SOME EXPERIMENTS ON THE PREDICTIVE POWER OF ML MODELS

The Case of the "Shortest Path Problem"

Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University Linz, Austria

Rationale

- Interest in applying ML to aid SC with exploring "abstract search spaces".
 - Repeatedly choose the best "next action" from a set of possible candidates.
 - Good choices may speedup the search, bad choices may slow them down.
 - But the correctness of the result does not depend on the quality of the choices.
 - Typically there is no efficient SC algorithm to make good choices.
- Start with some simple experiments.
 - Search for shortest paths in directed graphs.
 - Choice is the next node along such a path.
 - Problem can be actually solved by an efficient algorithm (Floyd–Warshall).
 - This facilitates the preparation and evaluation of experiments.
- Get familiar with ML software, methods, processes.

Not just high-level talking about ML but really "getting my hands dirty".

Machine Learning Textbooks

Mostly relied on [Géron, 2022] for guidance.

The Problem

- Given: a directed graph G with n nodes and two nodes i, j.
 - ∘ $G = (V, E), n \in \mathbb{N}, V = \mathbb{N}_n, E : \mathbb{N}_n \times \mathbb{N}_n \to \mathsf{Bool}; i, j \in \mathbb{N}_n.$
- Find: the (e.g., smallest) *next node* $k \in \mathbb{N}_n$ on a shortest path from i to j in G.
 - A path with minimal length, i.e., the minimal number of edges.
 - k = -1, if there is no path from i to j in G.
- Alternative: find the *length* $l \in \mathbb{N}_n$ of the shortest paths from i to j in G.
 - l = -1, if there is no path from i to j in G.

Related problems, but not necessarily of same "difficulty".

https://commons.wikimedia.org/wiki/File:Directed_graph_no_background.svg

$$next(1,4) = 3, length(1,4) = 2.$$

Data Sets

For a given node number n, problem instances are stored in CSV files

- Data sets (with only reflexive graphs) are generated by C++ programs:
 - For each graph G, all node pairs i, j are considered.
 - o Shortest paths and their lengths computed by Floyd-Warshall algorithm.
 - n = 5: all $n^2 \cdot 2^{(n^2 n)} \simeq 2.6 \cdot 10^7$ problem instances are enumerated.
 - n = 10: $n^2 \cdot 1.5 \cdot 10^6 \approx 1.5 \cdot 10^8$ instances with random graphs are generated.
 - \blacksquare Randomly place additional 20 and 30 edges \rightarrow average outdegree 2 and 3.

Training data are randomly selected from these data sets.

Training Sets

Problem: the lengths of paths are not equally distributed in data sets.

- Stratification: training sets with equal portion of samples for each path length.
 - n = 5: 100,000 samples (more possible but not needed).
 - ∘ n = 10 (20 edges): 375,000 samples (path lengths ≥ 8 underrepresented).
 - n = 10 (30 edges): 250,000 samples (path lengths ≥ 7 underrepresented).

Software

Installation of Python 3, venv, and pip.

```
apt-get install python3 python3-venv python3-pip
```

Setup of a virtual environment:

```
python3 -m venv /software/python3-ML
source /software/python3-ML/bin/activate
(python3-ML) > ...
deactivate
```

Import of Python packages into the virtual environment:

6/54

Jupyter Notebook Interface

jupyter notebook --notebook-dir=<path>

Data Processing

```
import pandas as pd

train_path = "<path>.csv.gz"
train_dataframe = pd.read_csv(train_path, header=None)

X_train = train_dataframe.iloc[:,2:] # column 0 is distance (here ignored)
y_train = train_dataframe.iloc[:,1] # column 1 is next node in path
y_train.iloc[y_train.iloc[:,] < 0] = size # "size" rather than -1 indicates "no path"

// analogous for X_valid, y_valid, X_test, y_test
...</pre>
```

Suitable for small to medium-sized training sets.

Machine Learning Software & Models

Utilize *high-level* APIs to avoid extensive Python coding.

- scikit-learn (https://scikit-learn.org):
 - Linear and polynomial regression, Support Vector Machines, decision trees, decision forests, multilayer perceptrons, . . .
- XGBoost (https://xgboost.ai):
 - Decision forests by "extreme gradient boosting".
- Keras 3 (https://keras.io):
 - High-level neural network API.
 - Multiple backends: TensorFlow (Google), PyTorch (Meta AI), JAX (Google/Nvidia).

After some initial experiments, focus on two models: decision forests (in SciKit-Learn and XGBoost) and neural networks (in Keras/TensorFlow).

Regression vs Classification

- Regressor: a ML model that computes continuous values.
 - A function $r : \mathbb{R}^m \to \mathbb{R}^n$ for some $m, n \in \mathbb{N}_{>0}$.
- Classifier: a ML model that chooses a value from a fixed set of classes.
 - A function $c: \mathbb{R}^m \to \mathbb{N}_n$ for some $m, n \in \mathbb{N}_{>0}$.
 - May be constructed by composing a regressor r with the *softmax* function σ :

$$c([x_1, \dots, x_m]) := \operatorname{argmax}_{k \in \mathbb{N}} \sigma_k(r([x_1, \dots, x_m]))$$
$$\sigma_k([x_1, \dots, x_n]) = \frac{\exp(x_k)}{\sum_{j=1}^n \exp(x_j)}$$

• $\sigma_k(r([x_1,\ldots,x_m]))$: the probability that input $[x_1,\ldots,x_m]$ belongs to class k, determined from the "scores" assigned by the regressor r to each of the n classes.

ML models may be applied as regressors or as classifiers.

DECISION TREES

Decision Trees

Decision tree trained on all the iris features

https://scikit-learn.org/stable/modules/tree.html

Training: the tree is "grown" by the CART (Classification and Regression Tree) algorithm: the training set is recursively split by that decision $feature \le threshold$ that minimizes the "Gini impurity" of the subsets weighted by their size.

Decision Forests

A single decision tree does not represent a very good predictor.

- Ensembles: combinations of multiple weak predictors.
 - The aggregated predication may be much better than each individual one.
- Random Forests: multiple decision trees are grown (independently) from random subsets of the training data.
 - Additionally, the best feature is chosen from a random subet of features.
 - Extra-Trees (extremely randomized trees): also thresholds are chosen randomly.
 - Aggregation: the prediction with the highest count wins (hard voting) or the prediction with the highest average probability wins (soft voting).
- Gradient Boosting: decision trees are constructed one after another.
 - Each decision tree is trained on the residual error of its predecessor.
 - Aggregation: the prediction is the sum of the individual ones.

Decision Forests in scikit-learn

```
from sklearn.ensemble import (ExtraTreesClassifier,
    GradientBoostingClassifier, HistGradientBoostingClassifier)
from xgboost import XGBClassifier, plot_importance, plot_tree

from sklearn.model_selection import (learning_curve, validation_curve,
    cross_val_score, cross_val_predict, LearningCurveDisplay)
from sklearn.metrics import ConfusionMatrixDisplay

import matplotlib.pyplot as plt
import numpy as np
```

For determining the next nodes, we use the classifier variants of the models.

Model Fitting and Predicting

We predict next nodes of shortest paths in graphs with n = 5 nodes.

```
model = XGBClassifier(random state=42)
// or: ExtraTreesClassifier, GradientBoostingClassifier, HistGradientBoostingClassifier
model.fit(X_train, y_train)
y_pred = model.predict(X_test[0:20])
print(y_pred)
print(v_test[0:20].values)
print(1-sum([0 if elem == 0 else 1 for elem in model.predict(X_test)-y_test])/len(X_test))
[1 4 4 2 0 2 0 4 2 2 1 3 1 0 5 1 2 1 3 1]
[1 4 4 2 0 2 0 4 2 2 1 3 1 0 5 1 2 1 3 1]
0.9958
```

After fitting the model to the training set, it may perform predictions on the test set.

Learning Curves

```
_ , ax = plt.subplots()
ax.set_title("ExtraTreesClassifier")
ax.grid()

LearningCurveDisplay.from_estimator(
    model, X_train, y_train, train_sizes=np.linspace(0.01,1.0,20), cv=5,
    scoring="accuracy", n_jobs=-1, ax=ax)

plt.show()
```

- Cross-Validation: the training set is split int cv = 5 pieces; cv copies of the model are trained, each using cv 1 pieces for training and one for validation.
- Learning Curve: we repeatedly apply cross-validation for growing fractions of the training set and plot the average validation accuracy.

Learning Curves

Wall time: 1min 8s

CPU times: user 285 ms, sys: 55.2 ms, total: 340 ms Wall time: 25.4 s

Confusion Matrices

17/54

Feature Importance

```
model = XGBClassifier(random_state=42)
model.fit(X_train, y_train)
plot_importance(model)
plt.show()
```


The node indices i, j are most important, the diagonal $g_{k,k}$ is ignored.

One Tree in the Forest

```
_, ax = plt.subplots(figsize=(60, 40))
plot_tree(model,ax=ax)
plt.show()
```


By default, there are up to 100 decision trees with maximum depth 6.

Validation Curves

Maximum depth 6 is fine (and so is the maximum number of trees).

Wall time: 22.2 s

Predicting the Lengths of Shortest Paths by Classification

Predicting the Lengths of Shortest Paths by Classification

Predicting the Lengths of Shortest Paths by Classification

model = XGBClassifier(random_state=42, max_depth=8)

CPU times: user 1.03 s, sys: 229 ms, total: 1.26 s Wall time: 2min 3s

```
from sklearn.ensemble import (ExtraTreesRegressor, GradientBoostingRegressor,
  HistGradientBoostingRegressor)
from xgboost import XGBRegressor
model = XGBRegressor(random_state=42)
model.fit(X_train, y_train)
v_pred = model.predict(X_test[0:10])
print(np.round(y_pred, 1))
print(y_test[0:10].values)
print(math.sqrt(sum([elem*elem for elem in model.predict(X_test)-v_test])/len(X_test))) # RMSE
print(1-sum([0 if elem == 0 else 1 for elem in np.round(model.predict(X_test))-y_test])/len(X_test))
[2.5 3.2 1.1 3.8 3.8 0.8 3.9 -0.1 4.9 2.5]
[3 3 0 5 4 1 4 0 5 2]
0.521919080843475
0.6949000000000001
```


Better increase the maximum depth of the decision trees to 15.

model = XGBRegressor(random_state=42, max_depth=15)

So with much deeper decision trees ${\rm RMSE} \ll 0.5$ can be achieved; compared to classification, by regression the computation time is halved.

NEURAL NETWORKS

Neural Networks

http://dx.doi.org/10.3390/genes10070553

The "multilayer perceptron" (MLP) (also called: "feed-forward neural network").

Neural Network Classifiers in Keras/TensorFlow

```
import tensorflow as tf
from tensorflow import keras
normalization = keras.layers.Normalization()
normalization.adapt(X_train.to_numpy())
def deep_net(width,depth):
   model = keras.Sequential()
   model.add(keras.layers.Input(shape=(2+size*size,)))
   model add(normalization)
                                             # don't forget to normalize the input features!
   for _ in range(depth):
       model.add(keras.layers.Dense(
           width.
            activation="selu".
                                    # activation function: SELU
           kernel initializer="lecun normal" # kernel initializer: LeCun
       ))
   model.add(keras.layers.Dense(size+1, activation="softmax"))
   return model
```

Input layer of size $2 + n^2$, depth hidden layers of size width, outp. layer of size n + 1.29/54

Model Fitting

```
model = deep net(2+2*size*size, 3)
# Nesterov accelerated gradient (NAG) optimizer
nag = keras.optimizers.SGD(learning_rate=0.01, momentum=0.9, nesterov=True)
model.compile(loss="sparse categorical crossentropy".optimizer=nag.metrics=["accuracy"])
lr_scheduler = keras.callbacks.ReduceLROnPlateau(factor=0.1, patience=5)
early_stopping = keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True)
tensorboard = tf.keras.callbacks.TensorBoard(tensorboard_logdir())
model.fit(
    X_train, y_train, validation_data = (X_valid, y_valid),
    epochs = 200.
    callbacks=[lr_scheduler, early_stopping, tensorboard])
```

At most 200 iterations over training set ("epochs"); if validation loss is not decreased for 5 epochs, learning rate is divided by 10; if validation rate is not decreased for 10 epochs, training stops; progress after each epoch is logged for TensorBoard visualization.

Model Fitting

```
Epoch 1/200
938/938 ----- 2s 2ms/step - accuracy: 0.4469 - loss: 1.4494 - val accuracy: 0.6289 - val loss: 1.0444 - learning rate: 0.0100
Epoch 2/200
938/938 ----- 2s 2ms/step - accuracy: 0.6542 - loss: 0.9741 - val_accuracy: 0.7167 - val_loss: 0.7862 - learning_rate: 0.0100
Epoch 3/200
938/938 ----- 2s 2ms/step - accuracy: 0.7306 - loss: 0.7400 - val accuracy: 0.7631 - val loss: 0.6545 - learning rate: 0.0100
Epoch 4/200
938/938 ----- 2s 2ms/step - accuracy: 0.7946 - loss: 0.5707 - val_accuracy: 0.8095 - val_loss: 0.5329 - learning_rate: 0.0100
Epoch 35/200
938/938 ----- 2s 2ms/step - accuracy: 0.9971 - loss: 0.0136 - val accuracy: 0.9749 - val loss: 0.0693 - learning rate: 1.0000e-03
. . .
Epoch 42/200
938/938 ----- 2s 2ms/step - accuracy: 0.9991 - loss: 0.0098 - val accuracy: 0.9750 - val loss: 0.0699 - learning rate: 1.0000e-04
Epoch 43/200
938/938 ------ 2s 2ms/step - accuracy: 0.9990 - loss: 0.0092 - val accuracy: 0.9750 - val loss: 0.0699 - learning rate: 1.0000e-04
Epoch 44/200
938/938 ----- 2s 2ms/step - accuracy: 0.9993 - loss: 0.0088 - val_accuracy: 0.9748 - val_loss: 0.0698 - learning rate: 1.0000e-04
Epoch 45/200
938/938 ----- 2s 2ms/step - accuracy: 0.9994 - loss: 0.0086 - val accuracy: 0.9747 - val loss: 0.0699 - learning rate: 1.0000e-04
```

In each epoch, the training set is randomly partitioned into "mini-batches" of size 32; for each, a gradient is computed and a gradient descent step is performed; finally, the validation loss is determined.

31/54

TensorBoard

tensorboard --logdir tensorboard

The training progress is captured and can be visualized.

Model Predicting

```
y_pred = model.predict(X_test[0:5])
print(y_pred.round(2))
print(v_pred.argmax(axis=-1))
print(y_test[0:5].values)
print(1-sum([0 if d == 0 else 1 for d in model.predict(X_test).argmax(axis=-1)-y_test])/len(X_test))
[[0. 0.02 0.02 0.15 0. 0.81]
 [1. 0. 0. 0. 0. 0. ]
 [0. 1. 0. 0. 0. 0. ]
 [0. 0. 0. 1. 0. 0. ]
 [0. 0. 1. 0. 0. 0. 1]
[5 0 1 3 2]
[5 0 1 3 2]
0.9741
```

The predictions of the model are class *probabilities*.

Hyperparameter Tuning

```
import keras_tuner as kt
def build model(hp):
    width = hp.Int("width", min_value=2+size*size, max_value=2+5*size*size, step=size*size)
    depth = hp.Int("depth", min_value=1, max_value=5)
   model = deep_net(width, depth)
   nag = keras.optimizers.SGD(learning_rate=0.01, momentum=0.9, nesterov=True)
   model.compile(loss="sparse_categorical_crossentropy", optimizer=nag, metrics=["accuracy"])
   return model
tuner = kt.GridSearch(build_model, objective="val_accuracy", overwrite=True)
tuner search (
   X_train, y_train, validation_data = (X_valid, y_valid),
   epochs = 200.
    callbacks=[early_stopping.lr_scheduler])
print(tuner.get_best_hyperparameters()[0].values)
best_model = tuner.get_best_models()[0]
```

Neural Network Regressors in Keras/TensorFlow

```
def deep_net(width,depth):
    model = keras.Sequential()
    model.add(keras.layers.Input(shape=(2+size*size,)))
    model.add(normalization)
    for _ in range(depth):
        model.add(keras.layers.Dense(
            width.
            activation="selu".
            kernel_initializer="lecun_normal"
        ))
    model.add(keras.layers.Dense(1)) # single neuron without activation
    return model
model = deep_net(2+2*size*size, 3)
nag = keras.optimizers.SGD(learning_rate=0.01, momentum=0.9, nesterov=True)
model.compile(loss="mse", optimizer=nag, metrics=["RootMeanSquaredError"])
```

(Root) mean square error as loss function and metrics.

Predicting Shortest Paths and Their Lengths

Width $2 + 2 \cdot 5^2$, depth 3, training set sizes 30,000 and 60,000.

Similar accuracy/RMSE as with XGBoost, but *much* longer training times.

THE LARGER PROBLEM

Predicting the Next Nodes in Shortest Paths

Graphs with 10 nodes and 20 random edges.

```
model = XGBClassifier(random_state=42, max_depth=12)
```


CPU times: user 5.09 s, sys: 1.11 s, total: 6.2 s Wall time: 11min 58s $\,$

Predicting the Next Nodes in Shortest Paths

Graphs with 10 nodes and 30 random edges.

```
model = XGBClassifier(random_state=42, max_depth=12)
```


CPU times: user 2.99 s, sys: 33.9 s, total: 36.9 s Wall time: 20min 35s

Predicting the Next Nodes in Shortest Paths

Graphs with 10 nodes and 20 random edges, training set size 100,000.

Prediction Accuracy vs Path Lengths

We test the accuracy of predictions for fixed path lengths.

```
model.fit(X_train, v_train)
print("0:", 1-sum([0.0 if item == 0 else 1.0 for item in model.predict(X_test0)-y_test0])/len(X_test0))
print("10:", 1-sum([0.0 if item == 0 else 1.0 for item in model.predict(X_testx)-y_testx])/len(X_testx))
0: 1.0
1: 0.9991
2:0.75592
3: 0.74846
4: 0.83614
5: 0.89624
6: 0.93126
7: 0.96278
8: 0.9872
9: 0.998
10: 0.5066200000000001
```

Interestingly, the predictions are less accurate for the more frequent path lengths; furthermore, the model can hardly predict the non-existence of paths.

Predicting the Lengths of Shortest Paths by Classification

model = XGBClassifier(random_state=42, max_depth=12, n_estimators=200)

CPU times: user 27.6 s, sys: 7.35 s, total: 35 s Wall time: 1h 24min 37s

Predicting the Lengths of Shortest Paths by Classification

Graphs with 10 nodes and 20 random edges, training set size 100,000.

Predicting the Lengths of Shortest Paths by Regression

model = XGBRegressor(random_state=42, max_depth=10)

Predicting the Lengths of Shortest Paths by Regression

Graphs with 10 nodes and 20 random edges, training set size 200,000.

Applying Length Prediction to Next Node Prediction

But actually we are not really interested in the path length accuracy per se.

- Real question: is the accuracy sufficient for next node predictions?
 - Consider prediction of next node *k* in path from node *i* to node *j*.
 - \circ If i = j or there is an edge from i to j we are done (no prediction is needed).
 - Otherwise, consider every node connected to node i by an edge.
 - Predict their distances to *j* and choose some node *k* with minimum distance.
 - Choice is good, if node *k* indeed has minimum distance.
 - Even if the actual distance is different from the predicted one.
- Length prediction accuracy (10 nodes, 20 random edges): 0.57.
 - 25,000 samples; 14,353 correct predictions.
- Resulting next node prediction accuracy: in range [0.79, 0.92].
 - 8,367 samples with minimum distance ≥ 2; 7,660 samples with some prediction correct; 6,588 samples with all predictions correct.

Similar accuracy than with direct next node prediction (but much faster training).

Predicting Next Nodes by Neural Networks

Width $2 + 2 \cdot 10^2$, depth 3, training set sizes 30,000, 60,000, 100,000, 150,000.

Accuracy is a bit lower than with XGBoost (and training time much longer).

Prediction Accuracy vs Path Lengths

We test the accuracy of predictions for fixed path lengths.

```
print("0:", 1-sum([0.0 if item == 0 else 1.0 for item in model.predict(X_test0).argmax(axis=-1)-v_test0])/len(X_test0))
print("10:", 1-sum([0.0 if item == 0 else 1.0 for item in model.predict(X_testx).argmax(axis=-1)-y_testx])/len(X_testx))
0: 0.99996
1: 0.9337
2: 0.6576
3:0.73912
4: 0.82498
5: 0.88252
6: 0.9204
7: 0.9532
8: 0.98
9: 0.994
10: 0.45611999999999997
```

Also the neural network model can hardly predict the non-existence of paths.

Input Nodes as Categorical Features

Consider input nodes as "categorical" features rather than as "numerical" ones.

```
def deep_net_cat(width,depth):
    input1 = keras.layers.Input(shape=(1,))
    input2 = keras.layers.Input(shape=(1,))
    input3 = keras.layers.Input(shape=(size*size,))
    encoded1 = keras.layers.CategoryEncoding(num_tokens=size, output_mode="one_hot")(input1)
    encoded2 = keras.layers.CategorvEncoding(num_tokens=size, output_mode="one_hot")(input2)
    inputs = keras.layers.concatenate([encoded1,encoded2,input3])
    laver = inputs
   for _ in range(depth):
      layer = keras.layers.Dense(width, activation="selu", kernel_initializer="lecun_normal")(layer)
    output = keras.layers.Dense(size+1, activation="softmax")(layer)
    return tf.keras.Model(inputs=[input1,input2,input3], outputs=[output])
```

"One-hot encoding" of node i as vector $[0, \ldots, 1, \ldots, 0]$ with single 1 at index i.

Predicting Next Nodes with One-Hot Encoding

Width $2 \cdot 10 + 2 \cdot 10^2$, depth 3, training set sizes 30,000, 60,000, 100,000, 150,000.

Accuracy is now comparable with that of XGBoost.

Predicting Path Lengths by Neural Network Classification

Width $2 + 2 \cdot 10^2$, depth 3, training set sizes 30,000, 60,000, 100,000, 150,000.

Accuracy is a bit higher than with XGBoost.

Predicting Path Lengths by Neural Network Regression

Width $2 + 2 \cdot 10^2$, depth 3, training set sizes 30,000, 60,000, 100,000, 150,000.

Error is a bit lower than with XGBoost.

Finally One More (and Larger) Problem

Predicting next nodes in graphs with 20 nodes and 40 random edges.

- XGBoost: XGBClassifier(random_state=42, max_depth=12)
- Neural network: deep_net(_cat)(2+1*20*20, 3), training set sizes: 250,000, 500,000.

With XGBoost and neural network (with one-hot encoding and much larger training set), still a substantially "higher than chance" accuracy achievable.

52/54

Applying Length Prediction to Next Node Prediction

XGBRegressor(random_state=42, max_depth=20)

- Length prediction accuracy: 0.47.
 - 25,000 samples; 11,639 predictions correct.
- Resulting next node prediction accuracy: [0.59, 0.77]
 - 11,051 samples with minimum distance ≥ 2; 8,524 samples with some prediction correct;
 6560 samples with all predictions correct.

CONCLUSIONS

Conclusions

So what do I take away from these ML experiments on the shortest path problem?

- Next node prediction with "higher than chance" accuracy seems feasible.
 - Even by training from a minuscle fraction of the problem instance space.
 - Possibly also via path length predictions (lower accuracy but also less training).
- Decision forests (XGBoost) are attractive for this kind of problem.
 - Few hyperparameters, moderate training effort, good accuracy.
- Neural networks (MLPs) are more difficult to utilize.
 - Many hyperparameters, large training effort, mostly not better accuracy.
 - However, accuracy may be slightly superior for path length prediction.

Finally:

- All experiments were based on the supervised learning paradigm.
 - Training on carefully prepared labeled data sets.
- Next stop: reinforcement learning with neural networks.
 - Training "on the fly" while actually performing the path search.