Graded Quantitative Narrowing

1 2

Mauricio Ayala Rincén®  Thaynara Arielly de Lima®?  Georg Ehling®  Temur Kutsia3

LUniversidade de Brasilia, Brazil
2Universidade Federal de Goias, Brazil
3Research Institute for Symbolic Computation, JKU Linz, Austria

Formal Methods and Automated Reasoning Seminar
November 4, 2025

'] 7™\
Daed UnB o UFS ‘. RISC

Avyala Rincén, de Lima, Ehling, Kutsia Graded Quantitative Narrowing



Motivation
e0

Narrowing

@ Classic technique for solving equational problems.
o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).
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Motivation
e0

Narrowing

@ Classic technique for solving equational problems.
o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n+ n = 2.
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Motivation
e0

Narrowing

@ Classic technique for solving equational problems.
o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n+ n = 2.
TRS: R={Z+x—x, S(x)+y — S(x+y)}
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Motivation
e0

Narrowing

@ Classic technique for solving equational problems.
o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n+ n = 2.
TRS: R={Z+x—x, S(x)+y — S(x+y)}
Narrowing derivation:

n+n="5(5(2))
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o Like term rewriting, but variables of terms may be instantiated.
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Narrowing derivation:

n+n="5(5(2)
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Motivation
e0

Narrowing

@ Classic technique for solving equational problems.
o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n+ n = 2.
TRS: R={Z+x—x, S(x)+y— S(x+y)}
Narrowing derivation:

n+n="5(5(2)) Substitution
{x—=x', y— S(X), n— S}
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Motivation
e0

Narrowing

@ Classic technique for solving equational problems.
o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n+ n = 2.
TRS: R={Z+x—=x, S(x)+y — S(x+y)}
Narrowing derivation:

n+n="5(5(2)) Substitution
~ S(x' + S(x)) =" S(5(2)) {x—=x', y— S(x), n— S(x)}
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Motivation
e0

Narrowing

@ Classic technique for solving equational problems.
o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)
Use narrowing to solve the equation n+ n = 2.
TRS: R={Z+x—x, S(x)+y — S(x+y)}
Narrowing derivation:
n+n="5(52)) Substitution
~ S(x' 4+ 5(x)) =’ 5(5(2)) {x—=x', y— S(X), n— S}
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o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)
Use narrowing to solve the equation n+ n = 2.
TRS: R={Z+x—=x, S(x)+y— S(x+y)}
Narrowing derivation:
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Motivation
e0

Narrowing

@ Classic technique for solving equational problems.
o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)
Use narrowing to solve the equation n+ n = 2.
TRS: R={Z+x—=x, S(x)+y— S(x+y)}
Narrowing derivation:
n+n="5(52)) Substitution
~ S(x' 4+ 5(x)) =* 5(5(2)) {x—=x', y— S(X), n— S}
X' Z x— S(2)}
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Motivation
e0

Narrowing

@ Classic technique for solving equational problems.
o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n+ n = 2.
TRS: R={Z+x—=x, S(x)+y— S(x+y)}
Narrowing derivation:

n+n="5(52)) Substitution
~ S(x' + S(x)) =" S(5(2)) {x—=x', y— S(x), n— S(x)}
~ 5(5(2)) =" 5(5(2)) {xX'— Z,x— 5(2)}
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@ Classic technique for solving equational problems.
o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n+ n = 2.
TRS: R={Z+x—x, S(x)+y — S(x+y)}
Narrowing derivation:

n+n="5(52)) Substitution
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@ Classic technique for solving equational problems.
o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n+ n = 2.
TRS: R={Z+x—x, S(x)+y — S(x+y)}
Narrowing derivation:

n+n="5(52)) Substitution
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Motivation
e0

Narrowing

@ Classic technique for solving equational problems.
o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n+ n = 2.
TRS: R={Z+x—x, S(x)+y — S(x+y)}
Narrowing derivation:

n+n="5(52)) Substitution
~ S(x' + S(x)) =" S(5(2)) {x—=x', y— S(x), n— S(x)}
~ 5(5(2)) =" 5(5(2)) {x' = Z,x— 5(2)}

~» TRUE
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Motivation
e0

Narrowing

@ Classic technique for solving equational problems.
o Like term rewriting, but variables of terms may be instantiated.

@ Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation n+ n = 2.
TRS: R={Z+x—x, S(x)+y — S(x+y)}
Narrowing derivation:

n+n="5(52)) Substitution
~ S(x' + S(x)) =" S(5(2)) {x—=x', y— S(x), n— S(x)}
~ S(5(2)) =" S(5(2)) (X' Z,x— S(2)}
~> TRUE

Computed Solution: {n— S(Z)}
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Motivation
oe

Quantitative equational reasoning

Consider the equation n+ 1 = 3n.
It does not have an exact solution in N, but {n— 0} and {n+— 1} could be considered
approximate solutions.

@ How can this idea (approximate solutions) be formalized? How can rewrite systems be
extended to include quantitative information?

— Quantitative equational reasoning (Gavazzo & Di Florio 2023)
@ How can narrowing be transferred to the quantitative scenario?

— This work.
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Quant. equational reasoning
[ Jelele]

Quantitative equational reasoning

e Equip equations with degrees to measure similarity/proximity of terms rather than just
equality: elF t~s.

@ Degrees could correspond to a probability, distance in a metric space, ...

@ Main requirements: compare and compose degrees.
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Quant. equational reasoning
[ Jelele]

Quantitative equational reasoning

e Equip equations with degrees to measure similarity/proximity of terms rather than just
equality: elF t~s.

@ Degrees could correspond to a probability, distance in a metric space, ...

@ Main requirements: compare and compose degrees.

Definition (Quantale)

Quantale: = (Q,3,®, k), where
e (Q,k,®) is a monoid;
o (Q,3) is a complete lattice (with join V and meet A);
o distributivity laws hold:

f® (\/s,-) =\ ®e), (\/5;) ®6=\/(c:®0)

i€l iel iel iel
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Quant. equational reasoning
[ Jelele]

Quantitative equational reasoning

e Equip equations with degrees to measure similarity/proximity of terms rather than just
equality: elF t~s.

@ Degrees could correspond to a probability, distance in a metric space, ...

@ Main requirements: compare and compose degrees.

Definition (Quantale)

Quantale: = (Q,3,®, k), where
e (Q,k,®) is a monoid;
o (Q,3) is a complete lattice (with join V and meet A);
o distributivity laws hold:

§® (\/s,-> =\/(6®e), (\/a) ®6=\/(c:®0)

i€l iel iel iel

@ We assume that we are working with Lawverean quantales, i.e. that
Q ® is commutative, @ k=T, @ife®d =1, theneithere=Lord=1, @« # L.
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Quant. equational reasoning
[e] Tele]

Examples of Lawverean quantales: L and |

Example (Lawvere quantale)
o L =([0,00],>,+,0).
@ Note the direction of the order: 0 is the top element, oo is the bottom element.
@ View terms as elements of metric spaces, degrees as distances.
@ Read ¢ Il t & s as “the distance between t and s is at most " .

e Corresponds to “Quantitative algebraic reasoning” (Mardare, Panangaden & Plotkin
2016).
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Quant. equational reasoning
[e] Tele]

Examples of Lawverean quantales: L and |

Example (Lawvere quantale)
o L =([0,00],>,+,0).
@ Note the direction of the order: 0 is the top element, oo is the bottom element.
@ View terms as elements of metric spaces, degrees as distances.
@ Read ¢ Il t & s as “the distance between t and s is at most " .

e Corresponds to “Quantitative algebraic reasoning” (Mardare, Panangaden & Plotkin
2016).

.

Example (Fuzzy quantales)
e | =([0,1], <, ®,1), where ® is multiplication or minimum.
o View degrees as “truth values”, similar to probabilities.
@ Degree 1 corresponds to TRUE, degree 0 to FALSE.

@ Corresponds to reasoning with fuzzy similarity relations (w.r.t product/minimum T-norm).

A
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Quant. equational reasoning
[e] Tele]

Examples of Lawverean quantales: L and |

Example (Lawvere quantale)
o L =([0,00],>,+,0).
@ Note the direction of the order: 0 is the top element, oo is the bottom element.
o View terms as elements of metric spaces, degrees as distances.
@ Read ¢ Il t & s as “the distance between t and s is at most " .

e Corresponds to “Quantitative algebraic reasoning” (Mardare, Panangaden & Plotkin
2016).

.

Example (Fuzzy quantales)
e | =([0,1], <, ®,1), where ® is multiplication or minimum.
o View degrees as “truth values”, similar to probabilities.
@ Degree 1 corresponds to TRUE, degree 0 to FALSE.

o Corresponds to reasoning with fuzzy similarity relations (w.r.t product/minimum T-norm).

A

Quantitative equational reasoning (Gavazzo & Di Florio 2023) covers these (and more)
frameworks.
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Quant. equational reasoning
[e]e] o]

Graded signatures (Gavazzo & Di Florio 2023)

Definition (Change of base endofunctor)

A monotone map h: Q — Q is a CBE if it preserves the unit, products and joins: h(x) = &,
h(e) ® h(6) = h(e ®8), and h (V¢ &i) = Ve, h(ei).

CBEs can be used to describe how degrees are transformed under function applications.

Definition (Graded signature)

Graded signature F: A set of function symbols, each endowed with a tuple (¢1,...,¢,) of
CBEs called modal arities.
Notation: f : (¢1,...,¢n) € F.

.

Definition (Grade of a term)
The grade of a position p of a term t is defined inductively via
e O\(t) =1, (\: top position, 1: identity map)
0 0ip(f(tr,...,tn)) = @io0p(t;) (where f: (¢p1,...,¢n) €F).

.
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Quant. equational reasoning
oooe

Graded quantitative equational theories (Gavazzo & Di Florio 2023)

o Quantitative ternary relation E: finite set of triples (t,s,¢) (where t,s are terms, ¢ € Q).

o View elements as quantitative equations: write € |- t ~ s.
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Quant. equational reasoning
oooe

Graded quantitative equational theories (Gavazzo & Di Florio 2023)

o Quantitative ternary relation E: finite set of triples (t,s,¢) (where t,s are terms, ¢ € Q).
o View elements as quantitative equations: write € |- t ~ s.
e Quantitative equational theory induced by E is obtained by the following inference rules:

celFt~seE celbt=¢s
Ax) —M — — Refl) —M8M8M8¥ m) —mMmM8M
L T (e T &rm e = ¢
= = - <
(Trans) elbt=gs dlks=gr (ord) elFt=gs 0Z¢
eROIFt=r ol-t=fs
eilbti=esr - eylkth=gs, f:(é1,...,0n) €F
(Ampl)

¢1(€1) QR (;5,,(5,,) I+ f(tl, ceey t,,) =F f(Sl, - ,Sn)

(subst)‘g“_t—:ES (Join) e1lFt=gs - e,lFt=fs
elkto =g so e1V---Vep,lkt=fs
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Quantitative narrowing
©0000000

Quantitative rewriting and narrowing

@ Let R be a quantitative ternary relation.

o View elements of R as quantitative rewrite rules: write € I- t —g s

Definition (Quantitative rewrite relation —g)

— g is obtained by closing R under
el-l—grr

9p(s)(e) Ik s[lo], —r s[rolp’

Definition (Quantitative narrowing relation ~~g)

~~»R is obtained by closing R under
el-l—pgr

9p(s)(e) I s ~r (s[rplp)o’

where p is a variable renaming and o = mguy(s|,, /p).
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0IF x+Z+— x, 0lF x+ S(y) — S(x+y), 1IFS(x) — x}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lIF x+Z+—x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n
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Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lIF x+Z+—x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lF x+Z+— x, 0lF x+ S(y) = S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lF x+Z+— x, 0lF x+ S(y) = S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n Substitution
{x—ny— 2}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lFx+Z+— x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n Substitution
o S(n+2Z)="(n+n)+n {x—ny— 2}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lIF x+Z+—x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:
n+S(Z)="(n+n)+n Substitution
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lF x+Z+— x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:
n+S(Z)="(n+n)+n Substitution
w0 S(n+2) =" (n+n)+n {x=ny= 7}
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Quantitative narrowing
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Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lF x+Z+— x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:
n+S(Z)="(n+n)+n Substitution
~0 S(n+2) =" (n+n)+n {x=ny= 7}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lF x+Z+— x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n Substitution
w0 S(n+2Z)="(n+n)+n {x—ny— 2}
{x — n}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lFk x+Z+— x, 0lF x+ S(y) — S(x+y), 1IFS(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n Substitution
~o S(n+2Z) =" (n+n)+n {x—ny— 2}
~~0 S(n):? (n+n)+n {x — n}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lIF x+Z+—x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n Substitution
~0 S(n+Z):7(n+n)+n {x—=ny— Z}
~~0 S(n):? (n+n)+n {x — n}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lF x+Z+— x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n Substitution
~0 S(n+Z):7(n+n)+n {x—=ny— Z}
~~0 S(n):? (n+n)+n {x — n}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lFx+Z+—x, 0lF x+ S(y) — S(x+y), 1IFS(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n Substitution
~0 S(n+Z):7(n+n)+n {x—=ny— Z}
~~0 S(n):? (n+n)+n {x — n}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lFx+Z+—x, 0lF x+ S(y) — S(x+y), 1IFS(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n Substitution
w0 S(n+2Z)="(n+n)+n {x—ny— 2}
~s0 S(n)="(n+n)+n {x — n}

{x — n}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lF x+Z+— x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+ Substitution
~o S(n+ 2) = ‘(n+n)+n {x—=ny—2Z}
g S(n) =" (n+ )+ {x > n}
w1 n="(n4+n)+n {x — n}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lIF x+Z+—x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+ Substitution
~o S(n+2) = ‘(n+n)+n {x—=ny—Z}
~s0 S(n) =" (n+n)+ {x — n}
w1 n="(n4+n)+n {x — n}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lF x+Z+— x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+ Substitution
~o S(n+2) = ‘(n+n)+n {x—=ny—Z}
~s0 S(n) =" (n+n)+ {x — n}
~q n—7(n n)+n {x — n}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lF x+Z+— x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+ Substitution
~o S(n+2) = ‘(n—|—n)—|—n {x—=ny— Z}
~s0 S(n) =" (n+n)+ {x — n}
~q n—?(n n)+n {x — n}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lF x+Z+— x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+ Substitution
~o S(h+2Z) = ‘(n+n)+n {x—=ny— 27}
~s0 S(n) =" (n+n) + {x — n}
~q n—7(n n)+n {x — n}

{n— Z}
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Quantitative narrowing
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Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lFk x+Z+— x, 0lF x+ S(y) — S(x+y), 1IFS(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+ Substitution
~o S(n+2) = ‘(n—|—n)—|—n {x—=ny— Z}
~so S(n) =" (n+n)+n {x — n}
w1 n="(n4+n)+n {x — n}
~o Z="Z+2Z {n— Z}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lIF x+Z+—x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+ Substitution
~o S(n+2) = ‘(n—|—n)—|—n {x—=ny— Z}
~so S(n) =" (n+n)+n {x — n}
w1 n="(n4+n)+n {x — n}
~o Z="Z+2Z {n— Z}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lF x+Z+— x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

2

n+S(Z)="(n+n)+n Substitution
w0 S(n+2Z)="(n+n)+n {x—=ny—Z}
~so S(n) =" (n+n)+n {x — n}
w1 n="(n4+n)+n {x — n}
wo Z="24+2 {n— Z}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lF x+Z+— x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+ Substitution
~o S(n+2) = ‘(n—|—n)—|—n {x—=ny— Z}
~so S(n) =" (n+n)+n {x — n}
w1 n="(n4+n)+n {x — n}
~~0 Z:‘M {n— Z}
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lF x+Z+— x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+ Substitution
~o S(h+2Z) = ‘(n—|—n)—|—n {x—ny— 2}
~so S(n) =" (n+n)+n {x — n}
w1 n="(n4+n)+n {x — n}
~~0 Z:‘M {n— Z}

Id
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lFk x+Z+— x, 0lF x+ S(y) — S(x+y), 1IFS(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n Substitution
o S(n+2Z)="(n+n)+n {x—=ny—Z}
~so S(n) =" (n+n)+n {x — n}
w1 n="(n4+n)+n {x — n}
wo Z="24+2 {n— Z}
~o Z="7 Id
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lIF x+Z+—x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+ Substitution
~o S(n+ Z2) = ‘(n—|—n)—|—n {x—=ny— Z}
~so S(n) =" (n+n)+n {x — n}
w1 n="(n4+n)+n {x — n}
~o Z="Z+2Z {n— Z}
~o Z="7 Id
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lIF x+Z+—x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n Substitution
o S(n+2Z)="(n+n)+n {x—=ny—2Z}
~so S(n) =" (n+n)+n {x — n}
w1 n="(n4+n)+n {x — n}
o Z2="2+2 {nw— Z}
~o Z="Z Id
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Quantitative narrowing
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Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lIF x+Z+—x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+ Substitution
~o S(n+ Z2) = ‘(n—|—n)—|—n {x—=ny— Z}
~so S(n) =" (n+n)+n {x — n}
w1 n="(n4+n)+n {x — n}
~o Z="Z+2Z {n— Z}
~o Z="7 Id
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lIF x+Z+—x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+ Substitution
~o S(n+ Z2) = ‘(n—|—n)—|—n {x—=ny— Z}
~so S(n) =" (n+n)+n {x — n}
w1 n="(n4+n)+n {x — n}
o Z="24Z {n— 7}
~o Z="7 Id
~>9 TRUE
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lIF x+Z+—x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+ Substitution
~o S(n+ Z2) = ‘(n—|—n)—|—n {x—=ny— Z}
~so S(n) =" (n+n)+n {x — n}
w1 n="(n4+n)+n {x — n}
w0 Z="24Z {n— 7}
~o Z="7 Id
~>9 TRUE

Computed approximate solution: {n+— Z} with degree 1
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lIF x+Z+—x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}
Alternative derivation:

n+5(2) =" (n+n)+

S(n+2)=" (n+n)+n (by r2)
~o S(n) = ( +n)+ (by r1)
~0 5(5(y)) = ((5(y) +5() +vy) (by r2)
w0 5(5(2)) =" 5(5(2) + 5(2)) (by r1)
~0 5(5(2)) =" S(5(5(2) + 2)) (by r2)
w0 S(5(2)) =" 5(5(5(2))) (by n)
~1 5(5(2)) =" 5(5(2)) (by r3)
~+9 TRUE

Computed approximate solution: {n+— S(Z)} with degree 1.
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Quantitative narrowing
O@000000

Find an approximate solution n € N for the equation n+ 1 = 3n.

QTRS: R={0lIF x+Z+—x, 0lF x+ S(y) — S(x+y), 1IF S(x) — x}

Alternative derivation:
n+S(Z)="(n+n)+n
w0 S(n+2)="(n+n)+n (by r2)
~o S(n) =" (n+n)+n (by r1)
~0 S(S()) =" S(S(y) + ) + S(») (by r2)
1 5(5() =" (S() +) +51) (by r3)
~1 S(S() =" (S) +y) +y (by rs)
~1 S(SW)) =" (v +y (by rs)
~0 S(S(S()) =" S(SK) +y') +S) (by r2)
~0 S(S(5(2))) =" S(5(2)) + S(2) (by r1)
~o S(S(5(2))) =" S(5(5(2)) + 2) (by r1)
~0 S(S(5(2))) = S(5(5(2))) (by r1)
~0 TRUE

Computed approximate solution: {n — S(5(Z))} with degree 3.
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Quantitative narrowing
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We can also use degrees to keep track of the number of narrowing steps used:
QTRS: R' ={llFx+Z— x, 1IF x4+ S(y) — S(x+y), LIk S(x) — x}
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Quantitative narrowing
[e]e] lelelelele]

We can also use degrees to keep track of the number of narrowing steps used:
QTRS: R' ={llFx+Z— x, 1IF x4+ S(y) — S(x+y), LIk S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n

w1 S(n+2)="(n+n)+n (by r2)
1 $(n) =" (n+n)+n (by 1)
~1 n="(n4+n)+n (by r3)
1 Z="242 (by 1)
w Z="27 (by n)
~»o0 TRUE
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Quantitative narrowing
[e]e] lelelelele]

We can also use degrees to keep track of the number of narrowing steps used:
QTRS: R' ={llFx+Z— x, 1IF x4+ S(y) — S(x+y), LIk S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n

w1 S(n+2)="(n+n)+n (by 1)
1 $(n) =" (n+n)+n (by 1)
~1 n="(n4+n)+n (by r3)
1 Z="242 (by 1)
w Z="27 (by n)
~p TRUE

Computed approximate solution: {n+— Z} with degree 5 (i.e. 5 narrowing steps).
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To account for the computational cost of finding the redex, one can add modal arities:
Assume that arity(S) = (d) and arity(+) = (d, d), where d: [0, 00] — [0, 0], x — 2x
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Quantitative narrowing
[e]e] lelelelele]

To account for the computational cost of finding the redex, one can add modal arities:
Assume that arity(S) = (d) and arity(+) = (d, d), where d: [0, 00] — [0, 0], x — 2x
QTRS: R' ={llFx+Z— x, 1IF x4+ S(y) — S(x+y), 1IF S(x) — x}
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Quantitative narrowing
[e]e] lelelelele]

To account for the computational cost of finding the redex, one can add modal arities:
Assume that arity(S) = (d) and arity(+) = (d, d), where d: [0, 00] — [0, 0], x — 2x
QTRS: R' ={llFx+Z— x, 1IF x4+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z)="(n+n)+n

w1 S(n+2)="(n+n)+n (by r2)
w2 §(n) =" (n+n)+n (by 1)
w1 n="(n+n)+n (by r3)
vy 2="2427 (by 1)
sy Z =T (by 1)
~0 TRUE
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Quantitative narrowing
[e]e] lelelelele]

To account for the computational cost of finding the redex, one can add modal arities:
Assume that arity(S) = (d) and arity(+) = (d, d), where d: [0, 00] — [0, 0], x — 2x
QTRS: R' ={llFx+Z— x, 1IF x4+ S(y) — S(x+y), 1IF S(x) — x}
Quantitative Narrowing derivation:

n+S(Z2)="(n+n)+n

w1 S(n+2)="(n+n)+n (by r2)
~sg S(n) =" (n+n)+n (by 1)
w1 n="(n+n)+n (by r3)
oy Z="747 (by r1)
wy Z =T (by )
~0 TRUE

Computed approximate solution: {n+> Z} with degree 7 (~computational cost).
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Quantitative narrowing
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Calculus BQNARROW for basic quantitative narrowing

o BQNARROW: Rule-based calculus for quantitative narrowing

o Given a quantitative unification problem (equation to be solved), construct an initial
configuration
@ Apply rules until a terminal configuration is reached
@ Failure or solution can be read off from terminal configuration
e Configurations: F (failure) or (e; C; o; 6), where
e e: equation (or TRUE)
o C: set of constraints
o o substitution computed so far
e 0: current degree of approximation
@ Basic narrowing: Variables of the problem are only instantiated at the end.
— No instantiation of variables introduced by narrowing substitutions.
— Removes some sources of non-termination.
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Quantitative narrowing
0000e000

BQNARROW rules

LP: Lazy Paramodulation
(e[tlp; C;0:0) =a,(e)(e) (lr]pi {lo =ta} U C;0;6 @ 0p(e)(e)),

where e # TRUE, p is a non-variable position of e, and ¢ IF | — r is a fresh variant of a rule in
R.

SU: Syntactic Unification
(e;C;0:0) =>4 (e;0;0p;6),
where C # ) and p is a most general syntactic unifier of C.
Cla: Clash
(e; C;0;0) =, F, if Cis not unifiable.
Con: Constrain

(e; C;0;0) =, (TRUE; CU{ec};0;d), if e+ TRUE.
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Quantitative narrowing
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Find an approximate solution n € N for the equation n+ 1 = 3n.
QTRS: R={0lFx+Z—x, 0lFx+5S(y) = S(x+y), 1IFS(x)— x}
Derivation in BQNARROW:

<n+5(Z) =" (n4n)+n; 0; Id; 0)

Lo (S(x+y) =" (n+ )+ {x+S(y) = n+S(2)}: Id; 0)
=0 (S(x+y) = (n+n)+n' 0; {x,n— xi;y— Z}; 0)
Lo (S0a) =" () + 15 P+ Z =+ 2} {x,m xiy o 2 0)
=0 (SCa)="x3+n {+Z=xx+2Z, s+Z=x1+x}; {x,n—x;y— Z}; 0)
20 (S() = x3+m 0; {x,x1,%,x5,y,n+> Z}; 0)
==, (a="xs+n {xa=2}; {x,x1,%,x,y,n— Z}; 1)
%0 (xa = X {xa =%, s + Z=x3+2Z}; {x,x1,x,x3,y,n— Z}; 1)
%o (TRUE; {xa =x2, xs + Z=x3+n, xa = x5 }; {x,x1,%,x3,y,n+— Z}; 1)
=0 (

=0 (TRUE; 0; {x,x1,x0,x3,Xa,X5,y,n+— Z}; 1)

Computed approximate solution: {n— Z} with degree 1
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Results

Theorem (Soundness of BQNARROW)

If (t ="s;C;0;6) =1 (TRUE;;0’;8') is a derivation using the rules from BQNARROW,
then ¢ I to’ =g so’.

Theorem (Weak completeness of BQINARROW)

Suppose that is a Lawverean quantale whose order = is total. Let t =’ s be a linear
problem, and let R be a confluent, right-ground ( , )-TRS. Ife |- tT =g s7, then
BQNARROW admits a derivation (t =’ s;();1d; k) =* (TRUE; (); 0; 6) such that § = ¢.
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Quantitative narrowing
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Results

Theorem (Soundness of BQNARROW)
If (t ="s;C;0;6) =1 (TRUE;;0’;8') is a derivation using the rules from BQNARROW,
then ¢ I to’ =g so’.

Theorem (Weak completeness of BQINARROW)

Suppose that is a Lawverean quantale whose order = is total. Let t =’ s be a linear
problem, and let R be a confluent, right-ground ( , )-TRS. Ife |- tT =g s7, then
BQNARROW admits a derivation (t =’ s;();1d; k) =* (TRUE; (); 0; 6) such that § = ¢.

@ Termination cannot be granted!

o Weak completeness: We do not necessarily compute the given T, but some o which solves
the problem with a degree that is at least as good.

@ Substantial improvement over previous results on quantitative unification (Ehling & Kutsia
2024).
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Steps of the completeness proof

elktr =g sT
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Quantitative narrowing
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Steps of the completeness proof

elktr =g sT
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Quantitative narrowing
00000008

Steps of the completeness proof

elktr =g sT

= total

tT &% . ST

R confluent

tT ~LR,C ST

(for some ¢ 7 €)
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Quantitative narrowing
00000008

Steps of the completeness proof

elktr =g sT

= total

tT &% . ST

R confluent

tT ~LR,C ST > .
(for some ¢ 7 €) = o _>R/’C nELE,
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Quantitative narrowing
00000008

Steps of the completeness proof

elktr =g sT

= total t _7 s WT?’ o TRUE

(for some n Z ¢)

*
tT SRe ST
R right-linear,
R confluent t =7 s linear
tT ~LR,C ST

— t7 =7 ST =% . TRUE

(for some ¢ 7 €)
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Quantitative narrowing
00000008

Steps of the completeness proof

elktr =g sT 5
t="5~% TRUE
R’ ,n,o

2
= total _7 * is a “basic” derivation
~ t ='S WR’,?’],G’ TRUE

tr H*R _sT (for some n Z ¢) 5,
) S g
R right-linear, gog
R confluent t =7 s linear L
N N
tT LR, ST o ol
' — tT =’ sT =% . TRUE
(for some ¢ 7 €) R’.¢
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Steps of the completeness proof

elktr =g sT

arrowing

tT &% . ST

tT ~LR,C ST
(for some ¢ 7 €)

= total

R confluent

>

_7 *
t="s ORI p,o TRUE
(for some n Z ¢)

|

R right-linear,
t =7 s linear

?

_7 *
tT =" ST —>R/’C TRUE

t =" s linear

R right-ground,

_7 *
t="5s WR’,T],O’ TRUE

is a “basic” derivation

|

Avyala Rincén, de Lima, Ehling, Kutsia

(t ="s;0;Id; )
= (TRUE; 0; o 1))

(derivation in BQNARROW)
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Steps of the completeness proof

elktr =g sT

right-linear

R confluent, balanced, and }:C_ij‘

N

tT &% . ST

tT ~LR,C ST
(for some ¢ 7 €)

R confluent

+
= total t:?swr?’na

(for some n

TRUE
9

|

R right-linear,
t =7 s linear

?

= tr =" sT —Ric

t =" s linear

R right-ground,

TRUE

_7 *
t="5s WR’,T],O’ TRUE

is a “basic” derivation

|

Avyala Rincén, de Lima, Ehling, Kutsia

(t ="s;0;Id; )
= (TRUE; 0; o 1))

(derivation in BQNARROW)
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Steps of the completeness proof

R confluent, balanced, and (:_ij':>
elktr =R ST right-linear o - "

T t="5s WR’,T],O’ TRUE
= total _7 * is a "basic” derivation
~ t ='S WR’,?],G’ TRUE

tr H*R st (for some n Z ¢) 5,
) S g
R right-linear, gﬂg H
? .
t="sl| L0
R confluent s linear J::o"ﬂ <t =7 & (z); /d; I<é>
tT R ST ? « ™| = (TRUE;0;0;m)
’ —=1 tT =’ sT =%, . TRUE i
(for some ¢ 7 €) R’,¢ (derivation in BQNARROW)
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Conclusion and future work

Conclusion

o Quantitative equational theories (Gavazzo & Di Florio 2023) cover various approaches of
reasoning with quantitative information.

@ Adapted narrowing to the quantitative setting.

o Established a rule-based narrowing calculus for quantitative unification and proved its
soundness and (weak) completeness.

@ Improved on previous results for quantitative unification.
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Conclusion
[

Conclusion and future work

Conclusion

o Quantitative equational theories (Gavazzo & Di Florio 2023) cover various approaches of
reasoning with quantitative information.

@ Adapted narrowing to the quantitative setting.

o Established a rule-based narrowing calculus for quantitative unification and proved its
soundness and (weak) completeness.

@ Improved on previous results for quantitative unification.
Future work
@ Under which conditions can we guarantee termination?

@ Stronger results might be possible if we restrict to certain types of quantales: totally
ordered, idempotent, divisible, ...

@ Investigate other classic (equational) problems in the quantitative setting: matching,
anti-unification, resolution,. . .
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