and I

Example (Lawvere quantale)

- $\mathbb{L} = ([0, \infty], \ge, +, 0).$
- Note the direction of the order: 0 is the top element, ∞ is the bottom element.
- View terms as elements of metric spaces, degrees as distances.
- Read $\varepsilon \Vdash t \approx s$ as "the distance between t and s is at most ε ".
- Corresponds to "Quantitative algebraic reasoning" (Mardare, Panangaden & Plotkin 2016).

Example (Fuzzy quantales)

- $\mathbb{I} = ([0,1], \leq, \otimes, 1)$, where \otimes is multiplication or minimum.
- View degrees as "truth values", similar to probabilities.
- Degree 1 corresponds to TRUE, degree 0 to FALSE.
- Corresponds to reasoning with fuzzy similarity relations (w.r.t product/minimum *T*-norm).

Examples of Lawverean quantales: L and I

Example (Lawvere quantale)

- $\mathbb{L} = ([0, \infty], \ge, +, 0).$
- Note the direction of the order: 0 is the top element, ∞ is the bottom element.
- View terms as elements of metric spaces, degrees as distances.
- Read $\varepsilon \Vdash t \approx s$ as "the distance between t and s is at most ε ".
- Corresponds to "Quantitative algebraic reasoning" (Mardare, Panangaden & Plotkin 2016).

Example (Fuzzy quantales)

- $\mathbb{I} = ([0,1], \leq, \otimes, 1)$, where \otimes is multiplication or minimum.
- View degrees as "truth values", similar to probabilities.
- Degree 1 corresponds to TRUE, degree 0 to FALSE.
- Corresponds to reasoning with fuzzy similarity relations (w.r.t product/minimum *T*-norm).

Quantitative equational reasoning (Gavazzo & Di Florio 2023) covers these (and more) frameworks.

Graded signatures (Gavazzo & Di Florio 2023)

Definition (Change of base endofunctor)

A monotone map $h: \Omega \to \Omega$ is a CBE if it preserves the unit, products and joins: $h(\kappa) = \kappa$, $h(\varepsilon) \otimes h(\delta) = h(\varepsilon \otimes \delta)$, and $h(\bigvee_{i \in I} \varepsilon_i) = \bigvee_{i \in I} h(\varepsilon_i)$.

CBEs can be used to describe how degrees are transformed under function applications.

Definition (Graded signature)

Graded signature \mathcal{F} : A set of function symbols, each endowed with a tuple (ϕ_1, \ldots, ϕ_n) of CBEs called modal arities.

Notation: $f:(\phi_1,\ldots,\phi_n)\in\mathcal{F}$.

Definition (Grade of a term)

The grade of a position p of a term t is defined inductively via

- $\partial_{\lambda}(t) := \mathbb{1}$, (λ : top position, $\mathbb{1}$: identity map)
- $\partial_{i,p}(f(t_1,\ldots,t_n)) := \phi_i \circ \partial_p(t_i)$ (where $f: (\phi_1,\ldots,\phi_n) \in \mathcal{F}$).

Graded quantitative equational theories (Gavazzo & Di Florio 2023)

- Quantitative ternary relation E: finite set of triples (t, s, ε) (where t, s are terms, $\varepsilon \in \Omega$).
- View elements as quantitative equations: write $\varepsilon \Vdash t \approx s$.

Conclusion

References

Graded quantitative equational theories (Gavazzo & Di Florio 2023)

- Quantitative ternary relation *E*: finite set of triples (t, s, ε) (where t, s are terms, $\varepsilon \in \Omega$).
- View elements as quantitative equations: write $\varepsilon \Vdash t \approx s$.
- Quantitative equational theory induced by E is obtained by the following inference rules:

$$(\mathsf{Ax}) \ \frac{\varepsilon \Vdash t \approx s \in E}{\varepsilon \Vdash t =_E s} \qquad \qquad (\mathsf{Refl}) \ \frac{\varepsilon \Vdash t =_E s}{\varepsilon \Vdash t =_E t}$$

$$(\mathsf{Trans}) \ \frac{\varepsilon \Vdash t =_{\mathsf{E}} \ s \quad \delta \Vdash s =_{\mathsf{E}} \ r}{\varepsilon \otimes \delta \Vdash t =_{\mathsf{E}} \ r} \qquad (\mathsf{Ord}) \ \frac{\varepsilon \Vdash t =_{\mathsf{E}} \ s \quad \delta \precsim \varepsilon}{\delta \Vdash t =_{\mathsf{E}} \ s}$$

$$(Ampl) \frac{\varepsilon_1 \Vdash t_1 =_E s_1 \cdots \varepsilon_n \Vdash t_n =_E s_n \quad f : (\phi_1, \dots, \phi_n) \in \mathcal{F}}{\phi_1(\varepsilon_1) \otimes \dots \otimes \phi_n(\varepsilon_n) \Vdash f(t_1, \dots, t_n) =_E f(s_1, \dots, s_n)}$$

$$(Subst) \frac{\varepsilon \Vdash t =_{E} s}{\varepsilon \Vdash t\sigma =_{E} s\sigma}$$

$$(Join) \frac{\varepsilon_{1} \Vdash t =_{E} s \cdots \varepsilon_{n} \Vdash t =_{E} s}{\varepsilon_{1} \vee \cdots \vee \varepsilon_{n} \Vdash t =_{E} s}$$

Quantitative rewriting and narrowing

- Let *R* be a quantitative ternary relation.
- View elements of R as quantitative rewrite rules: write $\varepsilon \Vdash t \mapsto_R s$

Definition (Quantitative rewrite relation \rightarrow_R)

 \rightarrow_R is obtained by closing R under

$$\frac{\varepsilon \Vdash I \mapsto_R r}{\partial_p(s)(\varepsilon) \Vdash s[I\sigma]_p \to_R s[r\sigma]_p}.$$

Definition (Quantitative narrowing relation \rightsquigarrow_R)

 \rightsquigarrow_R is obtained by closing R under

$$\frac{\varepsilon \Vdash I \mapsto_R r}{\partial_p(s)(\varepsilon) \Vdash s \leadsto_R (s[r\rho]_p)\sigma},$$

where ρ is a variable renaming and $\sigma = \text{mgu}_{\emptyset}(s|_{p}, I\rho)$.

Find an approximate solution $n \in \mathbb{N}$ for the equation n + 1 = 3n.

Find an approximate solution $n \in \mathbb{N}$ for the equation n + 1 = 3n.

QTRS:
$$R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ \mathbf{1} \Vdash \mathbf{S}(\mathbf{x}) \mapsto \mathbf{x}\}$$

Find an approximate solution $n \in \mathbb{N}$ for the equation n + 1 = 3n.

QTRS:
$$R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

$$n + S(Z) = (n+n) + n$$

Find an approximate solution $n \in \mathbb{N}$ for the equation n + 1 = 3n.

QTRS:
$$R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

$$\underline{n+S(Z)}=^{?}(n+n)+n$$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$

$$\underline{n+S(Z)}=^{?}(n+n)+n$$

Find an approximate solution $n \in \mathbb{N}$ for the equation n + 1 = 3n.

QTRS:
$$R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

Quantitative Narrowing derivation:

$$\underline{n+S(Z)}=?(n+n)+n$$

Substitution

$$\{x \mapsto n, y \mapsto Z\}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS:
$$R = \{0 \Vdash x + Z \mapsto x, \ \underline{0 \Vdash x + S(y) \mapsto S(x + y)}, \ 1 \Vdash S(x) \mapsto x\}$$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS:
$$R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\Rightarrow_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n + 1 = 3n.

QTRS:
$$R = \{\underline{0 \Vdash x + Z \mapsto x}, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\Rightarrow_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n + 1 = 3n.

QTRS:
$$R = \{\underline{0 \Vdash x + Z \mapsto x}, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\Rightarrow_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS:
$$R = \{ \underline{0} \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x \}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(\underline{n + Z}) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\{x \mapsto n\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS:
$$R = \{ \underline{0 \Vdash x + Z \mapsto x}, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x \}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(\underline{n + Z}) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$

References

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS:
$$R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS:
$$R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ \underline{1} \Vdash S(x) \mapsto x\}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS:
$$R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n + 1 = 3n.

QTRS:
$$R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n + 1 = 3n.

QTRS:
$$R = \{ \underline{0 \Vdash x + Z \mapsto x}, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x \}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS:
$$R = \{ \underline{0} \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x \}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n + 1 = 3n.

QTRS:
$$R = \{ \underline{0 \Vdash x + Z \mapsto x}, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x \}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$
 $\{x \mapsto n\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_0 Z = Z + Z$ $\{n \mapsto Z\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_0 Z = Z + Z$ $\{n \mapsto Z\}$

References

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_0 Z = Z + Z$ $\{n \mapsto Z\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS:
$$R = \{ \underline{0 \Vdash x + Z \mapsto x}, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x \}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_0 Z = Z + Z$ $\{n \mapsto Z\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS:
$$R = \{ \underline{0} \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x \}$$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_0 Z = Z + Z$ $\{n \mapsto Z\}$

Find an approximate solution $n \in \mathbb{N}$ for the equation n + 1 = 3n.

QTRS: $R = \{ \underline{0 \Vdash x + Z \mapsto x}, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x \}$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_0 Z = Z = Z + Z$ $\{n \mapsto Z\}$
 $\sim_0 Z = Z = Z = Z$ Id

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_0 Z = Z = Z$ $\{n \mapsto Z\}$
 $\sim_0 Z = Z = Z$ Id

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_0 Z = Z + Z$ $\{n \mapsto Z\}$
 $\sim_0 Z = Z$ Id

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_0 Z = Z = Z$ $\{n \mapsto Z\}$
 $\sim_0 Z = Z = Z$ Id

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_0 Z = Z$ $\{n \mapsto Z\}$
 $\sim_0 Z = Z$ Id
 $\sim_0 TRUE$

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS:
$$R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

Quantitative Narrowing derivation:

$$n + S(Z) = (n + n) + n$$
 Substitution
 $\sim_0 S(n + Z) = (n + n) + n$ $\{x \mapsto n, y \mapsto Z\}$
 $\sim_0 S(n) = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_1 n = (n + n) + n$ $\{x \mapsto n\}$
 $\sim_0 Z = Z$ $\{n \mapsto Z\}$
 $\sim_0 Z = Z$ Id
 $\sim_0 TRUE$

Computed approximate solution: $\{n \mapsto Z\}$ with degree 1

Motivation

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Alternative derivation:

$$\frac{n + S(Z)}{\sim_0 S(n + Z)} = (n + n) + n$$

$$\sim_0 S(n + Z) = (n + n) + n$$
(by r_2)

$$\rightsquigarrow_0 S(n) = \frac{(n+n)+n}{(n+n)+n}$$
 (by r_1)

$$\rightsquigarrow_0 S(S(y)) = S((S(y) + S(y)) + y)$$
 (by r_2)

$$\rightsquigarrow_0 S(S(Z)) = S(S(Z) + S(Z))$$
 (by r_1)

$$\leadsto_0 S(S(Z)) = S(S(\underline{S(Z) + Z}))$$
 (by r_2)

$$\leadsto_0 S(S(Z)) = S(S(\underline{S(Z)}))$$
 (by r_1)

$$\rightsquigarrow_1 \underline{S(S(Z))} = S(S(Z))$$
 (by r_3)

~→o TRUE

Computed approximate solution: $\{n \mapsto S(Z)\}$ with degree 1.

Find an approximate solution $n \in \mathbb{N}$ for the equation n + 1 = 3n.

QTRS:
$$R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

Alternative derivation:

$$\frac{n + S(Z)}{r} = (n + n) + n$$

$$rac{r}{r} = (n + n) + n$$
(by r_2)

$$\Rightarrow_0 S(n) = (n+n) + n$$
 (by r_1)

$$\leadsto_0 S(S(y)) = S(S(y) + y) + S(y)$$
 (by r_2)

$$\Rightarrow_1 S(S(y)) = (S(y) + y) + S(y)$$
 (by r_3)

$$\Rightarrow_1 S(S(y)) = (S(y) + y) + y$$
 (by r_3)

$$\rightsquigarrow_1 S(S(y)) = (y+y) + y$$
 (by r_3)

$$\leadsto_1 S(S(y)) = (\underline{y+y}) + y$$
 (by r_3)

$$\leadsto_0 S(S(S(y'))) = {}^? S(\underline{S(y') + y'}) + S(y')$$
 (by r_2)

$$\rightsquigarrow_0 S(S(S(Z))) = \frac{S(S(Z)) + S(Z)}{S(S(Z)) + S(Z)}$$
 (by r_1)

$$\rightsquigarrow_0 S(S(S(Z))) = S(S(S(Z)) + Z)$$
 (by r_1)

$$\underset{t}{\sim_0} \underline{S(S(S(Z)))} = \underline{S(S(S(Z)))}$$
 (by r_1)

Computed approximate solution: $\{n \mapsto S(S(Z))\}$ with degree 3.

We can also use degrees to keep track of the number of narrowing steps used:

QTRS:
$$R' = \{1 \Vdash x + Z \mapsto x, 1 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$$

We can also use degrees to keep track of the number of narrowing steps used:

QTRS:
$$R' = \{1 \Vdash x + Z \mapsto x, \ 1 \Vdash x + S(y) \mapsto S(x + y), \ 1 \vdash S(x) \mapsto x\}$$

Quantitative Narrowing derivation:

$$\underline{n+S(Z)} = {}^{?}(n+n) + n$$

$$\rightsquigarrow_{1} S(\underline{n+Z}) = {}^{?}(n+n) + n$$

$$\rightsquigarrow_{1} S(\underline{n}) = {}^{?}(n+n) + n$$

$$\rightsquigarrow_{1} n = {}^{?}(\underline{n+n}) + n$$

$$\rightsquigarrow_{1} Z = {}^{?} \underline{Z+Z}$$

$$\rightsquigarrow_{1} Z = {}^{?} Z$$
(by r_{1})
$$\rightsquigarrow_{1} Z = {}^{?} Z$$
(by r_{1})

~∽ດ TRUE

We can also use degrees to keep track of the number of narrowing steps used:

QTRS:
$$R' = \{1 \Vdash x + Z \mapsto x, \ 1 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

Quantitative Narrowing derivation:

$$\underline{n+S(Z)} = {}^{?}(n+n) + n$$

$$\rightsquigarrow_{1} S(\underline{n+Z}) = {}^{?}(n+n) + n$$

$$\rightsquigarrow_{1} S(\underline{n}) = {}^{?}(n+n) + n$$

$$\rightsquigarrow_{1} n = {}^{?}(\underline{n+n}) + n$$

$$\rightsquigarrow_{1} Z = {}^{?} \underline{Z+Z}$$

$$\rightsquigarrow_{1} Z = {}^{?} Z$$

$$\rightsquigarrow_{1} Z = {}^{?} Z$$

$$\rightsquigarrow_{1} TRUE$$
(by r_{1})
$$(by r_{2})$$
(by r_{3})
$$(by r_{1})$$

Computed approximate solution: $\{n \mapsto Z\}$ with degree 5 (i.e. 5 narrowing steps).

To account for the computational cost of finding the redex, one can add modal arities: Assume that $\operatorname{arity}(S) = (d)$ and $\operatorname{arity}(+) = (d, d)$, where $d: [0, \infty] \to [0, \infty]$, $x \mapsto 2x$

To account for the computational cost of finding the redex, one can add modal arities: Assume that arity(S) = (d) and arity(+) = (d, d), where d: [0, ∞] \rightarrow [0, ∞], $x \mapsto 2x$

QTRS:
$$R' = \{1 \Vdash x + Z \mapsto x, \ 1 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

References

Example

Motivation

To account for the computational cost of finding the redex, one can add modal arities:

Assume that $\operatorname{arity}(S) = (d)$ and $\operatorname{arity}(+) = (d, d)$, where $d: [0, \infty] \to [0, \infty], x \mapsto 2x$

QTRS:
$$R' = \{1 \Vdash x + Z \mapsto x, \ 1 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

Quantitative Narrowing derivation:

$$\frac{n + S(Z)}{\sim_1} = (n + n) + n$$

$$\sim_1 S(n + Z) = (n + n) + n$$
 (by r_2)

$$\rightsquigarrow_2 \underline{S(n)} = (n+n) + n$$
 (by r_1)

$$\rightsquigarrow_1 n = (n+n) + n$$
 (by r_3)

$$\rightsquigarrow_2 Z = ? Z + Z$$
 (by r_1)

$$\rightsquigarrow_1 Z = ^? Z$$
 (by r_1)

$$\rightsquigarrow_0$$
 TRUE

~→n TRUE

To account for the computational cost of finding the redex, one can add modal arities:

Assume that $\operatorname{arity}(S) = (d)$ and $\operatorname{arity}(+) = (d, d)$, where $d: [0, \infty] \to [0, \infty], x \mapsto 2x$

QTRS:
$$R' = \{1 \Vdash x + Z \mapsto x, \ 1 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$$

Quantitative Narrowing derivation:

$$\underline{n+S(Z)} = {}^{?}(n+n) + n$$

$$\rightsquigarrow_1 S(\underline{n+Z}) = {}^{?}(n+n) + n$$

$$\rightsquigarrow_2 S(\underline{n}) = {}^{?}(n+n) + n$$

$$\rightsquigarrow_1 n = {}^{?}(\underline{n+n}) + n$$

$$\rightsquigarrow_2 Z = {}^{?}\underline{Z+Z}$$

$$\rightsquigarrow_1 Z = {}^{?}Z$$

$$\rightsquigarrow_1 TRUE$$
(by r_1)
$$(by r_2)$$

$$(by r_1)$$
(by r_1)
$$(by r_2)$$

$$(by r_1)$$

Computed approximate solution: $\{n \mapsto Z\}$ with degree 7 (\sim computational cost).

References

Calculus BQNARROW for basic quantitative narrowing

- BQNARROW: Rule-based calculus for quantitative narrowing
- Given a quantitative unification problem (equation to be solved), construct an initial configuration
- Apply rules until a terminal configuration is reached
- Failure or solution can be read off from terminal configuration
- Configurations: **F** (failure) or $\langle e; C; \sigma; \delta \rangle$, where
 - e: equation (or TRUE)
 - C: set of constraints
 - $oldsymbol{\circ}$ σ : substitution computed so far
 - δ : current degree of approximation
- Basic narrowing: Variables of the problem are only instantiated at the end.
 - → No instantiation of variables introduced by narrowing substitutions.
 - \rightarrow Removes some sources of non-termination.

BQNARROW rules

LP: Lazy Paramodulation

$$\langle e[t]_p; C; \sigma; \delta \rangle \Longrightarrow_{\partial_p(e)(\varepsilon)} \langle e[r]_p; \{I\sigma = t\sigma\} \cup C; \sigma; \delta \otimes \partial_p(e)(\varepsilon) \rangle,$$

where $e \neq \text{TRUE}$, p is a non-variable position of e, and $\varepsilon \Vdash I \mapsto r$ is a fresh variant of a rule in R.

SU: Syntactic Unification

$$\langle e; C; \sigma; \delta \rangle \Longrightarrow_{\kappa} \langle e; \emptyset; \sigma \rho; \delta \rangle$$
,

where $C \neq \emptyset$ and ρ is a most general syntactic unifier of C.

Cla: Clash

 $\langle e; C; \sigma; \delta \rangle \Longrightarrow_{\kappa} \mathbf{F}$, if C is not unifiable.

Con: Constrain

 $\langle e; C; \sigma; \delta \rangle \Longrightarrow_{\kappa} \langle \text{TRUE}; C \cup \{e\sigma\}; \sigma; \delta \rangle$, if $e \neq \text{TRUE}$.

Example

Motivation

Find an approximate solution $n \in \mathbb{N}$ for the equation n+1=3n.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, \ 0 \Vdash x + S(y) \mapsto S(x + y), \ 1 \Vdash S(x) \mapsto x\}$

Derivation in BQNARROW:

$$\langle n+S(Z)=^{?}(n+n)+n; \emptyset; Id; 0\rangle$$

$$\stackrel{LP}{\Longrightarrow}_0 \langle S(x+y) = (n+n) + n; \{x + S(y) = n + S(Z)\}; Id; 0 \rangle$$

$$\stackrel{SU}{\Longrightarrow}_0 \langle S(x+y) = \stackrel{?}{} (n+n) + n; \emptyset; \{x, n \mapsto x_1; y \mapsto Z\}; 0 \rangle$$

$$\stackrel{LP}{\Longrightarrow}_0 \langle S(x_2) = ? (n+n) + n; \ \{x_2 + Z = x_1 + Z\}; \ \{x, n \mapsto x_1; y \mapsto Z\}; \ 0 \rangle$$

$$\stackrel{LP}{\Longrightarrow}_0 \langle S(x_2) = ^7 x_3 + n; \ \{x_2 + Z = x_1 + Z, \ x_3 + Z = x_1 + x_1\}; \ \{x, n \mapsto x_1; y \mapsto Z\}; \ 0 \rangle$$

$$\stackrel{SU}{\Longrightarrow}_0 \langle S(x_2) = ^? x_3 + n; \emptyset; \{x, x_1, x_2, x_3, y, n \mapsto Z\}; 0 \rangle$$

$$\stackrel{LP}{\Longrightarrow}_1 \langle x_4 = ? x_3 + n; \ \{x_4 = Z\}; \ \{x, x_1, x_2, x_3, y, n \mapsto Z\}; \ 1 \rangle$$

$$\stackrel{LP}{\Longrightarrow}_0 \langle x_4 = {}^? x_5; \{ x_4 = x_2, x_5 + Z = x_3 + Z \}; \{ x, x_1, x_2, x_3, y, n \mapsto Z \}; 1 \rangle$$

$$\stackrel{Con}{\Longrightarrow}_0 \langle \text{TRUE}; \ \{x_4 = x_2, \ x_5 + Z = x_3 + n, \ x_4 = x_5\}; \ \{x, x_1, x_2, x_3, y, n \mapsto Z\}; \ 1 \rangle$$

$$\stackrel{SU}{\Longrightarrow}_0 \langle \text{TRUE}; \emptyset; \{x, x_1, x_2, x_3, x_4, x_5, y, n \mapsto Z\}; 1 \rangle$$

Computed approximate solution: $\{n \mapsto Z\}$ with degree 1

Results

Theorem (Soundness of BQNARROW)

If $\langle t = ? s; C; \sigma; \delta \rangle \Longrightarrow_{\varepsilon}^{+} \langle \text{TRUE}; \emptyset; \sigma'; \delta' \rangle$ is a derivation using the rules from BQNARROW, then $\varepsilon \Vdash t\sigma' =_R s\sigma'$.

Theorem (Weak completeness of BQNARROW)

Suppose that Ω is a Lawverean quantale whose order \lesssim is total. Let $t=^?$ s be a linear problem, and let R be a confluent, right-ground (Ω, Φ) -TRS. If $\varepsilon \Vdash t\tau =_R s\tau$, then BQNARROW admits a derivation $\langle t=^? s; \emptyset; \operatorname{Id}; \kappa \rangle \Longrightarrow^* \langle \operatorname{TRUE}; \emptyset; \sigma; \delta \rangle$ such that $\delta \succsim \varepsilon$.

Results

Motivation

Theorem (Soundness of BQNARROW)

If $\langle t = ? s; C; \sigma; \delta \rangle \Longrightarrow_{\varepsilon}^{+} \langle \text{TRUE}; \emptyset; \sigma'; \delta' \rangle$ is a derivation using the rules from BQNARROW, then $\varepsilon \Vdash t\sigma' =_R s\sigma'$.

Theorem (Weak completeness of BQNARROW)

Suppose that Ω is a Lawverean quantale whose order \lesssim is total. Let t=? s be a linear problem, and let R be a confluent, right-ground (Ω, Φ) -TRS. If $\varepsilon \Vdash t\tau =_R s\tau$, then BQNARROW admits a derivation $\langle t=$? s; \emptyset ; Id ; $\kappa \rangle \Longrightarrow^* \langle \mathrm{TRUE}; \emptyset; \sigma; \delta \rangle$ such that $\delta \succsim \varepsilon$.

Remark

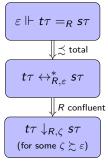
- Termination cannot be granted!
- Weak completeness: We do not necessarily compute the given τ , but some σ which solves the problem with a degree that is at least as good.
- Substantial improvement over previous results on quantitative unification (Ehling & Kutsia 2024).

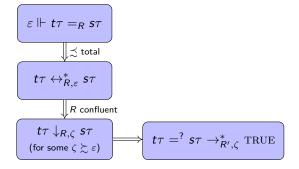
$$\varepsilon \Vdash t\tau =_R s\tau$$

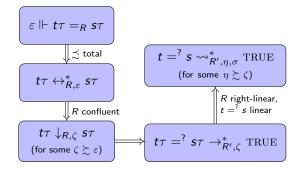
$$\varepsilon \Vdash t\tau =_R s\tau$$

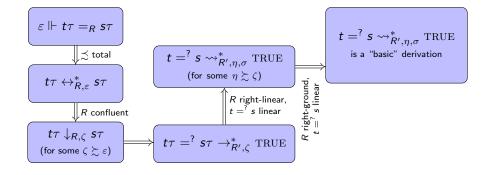
$$\downarrow \lesssim \text{total}$$

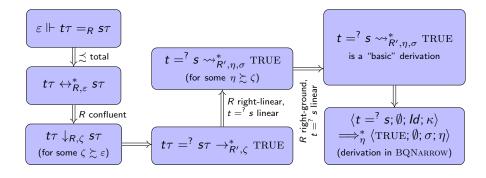
$$t\tau \leftrightarrow_{R,\varepsilon}^* s\tau$$

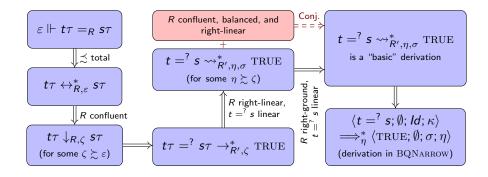


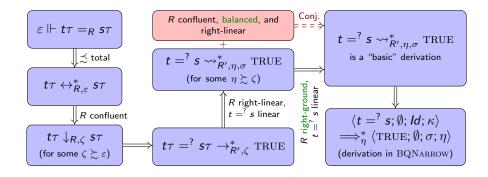












Conclusion and future work

Conclusion

- Quantitative equational theories (Gavazzo & Di Florio 2023) cover various approaches of reasoning with quantitative information.
- Adapted narrowing to the quantitative setting.
- Established a rule-based narrowing calculus for quantitative unification and proved its soundness and (weak) completeness.
- Improved on previous results for quantitative unification.

Conclusion and future work

Conclusion

Motivation

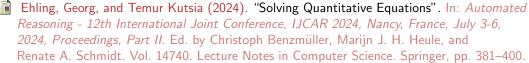
- Quantitative equational theories (Gavazzo & Di Florio 2023) cover various approaches of reasoning with quantitative information.
- Adapted narrowing to the quantitative setting.
- Established a rule-based narrowing calculus for quantitative unification and proved its soundness and (weak) completeness.
- Improved on previous results for quantitative unification.

Future work

- Under which conditions can we guarantee termination?
- Stronger results might be possible if we restrict to certain types of quantales: totally ordered, idempotent, divisible, ...
- Investigate other classic (equational) problems in the quantitative setting: matching, anti-unification, resolution,...

References

Motivation



- Gavazzo, Francesco, and Cecilia Di Florio (2023). "Elements of Quantitative Rewriting". In: *Proc. ACM Program. Lang.* 7.POPL, pp. 1832–1863.
- Hullot, Jean-Marie (1980). "Canonical Forms and Unification". In: 5th Conference on Automated Deduction, Les Arcs, France, July 8-11, 1980, Proceedings. Ed. by Wolfgang Bibel, and Robert A. Kowalski. Vol. 87. Lecture Notes in Computer Science. Springer, pp. 318–334.
- Mardare, Radu, Prakash Panangaden, and Gordon David Plotkin (2016). "Quantitative Algebraic Reasoning". In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '16. New York, NY, USA: Association for Computing Machinery, pp. 700–709.
- Middeldorp, Aart, and Erik Hamoen (1994). "Completeness Results for Basic Narrowing". In: Appl. Algebra Eng. Commun. Comput. 5, pp. 213–253.