
SOME EXPERIMENTS ON THE
PREDICTIVE POWER OF ML MODELS
The Case of the “Shortest Path Problem”

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz, Austria

Rationale

• Interest in applying ML to aid SC with exploring “abstract search spaces”.
◦ Repeatedly choose the best “next action” from a set of possible candidates.
◦ Good choices may speedup the search, bad choices may slow them down.
◦ But the correctness of the result does not depend on the quality of the choices.
◦ Typically there is no efficient SC algorithm to make good choices.

• Start with some simple experiments.
◦ Search for shortest paths in directed graphs.
◦ Choice is the next node along such a path.
◦ Problem can be actually solved by an efficient algorithm (Floyd–Warshall).
◦ This facilitates the preparation and evaluation of experiments.

• Get familiar with ML software, methods, processes.

Not just high-level talking about ML but really “getting my hands dirty”.

1/54

Machine Learning Textbooks

Mostly relied on [Géron, 2022] for guidance.

2/54

The Problem
• Given: a directed graph 𝐺 with 𝑛 nodes and two nodes 𝑖, 𝑗 .

◦ 𝐺 = (𝑉, 𝐸), 𝑛 ∈ N, 𝑉 = N𝑛, 𝐸 : N𝑛 × N𝑛 → Bool; 𝑖, 𝑗 ∈ N𝑛.
• Find: the (e.g., smallest) next node 𝑘 ∈ N𝑛 on a shortest path from 𝑖 to 𝑗 in 𝐺.

◦ A path with minimal length, i.e., the minimal number of edges.
◦ 𝑘 = −1, if there is no path from 𝑖 to 𝑗 in 𝐺.

• Alternative: find the length 𝑙 ∈ N𝑛 of the shortest paths from 𝑖 to 𝑗 in 𝐺.
◦ 𝑙 = −1, if there is no path from 𝑖 to 𝑗 in 𝐺.

Related problems, but not necessarily of same “difficulty”.

https://commons.wikimedia.org/wiki/File:Directed_graph_no_background.svg

next (1, 4) = 3, length (1, 4) = 2.
3/54

Data Sets

For a given node number 𝑛, problem instances are stored in CSV files

Format: length, next , 𝑖, 𝑗 , 𝐺0,0, . . . , 𝐺𝑛−1,𝑛−1

-1,-1,4,2,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1
1,3,4,3,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1
0,4,4,4,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1

• Data sets (with only reflexive graphs) are generated by C++ programs:
◦ For each graph 𝐺, all node pairs 𝑖, 𝑗 are considered.
◦ Shortest paths and their lengths computed by Floyd-Warshall algorithm.
◦ 𝑛 = 5: all 𝑛2 · 2(𝑛2−𝑛) ≃ 2.6 · 107 problem instances are enumerated.
◦ 𝑛 = 10: 𝑛2 · 1.5 · 106 ≃ 1.5 · 108 instances with random graphs are generated.

Randomly place additional 20 and 30 edges { average outdegree 2 and 3.

Training data are randomly selected from these data sets.

4/54

Training Sets

Problem: the lengths of paths are not equally distributed in data sets.
𝑛 = 5

length 0 1 2 3 4 −1
· 106 5.2 10.4 6.1 1.2 0.1 3.1

𝑛 = 10 (20 random edges)
length 0 1 2 3 4 5 6 7 8 9 −1
· 106 15 30 35 22 9 3 0.7 0.1 0.02 0.0001 3.4

𝑛 = 10 (30 random edges)
length 0 1 2 3 4 5 6 7 8 9 −1
· 106 15 45 56 22 4 0.6 0.08 0.008 0.0006 0.00003 6.4

• Stratification: training sets with equal portion of samples for each path length.
◦ 𝑛 = 5: 100,000 samples (more possible but not needed).
◦ 𝑛 = 10 (20 edges): 375,000 samples (path lengths ≥ 8 underrepresented).
◦ 𝑛 = 10 (30 edges): 250,000 samples (path lengths ≥ 7 underrepresented).

Substantial effort needed to represent in traing set all “input classes”. 5/54

Software
• Installation of Python 3, venv, and pip.

apt-get install python3 python3-venv python3-pip

• Setup of a virtual environment:
python3 -m venv /software/python3-ML
source /software/python3-ML/bin/activate
(python3-ML) > ...
deactivate

• Import of Python packages into the virtual environment:
pip install notebook
pip install pandas
pip install matplotlib
pip install numpy
pip install scikit-learn
pip install xgboost
pip install tensorflow
pip install tensorboard
pip install --upgrade keras-cv
pip install --upgrade keras-hub
pip install --upgrade keras
pip install keras-tuner
... 6/54

Jupyter Notebook Interface

jupyter notebook --notebook-dir=<path>

Usually the best choice for interactive use. 7/54

Data Processing

import pandas as pd

train_path = "<path>.csv.gz"
train_dataframe = pd.read_csv(train_path, header=None)

X_train = train_dataframe.iloc[:,2:] # column 0 is distance (here ignored)
y_train = train_dataframe.iloc[:,1] # column 1 is next node in path
y_train.iloc[y_train.iloc[:,] < 0] = size # "size" rather than -1 indicates "no path"

// analogous for X_valid, y_valid, X_test, y_test
...

Suitable for small to medium-sized training sets.

8/54

Machine Learning Software & Models

Utilize high-level APIs to avoid extensive Python coding.

• scikit-learn (https://scikit-learn.org):
◦ Linear and polynomial regression, Support Vector Machines, decision trees,

decision forests, multilayer perceptrons, . . .
• XGBoost (https://xgboost.ai):

◦ Decision forests by “extreme gradient boosting”.
• Keras 3 (https://keras.io):

◦ High-level neural network API.
◦ Multiple backends: TensorFlow (Google), PyTorch (Meta AI), JAX

(Google/Nvidia).

After some initial experiments, focus on two models: decision forests (in
SciKit-Learn and XGBoost) and neural networks (in Keras/TensorFlow).

9/54

https://scikit-learn.org
https://xgboost.ai
https://keras.io

Regression vs Classification

• Regressor: a ML model that computes continuous values.
◦ A function 𝑟 : R𝑚 → R𝑛 for some 𝑚, 𝑛 ∈ N>0.

• Classifier: a ML model that chooses a value from a fixed set of classes.
◦ A function 𝑐 : R𝑚 → N𝑛 for some 𝑚, 𝑛 ∈ N>0.
◦ May be constructed by composing a regressor 𝑟 with the softmax function 𝜎:

𝑐([𝑥1, . . . , 𝑥𝑚]) := argmax𝑘∈N 𝜎𝑘 (𝑟 ([𝑥1, . . . , 𝑥𝑚]))

𝜎𝑘 ([𝑥1, . . . , 𝑥𝑛]) =
exp(𝑥𝑘)∑𝑛
𝑗=1 exp(𝑥 𝑗)

𝜎𝑘 (𝑟 ([𝑥1, . . . , 𝑥𝑚])): the probability that input [𝑥1, . . . , 𝑥𝑚] belongs to class 𝑘,
determined from the “scores” assigned by the regressor 𝑟 to each of the 𝑛 classes.

ML models may be applied as regressors or as classifiers.

10/54

DECISION TREES

Decision Trees

2
https://scikit-learn.org/stable/modules/tree.html

Training: the tree is “grown” by the CART (Classification and Regression Tree) algorithm:
the training set is recursively split by that decision feature ≤ threshold that minimizes the
“Gini impurity” of the subsets weighted by their size. 11/54

Decision Forests

A single decision tree does not represent a very good predictor.

• Ensembles: combinations of multiple weak predictors.
◦ The aggregated predication may be much better than each individual one.

• Random Forests: multiple decision trees are grown (independently) from
random subsets of the training data.

◦ Additionally, the best feature is chosen from a random subet of features.
◦ Extra-Trees (extremely randomized trees): also thresholds are chosen randomly.
◦ Aggregation: the prediction with the highest count wins (hard voting) or the

prediction with the highest average probability wins (soft voting).

• Gradient Boosting: decision trees are constructed one after another.
◦ Each decision tree is trained on the residual error of its predecessor.
◦ Aggregation: the prediction is the sum of the individual ones.

12/54

Decision Forests in scikit-learn

from sklearn.ensemble import (ExtraTreesClassifier,
GradientBoostingClassifier, HistGradientBoostingClassifier)

from xgboost import XGBClassifier, plot_importance, plot_tree

from sklearn.model_selection import (learning_curve, validation_curve,
cross_val_score, cross_val_predict, LearningCurveDisplay)

from sklearn.metrics import ConfusionMatrixDisplay

import matplotlib.pyplot as plt
import numpy as np

For determining the next nodes, we use the classifier variants of the models.

13/54

Model Fitting and Predicting

We predict next nodes of shortest paths in graphs with 𝑛 = 5 nodes.

model = XGBClassifier(random_state=42)
// or: ExtraTreesClassifier, GradientBoostingClassifier, HistGradientBoostingClassifier

model.fit(X_train, y_train)
y_pred = model.predict(X_test[0:20])

print(y_pred)
print(y_test[0:20].values)
print(1-sum([0 if elem == 0 else 1 for elem in model.predict(X_test)-y_test])/len(X_test))

[1 4 4 2 0 2 0 4 2 2 1 3 1 0 5 1 2 1 3 1]
[1 4 4 2 0 2 0 4 2 2 1 3 1 0 5 1 2 1 3 1]
0.9958

After fitting the model to the training set, it may perform predictions on the test set.

14/54

Learning Curves

_ , ax = plt.subplots()
ax.set_title("ExtraTreesClassifier")
ax.grid()

LearningCurveDisplay.from_estimator(
model, X_train, y_train, train_sizes=np.linspace(0.01,1.0,20), cv=5,
scoring="accuracy", n_jobs=-1, ax=ax)

plt.show()

• Cross-Validation: the training set is split int cv = 5 pieces; cv copies of the
model are trained, each using cv − 1 pieces for training and one for validation.

• Learning Curve: we repeatedly apply cross-validation for growing fractions of
the training set and plot the average validation accuracy.

15/54

Learning Curves

16/54

Confusion Matrices

y_train_pred = cross_val_predict(model, X_train, y_train, cv=3)
ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred)
ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,

normalize="true", values_format=".0%")
plt.show()

17/54

Feature Importance

model = XGBClassifier(random_state=42)
model.fit(X_train, y_train)
plot_importance(model)
plt.show()
...

The node indices 𝑖, 𝑗 are most important, the diagonal 𝑔𝑘,𝑘 is ignored. 18/54

One Tree in the Forest

_, ax = plt.subplots(figsize=(60, 40))
plot_tree(model,ax=ax)
plt.show()

By default, there are up to 100 decision trees with maximum depth 6.

19/54

Validation Curves
params=range(1,11)
train_scores, valid_scores = validation_curve(model, X_train, y_train,

param_name="max_depth", param_range=params, scoring="accuracy", cv=5, n_jobs=-1)
train_mean = train_scores.mean(axis=1)
valid_mean = valid_scores.mean(axis=1)
plt.plot(params, train_mean, color="blue", marker="o", markersize=5, label="Training")
plt.plot(params, valid_mean, color="red", marker="s", markersize=5, label="Validation")
...
plt.show()

Maximum depth 6 is fine (and so is the maximum number of trees). 20/54

Predicting the Lengths of Shortest Paths by Classification

Please note the tripled size of the training set. 21/54

Predicting the Lengths of Shortest Paths by Classification

Better increase the maximum depth of the decision trees to 8. 22/54

Predicting the Lengths of Shortest Paths by Classification

model = XGBClassifier(random_state=42, max_depth=8)

So with deeper decision trees also very high accuracy can be achieved.
23/54

Predicting the Lengths of Shortest Paths by Regression

from sklearn.ensemble import (ExtraTreesRegressor, GradientBoostingRegressor,
HistGradientBoostingRegressor)

from xgboost import XGBRegressor

model = XGBRegressor(random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test[0:10])

print(np.round(y_pred, 1))
print(y_test[0:10].values)
print(math.sqrt(sum([elem*elem for elem in model.predict(X_test)-y_test])/len(X_test))) # RMSE
print(1-sum([0 if elem == 0 else 1 for elem in np.round(model.predict(X_test))-y_test])/len(X_test))

[2.5 3.2 1.1 3.8 3.8 0.8 3.9 -0.1 4.9 2.5]
[3 3 0 5 4 1 4 0 5 2]
0.521919080843475
0.6949000000000001

The predictions are continuous values. 24/54

Predicting the Lengths of Shortest Paths by Regression

The learning curves depict the root mean square error (RMSE). 25/54

Predicting the Lengths of Shortest Paths by Regression

Better increase the maximum depth of the decision trees to 15.
26/54

Predicting the Lengths of Shortest Paths by Regression

model = XGBRegressor(random_state=42, max_depth=15)

So with much deeper decision trees RMSE ≪ 0.5 can be achieved; compared to
classification, by regression the computation time is halved. 27/54

NEURAL NETWORKS

Neural Networks

http://dx.doi.org/10.3390/genes10070553

The “multilayer perceptron” (MLP) (also called: “feed-forward neural network”).
28/54

Neural Network Classifiers in Keras/TensorFlow
import tensorflow as tf
from tensorflow import keras

normalization = keras.layers.Normalization()
normalization.adapt(X_train.to_numpy())

def deep_net(width,depth):
model = keras.Sequential()
model.add(keras.layers.Input(shape=(2+size*size,)))
model.add(normalization) # don’t forget to normalize the input features!
for _ in range(depth):

model.add(keras.layers.Dense(
width,
activation="selu", # activation function: SELU
kernel_initializer="lecun_normal" # kernel initializer: LeCun

))
model.add(keras.layers.Dense(size+1, activation="softmax"))
return model

Input layer of size 2 + 𝑛2, depth hidden layers of size width, outp. layer of size 𝑛 + 1.29/54

Model Fitting
model = deep_net(2+2*size*size, 3)

Nesterov accelerated gradient (NAG) optimizer
nag = keras.optimizers.SGD(learning_rate=0.01, momentum=0.9, nesterov=True)
model.compile(loss="sparse_categorical_crossentropy", optimizer=nag, metrics=["accuracy"])

lr_scheduler = keras.callbacks.ReduceLROnPlateau(factor=0.1, patience=5)
early_stopping = keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True)
tensorboard = tf.keras.callbacks.TensorBoard(tensorboard_logdir())

model.fit(
X_train, y_train, validation_data = (X_valid, y_valid),
epochs = 200,
callbacks=[lr_scheduler, early_stopping, tensorboard])

At most 200 iterations over training set (“epochs”); if validation loss is not decreased for 5
epochs, learning rate is divided by 10; if validation rate is not decreased for 10 epochs,
training stops; progress after each epoch is logged for TensorBoard visualization.

30/54

Model Fitting
Epoch 1/200
938/938 ------- 2s 2ms/step - accuracy: 0.4469 - loss: 1.4494 - val_accuracy: 0.6289 - val_loss: 1.0444 - learning_rate: 0.0100
Epoch 2/200
938/938 ------- 2s 2ms/step - accuracy: 0.6542 - loss: 0.9741 - val_accuracy: 0.7167 - val_loss: 0.7862 - learning_rate: 0.0100
Epoch 3/200
938/938 ------- 2s 2ms/step - accuracy: 0.7306 - loss: 0.7400 - val_accuracy: 0.7631 - val_loss: 0.6545 - learning_rate: 0.0100
Epoch 4/200
938/938 ------- 2s 2ms/step - accuracy: 0.7946 - loss: 0.5707 - val_accuracy: 0.8095 - val_loss: 0.5329 - learning_rate: 0.0100
...
Epoch 35/200
938/938 ------- 2s 2ms/step - accuracy: 0.9971 - loss: 0.0136 - val_accuracy: 0.9749 - val_loss: 0.0693 - learning_rate: 1.0000e-03
...
Epoch 42/200
938/938 ------- 2s 2ms/step - accuracy: 0.9991 - loss: 0.0098 - val_accuracy: 0.9750 - val_loss: 0.0699 - learning_rate: 1.0000e-04
Epoch 43/200
938/938 ------- 2s 2ms/step - accuracy: 0.9990 - loss: 0.0092 - val_accuracy: 0.9750 - val_loss: 0.0699 - learning_rate: 1.0000e-04
Epoch 44/200
938/938 ------- 2s 2ms/step - accuracy: 0.9993 - loss: 0.0088 - val_accuracy: 0.9748 - val_loss: 0.0698 - learning_rate: 1.0000e-04
Epoch 45/200
938/938 ------- 2s 2ms/step - accuracy: 0.9994 - loss: 0.0086 - val_accuracy: 0.9747 - val_loss: 0.0699 - learning_rate: 1.0000e-04

In each epoch, the training set is randomly partitioned into “mini-batches” of size 32;
for each, a gradient is computed and a gradient descent step is performed; finally, the
validation loss is determined.

31/54

TensorBoard

tensorboard --logdir tensorboard

The training progress is captured and can be visualized. 32/54

Model Predicting

y_pred = model.predict(X_test[0:5])

print(y_pred.round(2))
print(y_pred.argmax(axis=-1))
print(y_test[0:5].values)
print(1-sum([0 if d == 0 else 1 for d in model.predict(X_test).argmax(axis=-1)-y_test])/len(X_test))

[[0. 0.02 0.02 0.15 0. 0.81]
[1. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0.]
[0. 0. 1. 0. 0. 0.]]

[5 0 1 3 2]
[5 0 1 3 2]
0.9741

The predictions of the model are class probabilities.

33/54

Hyperparameter Tuning

import keras_tuner as kt

def build_model(hp):
width = hp.Int("width", min_value=2+size*size, max_value=2+5*size*size, step=size*size)
depth = hp.Int("depth", min_value=1, max_value=5)
model = deep_net(width, depth)
nag = keras.optimizers.SGD(learning_rate=0.01, momentum=0.9, nesterov=True)
model.compile(loss="sparse_categorical_crossentropy", optimizer=nag, metrics=["accuracy"])
return model

tuner = kt.GridSearch(build_model, objective="val_accuracy", overwrite=True)
tuner.search(

X_train, y_train, validation_data = (X_valid, y_valid),
epochs = 200,
callbacks=[early_stopping, lr_scheduler])

print(tuner.get_best_hyperparameters()[0].values)
best_model = tuner.get_best_models()[0]

Automated exploration of the hyperparameter value search space. 34/54

Neural Network Regressors in Keras/TensorFlow

def deep_net(width,depth):
model = keras.Sequential()
model.add(keras.layers.Input(shape=(2+size*size,)))
model.add(normalization)
for _ in range(depth):

model.add(keras.layers.Dense(
width,
activation="selu",
kernel_initializer="lecun_normal"

))
model.add(keras.layers.Dense(1)) # single neuron without activation
return model

model = deep_net(2+2*size*size, 3)
nag = keras.optimizers.SGD(learning_rate=0.01, momentum=0.9, nesterov=True)
model.compile(loss="mse", optimizer=nag, metrics=["RootMeanSquaredError"])

(Root) mean square error as loss function and metrics.
35/54

Predicting Shortest Paths and Their Lengths

Width 2 + 2 · 52, depth 3, training set sizes 30,000 and 60,000.

next nodes (accuracy) lengths (accuracy) lengths (RMSE)

Similar accuracy/RMSE as with XGBoost, but much longer training times.
36/54

THE LARGER PROBLEM

Predicting the Next Nodes in Shortest Paths

Graphs with 10 nodes and 20 random edges.

model = XGBClassifier(random_state=42, max_depth=12)

Increased training set size and maximum tree depth. 37/54

Predicting the Next Nodes in Shortest Paths

Graphs with 10 nodes and 30 random edges.

model = XGBClassifier(random_state=42, max_depth=12)

Accuracy is moderately decreased. 38/54

Predicting the Next Nodes in Shortest Paths

Graphs with 10 nodes and 20 random edges, training set size 100,000.

The predictions are now less than perfect. 39/54

Prediction Accuracy vs Path Lengths

We test the accuracy of predictions for fixed path lengths.
model.fit(X_train, y_train)
print("0:", 1-sum([0.0 if item == 0 else 1.0 for item in model.predict(X_test0)-y_test0])/len(X_test0))
...
print("10:", 1-sum([0.0 if item == 0 else 1.0 for item in model.predict(X_testx)-y_testx])/len(X_testx))

0: 1.0
1: 0.9991
2: 0.75592
3: 0.74846
4: 0.83614
5: 0.89624
6: 0.93126
7: 0.96278
8: 0.9872
9: 0.998
10: 0.5066200000000001

Interestingly, the predictions are less accurate for the more frequent path lengths;
furthermore, the model can hardly predict the non-existence of paths. 40/54

Predicting the Lengths of Shortest Paths by Classification

model = XGBClassifier(random_state=42, max_depth=12, n_estimators=200)

Poor accuracy, even with larger number of estimators. 41/54

Predicting the Lengths of Shortest Paths by Classification

Graphs with 10 nodes and 20 random edges, training set size 100,000.

The predictions for path lengths greater than 2 are pretty random. 42/54

Predicting the Lengths of Shortest Paths by Regression

model = XGBRegressor(random_state=42, max_depth=10)

Much faster, but even with doubled training set size still a high error. 43/54

Predicting the Lengths of Shortest Paths by Regression

Graphs with 10 nodes and 20 random edges, training set size 200,000.

Hardly an improvement. 44/54

Applying Length Prediction to Next Node Prediction

But actually we are not really interested in the path length accuracy per se.

• Real question: is the accuracy sufficient for next node predictions?
◦ Consider prediction of next node 𝑘 in path from node 𝑖 to node 𝑗 .
◦ If 𝑖 = 𝑗 or there is an edge from 𝑖 to 𝑗 we are done (no prediction is needed).
◦ Otherwise, consider every node connected to node 𝑖 by an edge.
◦ Predict their distances to 𝑗 and choose some node 𝑘 with minimum distance.
◦ Choice is good, if node 𝑘 indeed has minimum distance.

Even if the actual distance is different from the predicted one.
• Length prediction accuracy (10 nodes, 20 random edges): 0.57.

◦ 25,000 samples; 14,353 correct predictions.
• Resulting next node prediction accuracy: in range [0.79, 0.92].

◦ 8,367 samples with minimum distance ≥ 2; 7,660 samples with some prediction
correct; 6,588 samples with all predictions correct.

Similar accuracy than with direct next node prediction (but much faster training).
45/54

Predicting Next Nodes by Neural Networks

Width 2 + 2 · 102, depth 3, training set sizes 30,000, 60,000, 100,000, 150,000.

training accuracy validation accuracy

Accuracy is a bit lower than with XGBoost (and training time much longer).
46/54

Prediction Accuracy vs Path Lengths

We test the accuracy of predictions for fixed path lengths.
print("0:", 1-sum([0.0 if item == 0 else 1.0 for item in model.predict(X_test0).argmax(axis=-1)-y_test0])/len(X_test0))
...
print("10:", 1-sum([0.0 if item == 0 else 1.0 for item in model.predict(X_testx).argmax(axis=-1)-y_testx])/len(X_testx))

0: 0.99996
1: 0.9337
2: 0.6576
3: 0.73912
4: 0.82498
5: 0.88252
6: 0.9204
7: 0.9532
8: 0.98
9: 0.994
10: 0.45611999999999997

Also the neural network model can hardly predict the non-existence of paths.

47/54

Input Nodes as Categorical Features

Consider input nodes as “categorical” features rather than as “numerical” ones.

def deep_net_cat(width,depth):
input1 = keras.layers.Input(shape=(1,))
input2 = keras.layers.Input(shape=(1,))
input3 = keras.layers.Input(shape=(size*size,))
encoded1 = keras.layers.CategoryEncoding(num_tokens=size, output_mode="one_hot")(input1)
encoded2 = keras.layers.CategoryEncoding(num_tokens=size, output_mode="one_hot")(input2)
inputs = keras.layers.concatenate([encoded1,encoded2,input3])
layer = inputs
for _ in range(depth):

layer = keras.layers.Dense(width, activation="selu", kernel_initializer="lecun_normal")(layer)
output = keras.layers.Dense(size+1, activation="softmax")(layer)
return tf.keras.Model(inputs=[input1,input2,input3], outputs=[output])

“One-hot encoding” of node 𝑖 as vector [0, . . . , 1, . . . , 0] with single 1 at index 𝑖.

48/54

Predicting Next Nodes with One-Hot Encoding

Width 2 · 10 + 2 · 102, depth 3, training set sizes 30,000, 60,000, 100,000, 150,000.

training accuracy validation accuracy

Accuracy is now comparable with that of XGBoost.
49/54

Predicting Path Lengths by Neural Network Classification

Width 2 + 2 · 102, depth 3, training set sizes 30,000, 60,000, 100,000, 150,000.

training accuracy validation accuracy

Accuracy is a bit higher than with XGBoost.
50/54

Predicting Path Lengths by Neural Network Regression

Width 2 + 2 · 102, depth 3, training set sizes 30,000, 60,000, 100,000, 150,000.

training RSME validation RSME

Error is a bit lower than with XGBoost.
51/54

Finally One More (and Larger) Problem
Predicting next nodes in graphs with 20 nodes and 40 random edges.

• XGBoost: XGBClassifier(random_state=42, max_depth=12)

• Neural network: deep_net(_cat)(2+1*20*20, 3), training set sizes: 250,000, 500,000.

With XGBoost and neural network (with one-hot encoding and much larger training set),

still a substantially “higher than chance” accuracy achievable. 52/54

Applying Length Prediction to Next Node Prediction
XGBRegressor(random_state=42, max_depth=20)

• Length prediction accuracy: 0.47.
◦ 25,000 samples; 11,639 predictions correct.

• Resulting next node prediction accuracy: [0.59, 0.77]
◦ 11,051 samples with minimum distance ≥ 2; 8,524 samples with some prediction correct;

6560 samples with all predictions correct.

Still “higher than chance” accuracy, but lower than with classification. 53/54

CONCLUSIONS

Conclusions

So what do I take away from these ML experiments on the shortest path problem?

• Next node prediction with “higher than chance” accuracy seems feasible.
◦ Even by training from a minuscle fraction of the problem instance space.
◦ Possibly also via path length predictions (lower accuracy but also less training).

• Decision forests (XGBoost) are attractive for this kind of problem.
◦ Few hyperparameters, moderate training effort, good accuracy.

• Neural networks (MLPs) are more difficult to utilize.
◦ Many hyperparameters, large training effort, mostly not better accuracy.
◦ However, accuracy may be slightly superior for path length prediction.

Finally:

• All experiments were based on the supervised learning paradigm.
◦ Training on carefully prepared labeled data sets.

• Next stop: reinforcement learning with neural networks.
◦ Training “on the fly” while actually performing the path search. 54/54

	Decision Trees
	Neural Networks
	The Larger Problem
	Conclusions

