SOME EXPERIMENTS ON THE
PREDICTIVE POWER OF ML MODELS

The Case of the “Shortest Path Problem”

4

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz, Austria

JOHANNES KEPLER * *
J ¥ UNIVERSITY LINZ E.'(

Rationale

e Interest in applying ML to aid SC with exploring “abstract search spaces”.
o Repeatedly choose the best “next action” from a set of possible candidates.
o Good choices may speedup the search, bad choices may slow them down.
o But the correctness of the result does not depend on the quality of the choices.
o Typically there is no efficient SC algorithm to make good choices.
e Start with some simple experiments.
o Search for shortest paths in directed graphs.
o Choice is the next node along such a path.
o Problem can be actually solved by an efficient algorithm (Floyd—Warshall).
o This facilitates the preparation and evaluation of experiments.

e Get familiar with ML software, methods, processes.

Not just high-level talking about ML but really “getting my hands dirty”.

1/54

Machine Learning Textbooks

OREILLY &%

Hands-On
Machine Learning
with Scikit-Learn,
Keras & TensorFlow

Concepts, Tools, and Techniques
to Build Intelligent Systems

Aurélien Géron

EXPERT INSIGH

Machine
Learning

with PyTorch
and Scikit-Learn

Develop machine learning and deep learning
models with Python

Sebastian Raschka

Yuxi (Hayden) Liu Packf)

Vahid Mirjalili

Mostly relied on [Géron, 2022] for guidance.

2/54

The Problem

e Given: a directed graph G with n nodes and two nodes i, ;.
o G=(V,E),neN,V=N,, E: N, xN,, —» Bool;i,j € N,.
e Find: the (e.g., smallest) next node k € N,, on a shortest path fromito j in G.
o A path with minimal length, i.e., the minimal number of edges.
o k =-1,ifthere is no path fromito j in G.
e Alternative: find the length | € N,, of the shortest paths fromito j in G.
o [=-1,if there is no path fromito j in G.

Related problems, but not necessarily of same “difficulty”. a 6#0

https://commons.wikimedia.org/wiki/File:Directed_graph_no_background.svg
next(1,4) = 3, length(1,4) = 2.
3/54

Data Sets

For a given node number n, problem instances are stored in CSV files

Format: length, next, i, j, Go.o, -+, Gn-1.n-1

-1,-1,4,2,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1
1,3,4,3,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1
0,4,4,4,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1

e Data sets (with only reflexive graphs) are generated by C++ programs:

For each graph G, all node pairs i, j are considered.

Shortest paths and their lengths computed by Floyd-Warshall algorithm.

n=>5:alln?-2(">=" ~ 2.6.107 problem instances are enumerated.

o n=10:n%-1.5-10% ~ 1.5 - 108 instances with random graphs are generated.
= Randomly place additional 20 and 30 edges ~» average outdegree 2 and 3.

[¢]

[e]

[¢]

Training data are randomly selected from these data sets.

4/54

Training Sets

Problem: the lengths of paths are not equally distributed in data sets.
n=>5
length 0 1 2 3 4 -1
#-10% | 52 104 6.1 1.2 0.1 3.1

n =10 (20 random edges)
length 0 1 2 3 4 5 6 7 8

9 -1
#-106 | 15 30 35 22 9 3 0.7 0.1 0.02

0.0001 3.4

n=
length 0 1 2 3

#-10% | 15 45 56 22

10 (30 random edges)
4 5 6 7 8 9 -1
4 0.6 0.08 0.008 0.0006 0.00003 6.4

e Stratification: training sets with equal portion of samples for each path length.
o n=5:100,000 samples (more possible but not needed).
o n =10 (20 edges): 375,000 samples (path lengths > 8 underrepresented).
o n =10 (30 edges): 250,000 samples (path lengths > 7 underrepresented).

Substantial effort needed to represent in traing set all “input classes”. 5/54

Software

¢ Installation of Python 3, venv, and pip.
apt-get install python3 python3-venv python3-pip
e Setup of a virtual environment:

python3 -m venv /software/python3-ML
source /software/python3-ML/bin/activate

(python3-ML) >
deactivate

¢ Import of Python packages into the virtual environment:

install
install
install
install
install
install
install
install
install
install
install
install

notebook

pandas

matplotlib

numpy

scikit-learn
xgboost

tensorflow
tensorboard
--upgrade keras-cv
--upgrade keras-hub
--upgrade keras
keras-tuner

6/54

Jupyter Notebook Interface

jupyter notebook --notebook-dir=<path>

B | < Home * | X pathsrkeras-orge30 X 8 paths-keraslarge-tens X+ v sooox
D« > C O D =2 localhost8888|tree/scikit-learn b3 @ € o
Z Jupyter
Fle View SetingsHelp
™ fis © Running
Seecttrns o perorm actions o thern. TN S ©
[p—
O Name - Wostied Fesine
[mRes yesterday
[T Te—— S daysago e
[[mnist-xgbeost.ipynb 19 days ago 153.2K8
A moistipynb T3days ago 576.7K8
|+ [A] paths-scikit-large-OtaT.pynt yesterday 2446K8
* [paths-scikit-large-Otox.ipynb. yesterday 1626KB.
[+ B paths-sciki-large-30-Oto6.pynb. yesterday 36548
L+ 1) paths st lrge 30 Otoxipy yesterday w2k
* [paths-scikit-large-30.ipynb yesterday B375K8
[+ B paths-sciki-targe.pynb. Gdaysogo 85348
L+) paths st les-arg-Ooxipynt yesterday 62K
[paths-scikit-lens-large.ipynb 6 days ago. 7815KB.
[T+ [paths-sckit-lens.pynb 7daysago M8
| (7] paths-sckit-regressor-large.jpynb Gdaysago 233K8
* [paths-scikit-regressor.ipynb 7 days ago. 677.6KB
[A paths-scikit-smalLipynb Gdaysago 7945K8
|_» [paths-scikitipynb. Gdaysano 8603K8

Usually the best choice for interactive use. 7/54

Data Processing

import pandas as pd

train_path = "<path>.csv.gz"
train_dataframe = pd.read_csv(train_path, header=None)

X_train = train_dataframe.iloc[:,2:] # column O is distance (here ignored)
y_train = train_dataframe.iloc[:,1] # column 1 is next node in path

y_train.iloc[y_train.iloc[:,] < 0] = size # "size" rather than -1 indicates "no path"

// analogous for X_valid, y_valid, X_test, y_test

Suitable for small to medium-sized training sets.

8/54

Machine Learning Software & Models

Utilize high-level APls to avoid extensive Python coding.

e scikit-learn (https://scikit-learn.org):
o Linear and polynomial regression, Support Vector Machines, decision trees,
decision forests, multilayer perceptrons, ...
e XGBoost (https://xgboost.ai):
o Decision forests by “extreme gradient boosting”.
e Keras 3 (https://keras.io):
o High-level neural network API.
o Multiple backends: TensorFlow (Google), PyTorch (Meta Al), JAX
(Google/Nvidia).

After some initial experiments, focus on two models: decision forests (in
SciKit-Learn and XGBoost) and neural networks (in Keras/TensorFlow).

9/54

https://scikit-learn.org
https://xgboost.ai
https://keras.io

Regression vs Classification

e Regressor: a ML model that computes continuous values.
o A function r: R™ — R" for some m,n € Nsg.
e Classifier: a ML model that chooses a value from a fixed set of classes.
o A function ¢: R™ — N,, for some m,n € N..
o May be constructed by composing a regressor r with the softmax function o:

c([x1s .- xm]) := argmaxy ey Ok (r([x1, ... Xm]))
exp(xg)

O'k([xh""xn]) = m

m oy (r([x1,...,x,])): the probability that input [x1,...,x,] belongs to class «,
determined from the “scores” assigned by the regressor r to each of the n classes.

ML models may be applied as regressors or as classifiers.

10/54

DECISION TREES

4

DeCiSion Trees Decision tree trained on all the iris features

https://scikit-learn.org/stable/modules/tree.html

Training: the tree is “grown” by the CART (Classification and Regression Tree) algorithm:
the training set is recursively split by that decision feature < threshold that minimizes the
“Gini impurity” of the subsets weighted by their size. 11/54

Decision Forests

A single decision tree does not represent a very good predictor.

e Ensembles: combinations of multiple weak predictors.
o The aggregated predication may be much better than each individual one.

e Random Forests: multiple decision trees are grown (independently) from
random subsets of the training data.
o Additionally, the best feature is chosen from a random subet of features.
o Extra-Trees (extremely randomized trees): also thresholds are chosen randomly.
o Aggregation: the prediction with the highest count wins (hard voting) or the
prediction with the highest average probability wins (soft voting).
e Gradient Boosting: decision trees are constructed one after another.

o Each decision tree is trained on the residual error of its predecessor.
o Aggregation: the prediction is the sum of the individual ones.

12/54

Decision Forests in scikit-learn

from sklearn.ensemble import (ExtraTreesClassifier,
GradientBoostingClassifier, HistGradientBoostingClassifier)
from xgboost import XGBClassifier, plot_importance, plot_tree

from sklearn.model_selection import (learning_curve, validation_curve,
cross_val_score, cross_val_predict, LearningCurveDisplay)

from sklearn.metrics import ConfusionMatrixDisplay

import matplotlib.pyplot as plt
import numpy as np

For determining the next nodes, we use the classifier variants of the models.

13/54

Model Fitting and Predicting

We predict next nodes of shortest paths in graphs with n = 5 nodes.

model = XGBClassifier(random_state=42)
// or: ExtraTreesClassifier, GradientBoostingClassifier, HistGradientBoostingClassifier

model.fit(X_train, y_train)
y_pred = model.predict(X_test[0:20])

print (y_pred)
print (y_test[0:20] .values)
print(1-sum([0 if elem == O else 1 for elem in model.predict(X_test)-y_test])/len(X_test))

[14420204221310512131]
[14420204221310512131]
0.9958

After fitting the model to the training set, it may perform predictions on the test set.

14/54

Learning Curves

_ , ax = plt.subplots()
ax.set_title("ExtraTreesClassifier")
ax.grid()

LearningCurveDisplay.from_estimator (
model, X_train, y_train, train_sizes=np.linspace(0.01,1.0,20), cv=5,

scoring="accuracy", n_jobs=-1, ax=ax)

plt.show()

e Cross-Validation: the training set is split int cv = 5 pieces; cv copies of the
model are trained, each using cv — 1 pieces for training and one for validation.

e Learning Curve: we repeatedly apply cross-validation for growing fractions of
the training set and plot the average validation accuracy.

15/54

Learning Curves

set

ExtraTreesClassifier i ingClassifier
10 10 — Tain
— Test
09 09
o8
o8
go7 2
g g
H 307
106 £
05 06
os
— Tain
03 — Test
04
o 5000 10000 15000 20000 25000 o 0 10000 15000 20000 25000
Number of samples in the training set Number of samples in the training set
CPU times: user 411 ms, sys: 63.5 ms, total: 474 ms CPU times: user 555 ms, sys: 80.8 ms, total: 636 ms
Wall tine: 43 s Wall tine: lnin 565
HistGradientBoostingClassifier XGBClassifier
10 10
03 09
o8 o8
g g
£o7 §o7
< £
06 06
05 os
— Tain — Tain
o4 — Test 04 — Test
20000 25000 o 00 10000 15000 20000 25000
Number of samples in the training

CPU times: user 4
Wall time: 1nin 8

10000 15000
Number of samples in the training set
31 ms, sys: 98 ms, total: 529 ms
s

ser 285 ms, sys: 55.2 ms, total: 340 ms
5.4 5

16/54

Confusion Matrices

y_train_pred = cross_val_predict(model, X_train, y_train, cv=3)

ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred)

ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,
normalize="true", values_format=".0%")

plt.show()

5000

0.8
4000
— — 0.6
3z 3000
=)
o o
2 2
= =
2000 04
1000 0.2
0 0.0
0 1 2 3 4 5 0 1 2 3 4 5
Predicted label Predicted label

17/54

Feature Importance

model = XGBClassifier(random_state=42)
model.fit(X_train, y_train)
plot_importance (model)

plt.show()
Feature importance
2 5977.4
3 3420.0
14 4 —1188.0
18 1 -1043.0
214 1007.0
9 1000.0
11 4 997.0
15 4 994.0
74 977.0
v 26 936.0
5 61 932.0
5 13 ——=922.0
& 19 f————=919.0
20+ 917.0
17 + 913.0
8 891.0
54 889.0
12 4 863.0
27 1 820.0
24 1 780.0
25+ 778.0
23 +—751.0
0 1000 2000 3000 4000 5000 6000

Importance score

The node indices i, j are most important, the diagonal g« is ignored.

Not important

18/54

One Tree in the Forest

_, ax = plt.subplots(figsize=(60, 40))
plot_tree(model,ax=ax)
plt.show()

By default, there are up to 100 decision trees with maximum depth 6.

19/54

Validation Curves

params=range(1,11)

train_scores, valid_scores = validation_curve(model, X_train, y_train,
param_name="max_depth", param_range=params, scoring="accuracy", cv=5, n_jobs=-1)

train_mean = train_scores.mean(axis=1)

valid_mean = valid_scores.mean(axis=1)

plt.plot(params, train_mean, color="blue", marker="o", markersize=5, label="Training")

", markersize=5, label="Validation")

plt.plot(params, valid_mean, color="red", marker

plt.show()

05

—e— Training
—=— Validation

0.4

2 4 6 8 10
Parameter max_depth

CPU times: user 221 ms, sys: 22.2 ms, total: 244 ms
Wall time: 22.2 s

Maximum depth 6 is fine (and so is the maximum number of trees). 20/54

Predicting the Lengths of Shortest Paths by Classification

ExtraTreesClassifier ig ingClassifier
10 —an
s — st
0s
08 0
507 -
200 H
0s 0s
04
—— Train o4
03 —— Test
3 10000 20000 30000 49000 50000 60000 70000 80000 T 10000 20000 30000 40000 50000 60000 70000 80000
Number of samples inthetraining et Number of sampies nthe training set
CPU tines: user 785 s, sys: 2.54 5, totals 3.33 5 CPU tines: ser 195 5, sys: 1.18 5, totals 3.13 5
Vo Tine: 2ain 15 Valt Tine: Bain 230
lassifier XGBClassifier
BT oo K__
0s
0ss
08
o Zoso
€ £
06
oss
os
— | o0 — i
o4 . — e
10000 20000 30000 40000 50000 60000 7000080000 10000 20000 30000 40000 50000 60000 7000 8000
Number of sampies nthe traning set Number of samples inthe raning e
CPU tines: user 1.09 s, sys: 425 ms, total: 152 5 CPU times: user 1.05 s, sys: 350 ms, totals 1.4 s
at tine: Snin 6 an tine: Gnin see

Please note the tripled size of the training set. 21/54

Predicting the Lengths of Shortest Paths by Classification

0.3+ —e— Training
—=— Validation

T T T T T
2 4 6 8 10
Parameter max_depth

CPU times: user 1.43 s, sys: 0 ns, total: 1.43 s
Wall time: 2min 14s

Better increase the maximum depth of the decision trees to 8. 22/54

Predicting the Lengths of Shortest Paths by Classification

model = XGBClassifier(random_state=42, max_depth=8)

XGBClassifier

—— Train
—— Test

10000 20000 30000 40000 50000 60000 70000 80000
Number of samples in the training set

CPU times: user 1.03 s, sys: 229 ms, total: 1.26 s
Wall time: 2min 3s

So with deeper decision trees also very high accuracy can be achieved. o354

Predicting the Lengths of Shortest Paths by Regression

from sklearn.ensemble import (ExtraTreesRegressor, GradientBoostingRegressor,
HistGradientBoostingRegressor)
from xgboost import XGBRegressor

model = XGBRegressor (random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test[0:10])

print(np.round(y_pred, 1))

print(y_test[0:10].values)

print (math.sqrt (sum([elem*elem for elem in model.predict(X_test)-y_test])/len(X_test))) # RMSE
print(1-sum([0 if elem == O else 1 for elem in np.round(model.predict(X_test))-y_test])/len(X_test))

[2.6 3.2 1.1 3.8 3.8 0.8 3.9 -0.1 4.9 2.5]
[330541405 2]

0.521919080843475

0.6949000000000001

The predictions are continuous values. 24/54

Predicting the Lengths of Shortest Paths by Regression

ExtraTreesRegressor GradientBoostingRegressor
000 e — Tain
— Test
_ 025 R
g g -120
- 050 -
H 1
§ -1 §-12s
£ 100 H
g -130
£ 3
H H
g -150)
H £
-1s — man
— st
140
G 10000 20000 30000 40000 50000 60000 70000 80000 T 10000 20000 30000 40000 50000 60000 70000 80500
Number of samples inthe training set Number of samples in the training set
CPU times: user 1.97 5, sys: 359 s, total: 2.3 5 CPU_tines: user 1,07 s, sys: 400 ms, total: 147 5
WAl tine: Sain 235 Vel tine: Znin 15
HistGradientBoostingRegressor XGBRegressor
-05 —— Train 00 —— Train
— Test
M 5 02
t t
£ o7
] 3 04
3-8 g
H < 06
g -o9 £
H % o8
s 10 H
5 510
-12 -12
10000 20000 30000 40000 50000 60000 70600 80000 G 10000 20000 30000 40000 50000 60000 70000 80000

CPU tines: user
Wall tine: 27.2

Number of samples in the training set
484 ms, sys: 164 ns, total: 648 ns

Py tines:
Wall tine:

Number of samples in the training set

user 482 ms, sys: 67.7 ms, total: 549 ms
1275

The learning curves depict the root mean square error (RMSE).

25/54

Predicting the Lengths of Shortest Paths by Regression

—e— Training
—1.6 1 —=— Validation

2 3 6 8 10 12 14
Parameter max_depth

CPU times: user 707 ms, sys: 133 ms, total: 840 ms
Wall time: 45.9 s

Better increase the maximum depth of the decision trees to 15.
26/54

Predicting the Lengths of Shortest Paths by Regression

model = XGBRegressor(random_state=42, max_depth=15)

XGBRegressor

Negative root mean squared error
|
)
®

—— Train
16 —— Test

] 10000 20000 30000 40000 50000 60000 70000 80000
Number of samples in the training set

CPU times: user 826 ms, sys: 123 ms, total: 949 ms
Wall time: 59.1 s

So with much deeper decision trees RMSE <« 0.5 can be achieved; compared to
classification, by regression the computation time is halved. 27/54

NEURAL NETWORKS

4

Neural Networks

Input Hidden Hidden Hidden Hidden Output
layer layer 1 layer 2 layer 3 layer4 layer

Activation
function Output

F(Z ziw; + b)|—> Y

Tn O——— Wn
Weights

http://dx.doi.org/10.3390/genes10070553

The “multilayer perceptron” (MLP) (also called: “feed-forward neural network?).
28/54

Neural Network Classifiers in Keras/TensorFlow

import tensorflow as tf
from tensorflow import keras

normalization = keras.layers.Normalization()

normalization.adapt (X_train.to_numpy())

def deep_net(width,depth):
model = keras.Sequential()
model.add(keras.layers.Input (shape=(2+sizex*size,)))
model.add(normalization) # don’t forget to normalize the input features!
for _ in range(depth):
model.add (keras.layers.Dense(

width,
activation="selu", # activation function: SELU

kernel_initializer="lecun_normal" # kernel initializer: LeCun

)

model.add(keras.layers.Dense(size+1, activation="softmax"))

return model

Input layer of size 2 + n?, depth hidden layers of size width, outp. layer of size n + 1.29/54

Model Fitting

model = deep_net(2+2*sizex*size, 3)

Nesterov accelerated gradient (NAG) optimizer
nag = keras.optimizers.SGD(learning_rate=0.01, momentum=0.9, nesterov=True)

model.compile(loss="sparse_categorical_crossentropy", optimizer=nag, metrics=["accuracy"])

1r_scheduler = keras.callbacks.ReduceLROnPlateau(factor=0.1, patience=5)
early_stopping = keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True)
tensorboard = tf.keras.callbacks.TensorBoard(tensorboard_logdir())

model.fit(
X_train, y_train, validation_data = (X_valid, y_valid),
epochs = 200,

callbacks=[1lr_scheduler, early_stopping, tensorboard])

At most 200 iterations over training set (“epochs”); if validation loss is not decreased for 5
epochs, learning rate is divided by 10; if validation rate is not decreased for 10 epochs,
training stops; progress after each epoch is logged for TensorBoard visualization.

30/54

Model Fitting

Epoch 1/200

938/938 ------- 2s
Epoch 2/200
938/938 ------- 2s
Epoch 3/200
938/938 ------- 2s
Epoch 4/200
938/938 ------- 2s
Epoch 35/200
938/938 ------- 2s
Epoch 42/200
938/938 ------- 2s
Epoch 43/200
938/938 ------- 2s
Epoch 44/200
938/938 ------- 2s
Epoch 45/200
938/938 ------- 2s

2ms/step
2ms/step
2ms/step

2ms/step

2ms/step

2ms/step
2ms/step
2ms/step

2ms/step

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

o

o

o

=}

o

o

o

o

0

. 4469

.6542

.7306

.7946

L9971

L9991

.9990

.9993

.9994

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

R

0.

.4494

L9741

.7400

.56707

.0136

.0098

.0092

.0088

0086

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

0

.6289

L7167

.7631

.8095

L9749

.9750

.9750

.9748

L9747

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

R

0

.0444

.7862

.6545

.5329

.0693

.0699

.0699

.0698

.0699

learning_rate:

learning_rate:

learning_rate:

learning_rate:

learning_rate:

learning_rate:

learning_rate:

learning_rate:

learning_rate:

In each epoch, the training set is randomly partitioned into “mini-batches” of size 32;
for each, a gradient is computed and a gradient descent step is performed; finally, the
validation loss is determined.

-

R

-

-

-

31/54

.0100

.0100

.0100

.0100

.0000e-03

.0000e-04

.0000e-04

.0000e-04

.0000e-04

TensorBoard

tensorboard --logdir tensorboard

B Ttome X8 pathekerss X TensorBosrd o+ v

Deoo O D toctostcoosstimeseies o @ €=

The training progress is captured and can be visualized. 32/54

Model Predicting

y_pred = model.predict(X_test[0:5])

print (y_pred.round(2))

print(y_pred.argmax(axis=-1))

print (y_test[0:5] .values)

print(1-sum([0 if d == 0 else 1 for d in model.predict(X_test).argmax(axis=-1)-y_test])/len(X_test))

[[o. 0.02 0.02 0.15 0. 0.81]
[1. 0. 0. 0. 0. 0. 1]
[0. 1. 0. 0. 0. 0. 1
[0. 0. 0. 1. 0. 0. 1
[o. 0. 1 0 0. 0. 11
[50132]

[50132]

0.9741

The predictions of the model are class probabilities.

33/54

Hyperparameter Tuning

import keras_tuner as kt

def build_model (hp) :
width = hp.Int("width", min_value=2+size*size, max_value=2+5xsize*size, step=sizexsize)
depth = hp.Int("depth", min_value=1, max_value=5)
model = deep_net(width, depth)
nag = keras.optimizers.SGD(learning_rate=0.01, momentum=0.9, nesterov=True)
model.compile(loss="sparse_categorical_crossentropy", optimizer=nag, metrics=["accuracy"])

return model

tuner = kt.GridSearch(build_model, objective="val_accuracy", overwrite=True)
tuner.search(
X_train, y_train, validation_data = (X_valid, y_valid),
epochs = 200,
callbacks=[early_stopping, lr_scheduler])
print (tuner.get_best_hyperparameters() [0] .values)
best_model = tuner.get_best_models() [0]

Automated exploration of the hyperparameter value search space. 34/54

Neural Network Regressors in Keras/TensorFlow

def deep_net(width,depth):
model = keras.Sequential()
model.add(keras.layers.Input (shape=(2+sizex*size,)))
model.add(normalization)
for _ in range(depth):
model.add (keras.layers.Dense(
width,
activation="selu",
kernel_initializer="lecun_normal"
)
model.add (keras.layers.Dense(1)) # single neuron without activation

return model
model = deep_net(2+2*sizexsize, 3)

nag = keras.optimizers.SGD(learning_rate=0.01, momentum=0.9, nesterov=True)

model.compile(loss="mse", optimizer=nag, metrics=["RootMeanSquaredError"])

(Root) mean square error as loss function and metrics.

35/54

Predicting Shortest Paths and Their Lengths

Width 2 + 2 - 52, depth 3, training set sizes 30,000 and 60,000.

next nodes (accuracy)

lengths (accuracy)

N 1
‘ ‘ 4
0.95 09 ‘
09 ‘ 08 ‘
085 ‘ 0.7 ‘
‘ 0.6
08 ‘ ‘
o 10 20 30 40 50 60 65 X 0 10 20 30 40 50 60 70 76 X
Run Smoothed Value Step R Run Smoothed ~ Value Step R
run_2025_08_07_15_58_58/ 0.9989 0999 50 1 run_2025_08_07_16_29_05/ 0.9672 09674 61 2
® train ® train
run_2025_08_07_15_58_58/ 0.9716 09716 50 1 run_2025_08_07_16_29_05/ 0.9088 09088 61 2.
@ validation @ validation
run_2025_08_07_16_34_45/ 0.9998 09998 65 6 run_2025_08_07_16_52_03/ 0.9975 09977 76 4.
® train ® train
run_2025_08_07_16_34_45/ 0.9885 09885 65 Tun_2025_08.07.16.52.03/ 0.9735 09735 76 4
® yalidation

validation

Similar accuracy/RMSE as with XGBoost, but much longer training times.

lengths (RMSE)

0 20 40 60 80 93 X

Run Smoothed Value Step R

run_2025_08_07.17.17.00/ 0.3862 03862 80 2
® train

run_2025_08_07.17.17_00/ 0.4661 0.4661 80 2
® validation

run_2025_08_07_17.20_46/ 0.3042 03041 93 4

train

run_2025_08_07_17.20_46/ 0.3415 03415 93 4
® validation

36/54

THE LARGER PROBLEM

4

Predicting the Next Nodes in Shortest Paths

Graphs with 10 nodes and 20 random edges.

model = XGBClassifier(random_state=42, max_depth=12)

XGBClassifier

| — Train
034/ —— Test

o 20000 40000 60000 80000 100000
Number of samples in the training set

CPU times: user 5.09 s, sys: 1.11 s, total: 6.2 s
Wall time: 1lmin 58s

Increased training set size and maximum tree depth. 37/54

Predicting the Next Nodes in Shortest Paths

Graphs with 10 nodes and 30 random edges.

model = XGBClassifier(random_state=42, max_depth=12)

XGBClassifier

03 / — Train
| —— Test

0.2

o 20000 40000 60000 80000 100000
Number of samples in the training set

CPU times: user 2.99 s, sys: 33.9 s, total: 36.9 s
Wall time: 2@min 35s

Accuracy is moderately decreased. 38/54

Predicting the Next Nodes in Shortest Paths

Graphs with 10 nodes and 20 random edges, training set size 100,000.

True label

lSD 127 126 124 116 101 106

17 l 2 120 127 137 95 127

181 l.:ll;’U 124 117 135

179 173 154119 34 127 113

192 174 134@1

154 180 152

5 160 175 146

167 160 161
175 163 149
172 169 160

777 800 675 696

Predicted label

10000

8000

6000

4000

2000

The predictions are now less than perfect.

True label

1%

Predicted label

39/54

0.8

0.6

0.4

0.2

Prediction Accuracy vs Path Lengths

We test the accuracy of predictions for fixed path lengths.

model.fit(X_train, y_train)
print("0:", 1-sum([0.0 if item == 0 else 1.0 for item in model.predict(X_test0)-y_test0])/len(X_test0))

print("10:", 1-sum([0.0 if item == O else 1.0 for item in model.predict(X_testx)-y_testx])/len(X_testx))

.0
.9991
. 75592
.74846
.83614
.89624
.93126
.96278
.9872
: 0.998
10: 0.5066200000000001

© 0 N O O WN = O
O O O O O O O© O O

Interestingly, the predictions are less accurate for the more frequent path lengths;
furthermore, the model can hardly predict the non-existence of paths. 40/54

Predicting the Lengths of Shortest Paths by Classification

model = XGBClassifier (random_state=42, max_depth=12, n_estimators=200)

XGBClassifier

1.0 1

0.8 4

0.4 +

—— Train
—— Test

0.2 A

0 25000 50000 75000 100000 125000 150000 175000 200000
Number of samples in the training set

CPU times: user 27.6 s, sys: 7.35 s, total: 35 s
Wall time: 1h 24min 37s

Poor accuracy, even with larger number of estimators. 41/54

Predicting the Lengths of Shortest Paths by Classification

Graphs with 10 nodes and 20 random edges, training set size 100,000.

1.0
25000
42202640206 33 2 0.8
2640206415551133 20
20000
9 524560884550383032572362 49 20% 23% 17% 14%
_ 254148794809465044093841 74 _ 18% 18% 17% 16% 14 6 0% 0.6
g 15000 8
‘T‘: 574464485054225583 16 f % 17% 18% 20% 21% 19
= =l
= 503960481556177370 445 = % 18% 21% 27% 0.4
10000 :
306 17153037422664978071183 % 6% 11% 16% 24%
33 284 587 95315613749 412 4% 7% 12% 20%471% 5%
5000 0.2
10
0 0.0

Predicted label Predicted label

The predictions for path lengths greater than 2 are pretty random. 42/54

Predicting the Lengths of Shortest Paths by Regression

model = XGBRegressor(random_state=42, max_depth=10)

XGBRegressor

! | | |
N = = =
o w o w

L

Negative root mean squared error

|
N
v

—— Train
—— Test

|
W
=}

0 25000 50000 75000 100000 125000 150000 175000 200000
Number of samples in the training set

Much faster, but even with doubled training set size still a high error. 43/54

Predicting the Lengths of Shortest Paths by Regression

Graphs with 10 nodes and 20 random edges, training set size 200,000.

0 2767516 58 6 0 0 0 0 0 0
14000

1 S 54142269 627 91 2 0 0 j 12% 26% 20% 8% 2% 0% 0° 0.5

PR 10 29916625 . -55192006406 48 2 0O 12000 PR 0% 3% 11% 25% 21% 7% 29
olE ; - - o o 0.4
119 9433745 43111114 5 0 0% 0% 4% 16% 0% 0% 0%
3 10000 3 .
" 5 : _
3 ’® o 19276205:7/0/:65161 3 4
25 110 10044331 2 422 8000 wm o 03
o o
2 3
e 6000 "~ 6
. : 0.2
7 1911710000E1855621293 14 7
4000
8 8
0.1
9 2000 9
10 10
0 0.0
01 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10
Predicted label Predicted label

Hardly an improvement. 44/54

Applying Length Prediction to Next Node Prediction

But actually we are not really interested in the path length accuracy per se.

e Real question: is the accuracy sufficient for next node predictions?
Consider prediction of next node k in path from node i to node ;.
If i = j orthere is an edge from i to j we are done (no prediction is needed).
Otherwise, consider every node connected to node i by an edge.
Predict their distances to j and choose some node k with minimum distance.
Choice is good, if node k indeed has minimum distance.
= Even if the actual distance is different from the predicted one.

e Length prediction accuracy (10 nodes, 20 random edges): 0.57.

o 25,000 samples; 14,353 correct predictions.
e Resulting next node prediction accuracy: in range [0.79, 0.92].

o 8,367 samples with minimum distance > 2; 7,660 samples with some prediction

correct; 6,588 samples with all predictions correct.

o

(e]

o

o

o

Similar accuracy than with direct next node prediction (but much faster training).
45/54

Predicting Next Nodes by Neural Networks

Width 2 + 2 - 102, depth 3, training set sizes 30,000, 60,000, 100,000, 150,000.

training accuracy

08 Vi
0.6 ‘
04 ‘

0 10 20
Run +

run_2025_09_08_16_20_38/0000/ 0.9189

® execution0/train

® execution0/train

run_2025_09_08_16_39_47/0000/ 0.8628

® execution0/train

run_2025_09_08_16_52_06/0000/ 0.8627

execution0/train

Accuracy is a bit lower than with XGBoost (and training time much longer).

validation accuracy

08
LT
0.6
04
0 10 20 30 40 49: x
Run ™ Smoothed -

run_2025_09_08_16_20_38/0000/ 0.7053
® cxecution0/validation
® execution0/validation
run_2025_09_08_16_39_47/0000/ 0.7957
@ execution0/validation
run_2025_09_08_16_52_06/0000/ 0.8126
® execution0/validation

46/54

Prediction Accuracy vs Path Lengths

We test the accuracy of predictions for fixed path lengths.

print("0:", 1-sum([0.0 if item == O else 1.0 for item in model.predict(X_test0).argmax(axis=-1)-y_test0])/len(X_test0))
print("10:", 1-sum([0.0 if item == 0 else 1.0 for item in model.predict(X_testx).argmax(axis=-1)-y_testx])/len(X_testx))

.99996
.9337
.6576
.73912
.82498
.88262
.9204
.9532
.98

: 0.994
10: 0.45611999999999997

© 00 N O U WN RO
O O O O O O O © O o

Also the neural network model can hardly predict the non-existence of paths.

47/54

Input Nodes as Categorical Features
Consider input nodes as “categorical” features rather than as “numerical” ones.

def deep_net_cat(width,depth):
inputl = keras.layers.Input(shape=(1,))
input2 = keras.layers.Input(shape=(1,))
input3 = keras.layers.Input(shape=(size*size,))
encodedl = keras.layers.CategoryEncoding(num_tokens=size, output_mode="one_hot") (inputi)
encoded2 = keras.layers.CategoryEncoding(num_tokens=size, output_mode="one_hot") (input2)
inputs = keras.layers.concatenate([encodedl,encoded2,input3])

layer = inputs
for _ in range(depth):
layer = keras.layers.Dense(width, activation="selu", kernel_initializer="lecun_normal") (layer)
output = keras.layers.Dense(size+l, activation="softmax") (layer)
return tf.keras.Model(inputs=[inputl,input2,input3], outputs=[output])

“One-hot encoding” of node i as vector [0,...,1,...,0] with single 1 at index i.

48/54

Predicting Next Nodes with One-Hot Encoding

Width 2 - 10 + 2 - 102, depth 3, training set sizes 30,000, 60,000, 100,000, 150,000.

training accuracy

validation accuracy

;
/ H

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0 10 20 31‘)(0 10 20 31 x

Run + Smoothed Value Run + Smoothed Value

run_2025_09_23_09_55 20/ 0.9575 0.9609 run_2025_09_23_09_55 20/ 0.762 07616

train @ validation

run_2025_09_23_11_52_30/ 0.9278 0.9308 run_2025_09_23_11_52_30/ 0.8111 08115
® irain validation

run_2025_09_23_12_02_11/ 0.9177 0.9202 run_2025_09_23_12_02_11/ 0.8396 0.839

train @ validation

run_2025_09_23_12_13_08/ 0.929 0.9305 run_2025_.09_23_12_13 08/ 0.8785 0.8784
@ train ® validation

Accuracy is now comparable with that of XGBoost.

49/54

Predicting Path Lengths by Neural Network Classification

Width 2 + 2 - 102, depth 3, training set sizes 30,000, 60,000, 100,000, 150,000.

training accuracy

05
04
03
02
o 10 20 30 40 50 56‘)(

Run ™ Smoothed -
run_2025_09_08_18_35_52/0000/ 0.3307

@ execution0/train
run_2025_09_08_18_40_29/0000/ 0.4688

® execution0/train
run_2025_09_08_18_51_11/0000/ 0.514

® execution0/train

run_2025_09_08_19_40_33/train 0.529

Accuracy is a bit higher than with XGBoost.

validation accuracy

0.4
03

|
|
W

50 56 %

0 10 20 30 40

Run Smoothed +
run_2025_09_08_18_35_52/0000/ 0.2741

® execution0/validation
run_2025_09_08_18_40_29/0000/ 0.3856

@ execution0/validation
run_2025_09_08_18_51_11/0000/ 0.4416

@ execution0/validation

run_2025_09_08_19_40_33/ 0.4675

validation

50/54

training RSME

25
2
15
0 10 20 30 40
Run Smoothed
run_2025_09_09_11_18_45/ 2.083
train

run_2025_09_09_11_22_09/ 1.4797
® train

run_2025_09_09_11_32_59/ 1.3535
® train

run_2025_09_09_11_47_51/ 1.3649
® train

Value

2.0727
1.4732
1.3495

1.3644

Error is a bit lower than with XGBoost.

validation RSME

Yl

25
2
0 10 20 30 0
Run Smoothed

run_2025_09_09_11_18_45/ 2.5687
validation
run_2025_09_09_11_22_09/ 2.1698
validation
run_2025_09_09_11_32_59/ 1.7916
© validation

run_2025_09_09_11_47_51/ 1.6436
® yalidation

Width 2 + 2 - 102, depth 3, training set sizes 30,000, 60,000, 100,000, 150,000.

52

Value

2.5718

2.1697

1.7915

1.6436

Predicting Path Lengths by Neural Network Regression

51/54

Finally One More (and Larger) Problem
Predicting next nodes in graphs with 20 nodes and 40 random edges.

e XGBoost: XGBClassifier (random_state=42, max_depth=12)
e Neural network: deep_net (_cat) (2+1%20%20, 3), training set sizes: 250,000, 500,000.

XGBClassifier /'

0 s6x o 10 20 31

04 Run Smoothed Value Run 4 Smoothed Value
run_2025.09_09_20_49_25/ 0.4501 0.4609 run_2025_09_23_16_09_10/ 0.8879 0.8949
® tain train
02 — Train run_2025.09_09_20_49_25/ 0.2124 0214 run_2025.09_23.16_09_10/ 0.5671 05669
—— Test validation ® Jalidation
run_2025_09_10_08_34_15/ 0.686 0.6884
o 25000 50000 75000 100000 125000 150000 175000 200000 ® tain 1UN-2025.09.23.16.45.54/ 08544 08564
Number of samples in the training set train
run_2025_09_10_08_34_15/ 0.391 03916
CPU times: user 2.5 s, sys: 8.41 s, total: 10.9 s Tun_2025_09.23.16.45.54/ 0.6561 0.6594

Wall time: 25min 395

With XGBoost and neural network (with one-hot encoding and much larger training set),
still a substantially “higher than chance” accuracy achievable.

validation

® validation

52/54

Applying Length Prediction to Next Node Prediction

XGBRegressor (random_state=42, max_depth=20)

XGBRegressor

o — Train
— Test

-1

3

52

g

0 50000 100000 150000 200000 250000 300000 350000 400000
Number of samples in the training set

ot mean

Negative ro

CPU times: user 1.55 s, sys: 1.67 s, total: 2.62
Wall time: 3min 27s

e Length prediction accuracy: 0.47.
o 25,000 samples; 11,639 predictions correct.

e Resulting next node prediction accuracy: [0.59,0.77]

o 11,051 samples with minimum distance > 2; 8,524 samples with some prediction correct;
6560 samples with all predictions correct.

Still “higher than chance” accuracy, but lower than with classification. 53/54

CONCLUSIONS

4

Conclusions

So what do | take away from these ML experiments on the shortest path problem?

e Next node prediction with “higher than chance” accuracy seems feasible.

o Even by training from a minuscle fraction of the problem instance space.

o Possibly also via path length predictions (lower accuracy but also less training).
e Decision forests (XGBoost) are attractive for this kind of problem.

o Few hyperparameters, moderate training effort, good accuracy.
e Neural networks (MLPs) are more difficult to utilize.

o Many hyperparameters, large training effort, mostly not better accuracy.

o However, accuracy may be slightly superior for path length prediction.

Finally:

e All experiments were based on the supervised learning paradigm.
o Training on carefully prepared labeled data sets.
e Next stop: reinforcement learning with neural networks.
o Training “on the fly” while actually performing the path search. 54/54

	Decision Trees
	Neural Networks
	The Larger Problem
	Conclusions

