
Formal Methods in Software Development
Assignment 6 (January 5)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• a section for each part of the exercise with the requested deliverables and optionally
any explanations or comments you would like to make;

2. the JML-annotated .java file(s) used in the exercise.

Email submissions are not accepted.

1



Assignment 6: JML Verification with OpenJML and KeY

Take from Assignment 5 the JML-annotated program functionsminimumPosition, minimumEle-
ment1, minimumElement2, overwrite, replace, and add1 (not add2). Perform for each of
these functions the tasks described below (you may use a single Java class file for all functions,
but do not include any test code or main functions in this file).

Annotate every loop in the function with an appropriate invariant (loop_invariant) and ter-
mination measure (decreases) and check these with escjava2 and openjmlesc (potentially
also openjml8esc). Please note that escjava2 only checks whether the invariants hold after
some iterations, i.e., only if an invariant is too strong, it reports an error. On the other hand,
openjmlesc inded tries to prove the verification conditions generated from the invariants; if
it reports an error, this may indicate that an invariant is too weak. However, the openjmlesc
prover is not complete; it may also fail to prove a valid verification condition.

It is recommended to use multipleloop_invariant statements for each conjunct of the invariant;
then it is easier to determine which part of an invariant failed. In the case of a for loop, do not
forget to add the range condition for the loop variable to the invariant. If an array is modified, do
not forget to specify which part of the array has remained unchanged so far.

When you are confident about these annotations, provide the loop also with an assignable
clause (which is not standard JML but nevertheless needed by the KeY verifier) that lists all
variables/array contents changed in the loop; in the case of a for loop, also add the loop variable
to this clause (Key should actually automatically add all local variables changed by the loop body
to the assignable clause, but actually not all proofs work without doing this explicitly). Then
verify the method with KeY.

If your annotations are correct and sufficiently strong, the proofs should run through automatically
with a few invocations of the KeY prover (be sure that in tab “Proof Search Strategy” the
“Defaults” options are selected; you may want to reduce the “Max. Rule Applications” to speed
up the proof search)1. After each proof search, you may also attempt to apply an SMT Solver
(I recommend CVC5 or Z3) to close some proof obligations. If you cannot complete the proof,
investigate the proof tree to find out what went wrong and reconsider your annotations (they may
be wrong, i.e, too strong, or too weak); for this purpose, you may unselect the option “Hide
intermediate proof steps” in the context menu of the proof tree in order to see all simplification
steps performed by the prover. If you cannot complete the proof, explain in detail which part of
the verification failed and what you believe is the reason for the failure.

Optional: you may validate your specifications/loop invariants by translating the Java functions
to RISCAL procedures, equip them with specifications and loop annotations, and additionally

1The verification of minimumElement1 does not automatically run through in a situation where the KeY prover
does not find the correct instantiation of a universally quantified goal with the variable result_𝑋 denoting the
result of minimumPosition. In that situation, you may left-click on the forall formula to be instantiated,
select from the popup menu the first rule allLeftHide, and then enter in the popup window in the tab “Variable
Instantiations” in the empty field to the right of field t (G term) the instantiation term result_𝑋 (check the
proof situation for a corresponding variable to determine the actual value of 𝑋). Then press “Apply” and you will
see the formula has been correspondingly instantiated. Press the green arrow and the proof runs through.

2



check/prove these (this is recommended, if an OpenJML/KeY proof fails). For each such
RISCAL specification/check/proof, you get 10P bonus. Please note that the RISCAL versions of
overwrite and add1 cannot modify their argument arrays but have to return a corresponding
result array (in addition to the result of the Java function, i.e., the RISCAL procedure may return
a Tuple or Record value).

The deliverables of this exercise consist of

• a nicely formatted copy of the JML-annotated Java code (the version with the assignable
clauses used for running KeY),

• the output of jml -Q or openjml on the class,

• the output of escjava2 -NoCautions and openjmlesc on the class,

• for each function, an explicit statement where you say whether you could complete the
verification or not (and how many proof branches have remained open)

• for each function, a screenshot of the KeY prover when the proof has been completed
(or got stuck) illustrating the generated proof tree (without the intermediate steps) with
emphasis of the still open proof branches (if any),

• for each open proof branch a screenshot of the proof obligation, an explanation of the role
of this obligation in the overall verification, and your conjecture why the proof failed.

Please also report any observations or insights you have gained.

3


