Formal Methods in Software Development
Assignment 5 (December 15)

Wolfgang Schreiner
Wolfgang.Schreiner @risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with
* a cover page with the course title, your name, Matrikelnummer, and email address,

* a section for each part of the exercise with the requested deliverables and optionally
any explanations or comments you would like to make;

2. the JML-annotated . java file(s) used in the exercise.

Email submissions are not accepted.



Assignment 5: JML Specifications

Formalize the method specifications given below in the JML heavy-weight format by a precon-
dition (requires), frame condition (assignable), and postcondition (ensures) and attach
the specification to the method implementations provided in file Exercise5. java. For this
purpose, extract the implementation of each method into a separate class Exercise5_TI (where /
is the number of the method in the list below) and give this class a main function that allows you
to test the implementation by a call of the corresponding method.

Make preconditions as weak as (reasonably) possible; e.g., if the method can be well applied
to argument 0, do not require that the argument needs to be positive (however, still make them
suffiently strong such that the procedure is able to produce a reasonable result as described in the
informal specifications). Make postconditions as strong as possible; e.g., if aresultis according to
the specification necessarily positive, do not just ensure that the result is non-negative (however,
this does not mean that the specification must uniquely define the result, a function may be
intentionally underspecified). Also do not forget to explicitly specify the null/non-null status and
the lengths of arrays. Please also note that JML has some restrictions about which values may
be used in \old(...) expressions; e.g., \result may not be used there. You can, however,
write the following instead:

(\exists int r; r == \result; ... \old(...r...) ...)

For each method, first use jml to type-check the specification'. Then use the runtime assertion
compiler jmlc and the corresponding executor jmlrac to validate the specification respectively
implementation by at least three calls of each method; the calls shall contain at least two different
valid inputs and (if possible) also one invalid input (for arrays, use arrays with wrong length or
content, not just null pointers). Please print after each method call some output to make sure
that the method has not silently crashed. If you detect that the runtime assertion compiler fails
for some part of the specification, you may comment this part out as an informal property (*
... *) and repeat the check with the simplified specification.

Also try the more modern OpenJML tool set with the corresponding commands openjml,
openjmlrac, and openjmlrun and report your experience with these”.

Finally, use the extended static checker escjavaz2 to further validate the functions®; you may
use the option -NoCautions to suppress any cautions you may get from system libraries. Before
checking, comment out the main functions such that only the specified functions are checked.

The deliverables of this exercise consist of

* anicely formatted copy of the JIML-annotated Java code for each class,

!The original JML toolsuite only work with Java 5; on the course VM, command aliases select this version.

2The modern OpenJML toolset works with Java 21; on the course VM, the command scripts select this version.
You may also experiment with the corresponding commands openjml8, openjml8rac, and openjml8run that
invoke an older (but potentially more stable) version of the toolset which uses Java 8.

3ESC/Java2 only works with Java 5; on the course VM the command script selects this version.



* the output of running jml -Q and openjml on the class,
* the outputs of running jmlrac and openjmlrun on the class,
* the outputs of running escjavaz2 on the class.

both for the original and for the modified implementation of the method (if the implementation
was modified) including an explanation of the detected error and how you fixed it.

Recommendation: it is better to split pre/post-conditions that form conjunctions into multiple
requires respectively ensure clauses (one for each formula of the conjunction); if an error is
reported, it is then clear, to which formula it refers.

1. Specify the method
public static int minimumPosition(int[] a)
that takes an integer array a and returns a position of the smallest element in a.
2. Specify the method
public static int minimumElementl(int[] a)
that takes an integer array a and returns the smallest element in a.
3. Specify the method
public static int minimumElement2(int[] a)
that takes an array a of non-negative integers and returns the smallest element in a.
4. Specify the method
public static int[] overwrite(int[] a, int p, int n, int x)

that returns a new array that is identical to a except that n elements starting at index p
have been overwritten by x (the resulting array may be longer than b to accommodate the
indices p,...,p+n—1).

5. Specify the method
public static int replace(char[] a, char x, char y)

that takes a character array a and replaces in it every character x by y. The return value of
the function indicates the smallest position where a replacement has been performed (-1,
if no replacement has been performed).

6. Specify the method
public static boolean addl(int[] a, int[] b)

that takes two arrays a and b that hold non-negative integers and adds to every element
of a the corresponding element of b unless this would result in an overflow (i.e., unless one
element is bigger than the difference of Integer.MAX_VALUE and the other element); in
that case the value remains unchanged. The function returns “true” if all additions could
be performed, i.e., no such “overflow” has occurred.

Hint: you should rule out that a caller passes as a and b the same array (explain why).



7. Specify the method
public static void add2(int[] a, int[] b) throws Overflow

that behaves like add1, except that at the first occurrence of an “overflow” an exception is
thrown that contains the position of the overflow; from that position on all elements of a
remain unchanged Hint: jmlc complains about the use of e.pos in the specification of
Overflow, you may comment out the corresponding specification clause. Furthermore,
you may ignore the warning of escjava2 about the possible violation of amodifies clause
of class Overflow; this is due to an underspecification of the superclass Exception.

Also escjava2 has problems with reasoning about \old(a[e.pos]); use the trick ex-
plained above of introducing an existentially quantified variable r whose value is e.pos
and write \old(e[r]) instead.

Please note that the given informal specifications may be too weak or ambiguous (but not plainly
wrong) and that the implementations may be incorrect. If you detect problems, explain them, fix
them such that specification and code match and re-run your checks (please apply common sense
and consier the probable intention of the developer/client in order to decide how to complete the
specification and/or fix the implementation).

Also please note that various tools have restrictions with respect to their support of JML respec-
tively to their capabilities of reasoning about JML. If you encounter some problems apparently
related to such restrictions, document them and try to find some workaround (e.g., by commenting
out problematic parts of the specification).



