Software and Systems Modeling
https://doi.org/10.1007/s10270-023-01124-2

EXPERT VOICE O‘)

Check for
updates

A manifesto for applicable formal methods

Mario Gleirscher'2@® - Jaco van de Pol>*@® - Jim Woodcock3*

Received: 9 June 2023 / Revised: 19 July 2023 / Accepted: 28 July 2023
© The Author(s) 2023

Abstract

Recently, formal methods have been used in large industrial organisations (including AWS, Facebook/Meta, and Microsoft)
and have proved to be an effective part of a software engineering process finding important bugs. Perhaps because of that,
practitioners are interested in using them more often. Nevertheless, formal methods are far less applied than expected,
particularly for safety-critical systems where they are strongly recommended and have the most significant potential. We
hypothesise that formal methods still seem not applicable enough or ready for their intended use in such areas. In critical
software engineering, what do we mean when we speak of a formal method? And what does it mean for such a method to be
applicable both from a scientific and practical viewpoint? Based on what the literature tells about the first question, with this
manifesto, we identify key challenges and lay out a set of guiding principles that, when followed by a formal method, give
rise to its mature applicability in a given scope. Rather than exercising criticism of past developments, this manifesto strives
to foster increased use of formal methods in any appropriate context to the maximum benefit.

Keywords Formal methods - Formal verification - Software engineering - Tools - Research evaluation - Research transfer

1 Introduction

Formal methods have been an active research area for
decades. Theoretical foundations [1], method applications [2—
4], as well as effective ways to transfer [5, 6] them to
the practising engineer, have been thoroughly discussed
and empirically evidenced [7, 8]. The resources to learn
about these methods range from early syllabuses [9] to

Communicated by Bernhard Rumpe.

B Mario Gleirscher
gleirscher@uni-bremen.de

Jaco van de Pol
jaco@cs.au.dk

Jim Woodcock
jim.woodcock @york.ac.uk
University of Bremen, Bibliothekstrasse 5, 28359 Bremen,

Germany

Assuring Autonomy International Programme (AAIP),
University of York, Deramore Lane, York YO10 5GH, UK

3 Aarhus University, Abogade 34, 8200 Aarhus, Denmark

4 University of Twente, PO box 217, 7500 AE Enschede, The
Netherlands

5 University of York, Deramore Lane, York YO10 5GH, UK

Published online: 18 August 2023

recent course materials,! tutorial papers (e.g. [10]), tool
manuals (e.g. [11]) text books (e.g. [12, 13]), and a commu-
nity wiki.? Evidence on successful formal method teaching,
training, and teaching-based transfer is steadily collected.
However, the extent of these measures does not yet warrant
a stable knowledge and skill base among graduated software
engineering researchers and practitioners [14, 15].

Driven by the inspiration and critique of expert voices
from academia [16-21] and industry [22, 23], formal meth-
ods are considered to be one of the most promising tools to
develop highly dependable software for applications with
critical requirements [14]. Developers of formal methods
have always aimed at applicability in practical contexts,
notably with different degrees of success. Indeed, many prac-
titioners believe in the high potential of such methods and
would use them to their maximum benefit, whether directly or
through powerful software tools [15]. Although there is broad
interest in applying these methods in the engineering practice
of dependable systems and software, this domain has not yet
successfully adopted formal methods. Itis observed (e.g. [14,
15]) that their use is still significantly weaker than expected,

1" Available from the Formal Methods Europe association: https:/fme-
teaching.github.io/courses.

2 The Formal Methods Body of Knowledge (FMBoK): https:/
formalmethods.wikia.org.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-023-01124-2&domain=pdf
http://orcid.org/0000-0002-9445-6863
http://orcid.org/0000-0003-4305-0625
http://orcid.org/0000-0001-7955-2702
https://fme-teaching.github.io/courses
https://fme-teaching.github.io/courses
https://formalmethods.wikia.org
https://formalmethods.wikia.org

M. Gleirscher et al.

most alarmingly, even in safety-critical domains [24] where
their application is, in parts and through a range of stan-
dards, explicitly recommended (e.g. IEC 61508 and 62443,
DO-178). A progressive exception to this observation is the
railway domain [25] where formal methods are strongly rec-
ommended (see EN 50128 and 50129) and frequently applied
for highest-integrity level software.

Thus, it is reasonable to assume that formal methods,
still or again, seem not applicable enough or ready for their
intended purpose. An alternative explanation would be that
modern programming languages and environments (e.g. C++
2017, C#, Go, Java/Scala, Python 3, Rust) implicitly sup-
port a good part (e.g. run-time type checkers, static analysis
in IDEs, memory models in compilers, structured primitive
types such as lists) of what would have been called formal
development in the period from the 1970s to the 1990s and
avoid many of the hard sought-after errors formal methods
were originally supposed to unveil [26]. This explanation is,
however, only reasonable if we ignore the massive increase
in software and hardware complexity since then and the
increase in the use of software in areas with critical require-
ments. Consequently, new kinds of problems and errors have
emerged, and the original justification for using formal meth-
ods remains valid, albeit at different levels of abstraction.

In that light, the beneficial use of formal methods is hin-
dered, for example, by poor scalability, missing, inadequate,
or unqualified [27] tools, formal methods teaching and train-
ing not reaching enough students and practitioners, and thus
a shortcoming of trained personnel [15]. Of course, the natu-
ral resistance against adopting new technologies or methods
exacerbates that situation. The lack of current knowledge
about these obstacles and the effectiveness and productiv-
ity of formal methods [24] raises a high demand for formal
methods research and goal-directed collaborations between
academia, regulators, and industry. To help research and
transfer efforts gain momentum and foster success, we> sug-
gest some guiding principles of applicable formal methods
in forming a manifesto.

1.1 Outline

Sections 2 and 3 provide the background and motivation of
this manifesto and highlight related work. Section 4 repre-
sents the manifesto, highlighting its ten principles in detail.
Table 1 summarises the manifesto in a self-contained way.
Section 5 highlights some formal methods success stories.
Section 6 summarises aims, suggests actions to implement
the manifesto, and outlines the expected impact of these
actions. Section 7 warns about the potential consequences
of inaction by the community, and Sect. 8 concludes.

3 With “we/our”, we mean all the supporters or signatories of this man-
ifesto, including the initiators.

@ Springer

2 Background
2.1 What is a “formal method”?

There are many useful characterisations available from the
literature. For example, the IEEE Software Engineering Body
of Knowledge says: “formal methods are software engineer-
ing methods used to specify, develop, and verify the software
by applying a rigorous mathematically based notation and
language” [28, p. 9-7, Sec. 4.2]. A more recent definition [29]
covers the relevant aspects quite well, stating that “formal
methods are a set of techniques based on logic, mathe-
matics, and theoretical computer science that is used for
specifying, developing, and verifying software and hardware
systems.” We slightly refine this notion, saying that, by a for-
mal method, we refer to an explicit mathematical model and
sound logical reasoning about critical properties [30]—such
as reliability, safety, security, dependability, performance,
uncertainty, or cost—of a class of electrical, electronic, and
programmable electronic or software systems. Model check-
ing (cf. [31, 32]), interactive theorem proving (e.g. [33-35]),
abstract interpretation and static analysis [36-38], program
verification (e.g. [39—41]) and formal contracts [42] are clas-
sical examples of versatile formal methods.

Formal methods range from lightweight to heavy-weight
formalisms. The former usually focuses on full automation
at scale (e.g. model checking and abstract interpretation)
or on providing formal techniques to programmers (e.g.
through type systems, assertion languages, and IDE inte-
gration). In contrast, the latter focuses more on guiding
software and systems engineers in their manual work steps
(e.g. refinement-based methods such as B [23], VDM, or
Z [43]). Further approaches combine several (formal) tech-
niques under a correctness-by-construction philosophy (e.g.
[44]). Finally, it is essential to note that there is a natural
overlap between the formal foundations of computer science
and what is typically understood as a formal method in the
more specific field of software engineering.

2.2 What makes formal methods so special?

Generally, a method can be considered a step-wise recipe
guiding its user regarding the next steps in certain situations.
In analogy to other engineering disciplines, a formal method
pushes the role of mathematics and logic in software engi-
neering

e to make objects explicit (e.g. natural processes, informa-
tion, peoples’ thoughts) through notation with a precise
meaning agreed within a domain,

e to reduce ambiguity about or subjective interpretation of
these objects (e.g. a system or its functioning) and foster
a precise understanding of that domain, and

A manifesto for applicable formal methods

e to support mechanisation of critical or tedious tasks (e.g.
analysis, verification).

These features distinguish formal from informal (or “non-
formal”) methods.* A formal method is more than a (mod-
elling) notation or a development or analysis method and
differs from a programming language or a software engi-
neering tool.

Although there is no clear boundary between formal and
informal methods (formality may occur in degrees), one can
think that a software engineering method is “informal” if the
use of mathematics and logic is neither essential nor required
to achieve some useful results, and it is “formal” if mathemat-
ics or logic are employed for achieving sound results reliably.
In model-based development and model-driven engineer-
ing [45], a more nuanced distinction frequently made is the
one between informal, semi-formal (providing a formalised
syntax), and formal (associating formal semantics with this
syntax) techniques.

2.3 What do we mean by “applicability”?

Generally, “applicable” means capable of being applied,
within some defined and practically relevant scope. More
specifically, applying a formal method involves its use in the
design, development, and analysis of a critical system and its
substantial integration with the used

e development methodologies (e.g. structured develop-

ment, model-based or model-driven engineering, assertion-

based programming, test-driven development),

e specification and modelling notations (e.g. UML, SysML),
domain-specific languages, or programming languages,
and

e tools (e.g. compilers, checkers, integrated development
environments).

When we use the terms “applicable” or “applicability”, we
refer to a desirable degree or level of maturity> of a formal
method. Consequently, this notion suggests some quanti-
tative (e.g. performance or economic) assessment to make
objective statements about the level of maturity and, thus,
the applicability of a formal method.

4 For example, UML is a standardised notation and carries, through its
many historically inspired concepts, flavours of methods. However, to
obtain a corresponding formal method, UML’s concepts must be under-
pinned with precise semantics and a method to construct and reason
about UML models. Similarly, Java has a reasonably well-specified
grammar and platform. However, to obtain a formal method for Java,
executions of a Java program need to be given precise semantics and a
method to reason about it logically and conceptually.

> In analogy to NASA’s Technology Readiness Levels (NASA) and the
CMMI framework from CMU.

For example, a proof assistant with a sound core would
be logically and algorithmically mature. Still, it might not
be applicable enough if its user interface (e.g. the proof lan-
guage and editor) or the theorem development facilities (e.g.
assistance with invariant and proof search) are less advanced.

2.4 When do we expect a formal method to be
applicable?

We expect applicability whenever we suggest a formal
method as a critical (quality assurance) instrument to be used
at the core of a critical engineering task. That task will pri-
marily be a practical software engineering task, but it can
also be an engineering task in computer science research and
teaching. While this expectation might sound obvious, it is
less so in the context of formal methods research, often not
getting the funding and opportunities to mature beyond sim-
ple applications and towards industrial scenarios.

A formal method can be said to be directly applicable if the
expected benefit from using the method in a task (e.g. early
error reduction, design improvement, didactic gain, scientific
insight) justifies the expected cost of applying it (e.g. formal-
isation effort, time, and resources). Conversely, it can be said
that such a method is indirectly applicable if the expected
cost of not applying it (e.g. late failure handling costs, failure
consequences) for that task would not be justified or accept-
able.

2.5 What makes formal method applicability so
special?

What makes it different from the applicability of other mod-
elling or programming methods, techniques, or languages?
A formal method requires one to use (through tools and with
guidance) mathematical structures to represent and make
concise the meaning of objects (e.g. software or system
behaviour, data sets) to be reasoned upon. Proper under-
standing and efficient use of such structures need specific
abstraction capabilities, mathematical skills to be taught,
and continuous application-oriented training. An applicable
formal method is a method that addresses these particular
requirements in this specific context.

2.6 What is a manifesto, and why do we need one?

A manifesto can be understood as “a series of technical or
expert views on a particular engineering task” [46], “a set
of commitments” of a community [47], or “a focal point of
reference” catalysing communities [48]. Inspired by similar

@ Springer

M. Gleirscher et al.

successful efforts in other domains [48, 49],6 we summarise:
A manifesto expresses some consensual agreement among
stakeholders (e.g. experts, thought leaders, and users) in a
domain, it is based on corresponding definitions, it concisely
conveys guidance in principles, discloses aims and commit-
ments in the form of an appeal, suggests actions and can join
forces and, thus, initiate change.

3 Related work

Our manifesto can be seen as a specific supplement of the
Verified Software Initiative [50], which has the long-term
aim to perform wide-ranging verification experiments and
case studies, improve the tool landscape, and foster the trans-
fer of formal methods research to industry. It also addresses
two principles of the wider digital humanities manifesto:’
software researchers and practitioners are responsible for
the impact of their technologies and must reflect upon their
approaches.

Kapor’s manifesto [51] proposed software design as a pro-
fession distinct from software engineering and driven by user
orientation. Our manifesto relates to Kapor’s ideas in that it
builds on the observation that formal methods can be benefi-
cial for conceptual or design prototyping, formal methodists
are often in a neglected role, perhaps similar to software
designers in the 1980s and 1990s, and it delivers an argu-
ment of why and how formal methodists could soon act as
successful specialist software designers.

Ladkin’s manifesto [46, Ch. 10] includes principles and
steps for using formal methods in practical and standard-
compliant software assurance. At the same time, his mani-
festo covers many areas of software assurance; the section
on formal methods guidance concentrates on using formal
methods in assurance. Our manifesto complements Ladkin’s
work with guidance on preparing formal methods applicable
in assurance and beyond.

Rae et al.’s manifesto [47] aims to improve the use of
research methods in safety science, however, not touching
on formal methods’ applicability in software safety.

4 The manifesto and its ten principles

This section represents the manifesto with its goals, princi-
ples, and aims. Each principle is explained and commented
on in more detail. Table 1 contains a concise version of the
manifesto to be communicated and referred to.

6 See also the GNU Manifesto (1985, https:/www.gnu.org/gnu/
manifesto.html) and the Agile Manifesto (2001, http://agilemanifesto.
org).

7 https://caiml.dbai.tuwien.ac.at/dighum/dighum-manifesto.

@ Springer

4.1 Motivation and provisional diagnosis

Formal methods aim at applicability and have been shown
to be effective. There is a perceived demand for them, since
practitioners are interested in using formal methods more
frequently. However, formal methods are less applied than
expected, particularly in application domains with critical
requirements.

A provisional diagnosis is that formal methods still seem
not applicable enough or ready for their intended use. Hence,
we hypothesise that increasing their applicability will lead to
a broader adoption of formal methods both in research and
practice.

4.2 The ten principles of applicable formal methods

The manifesto recommends several principles that, when
followed, can evidence various degrees of applicability of
a formal method both in research and practical software
engineering. Consequently, an applicable formal method is
supposed to implement a coherent selection of these princi-
ples, albeit without the expectation that it will be possible or
optimal to implement all of them simultaneously. The prin-
ciples are detailed below.

4.2.1 Scope

A formal method should clearly define its scope of applica-
bility®, its domain specificity, and come with understandable
guidance on how it is to be applied within that given scope.
The restriction to a limited scope may reduce some acciden-
tal complexity of the formal model and, thus, increase Ease
of Use and support other principles.”

4.2.2 Methodology

A formal method should provide a step-wise recipe and pro-
cedural guidance for method users regarding possible next
steps in corresponding situations. For example, it could sup-
port composition, modularity (e.g. using formal reasoning
[52] about contracts [42]), and refinement, and come with
various sound abstraction or simplification techniques or at
least a range of effective modelling and specification guide-
lines.

8 For example, embedded software engineering research or safety-
critical software practice in the automotive control domain.

9 Generic methods will have a wider scope and some problems (e.g.
undecidability) are insurmountable.

https://www.gnu.org/gnu/manifesto.html
https://www.gnu.org/gnu/manifesto.html
http://agilemanifesto.org
http://agilemanifesto.org
https://web.archive.org/web/20230522162558/https://caiml.dbai.tuwien.ac.at/dighum/dighum-manifesto/

A manifesto for applicable formal methods

Table 1 The manifesto and its ten principles at a glance

Motivating observations
Success stories
Perceived demand
But: Scarce use

Provisional diagnosis

Formal methods aim at applicability and were shown to be effective
Practitioners are interested in using formal methods more frequently

Formal methods are less applied than expected, particularly in application domains with critical requirements

Formal methods still seem not applicable enough or ready for their intended use

Ten principles / precepts / commitments

Scope Clearly define the scope of applicability

Methodology Provide concepts, tools, and procedural guidance (for scalability)
Integration Integrate with methods, modelling techniques, and programming languages
Explainability Allow established claims to be communicated precisely and clearly
Automation Provide automated abstractions (for scalability)

Scalability Apply to the size/complexity of systems operated in practice

Transfer Provide teaching and training strategies

Usefulness Provide evidence on effectiveness (for a good cost/benefit ratio)

Ease of Use Provide evidence on efficiency (for a good cost/benefit ratio)

Evaluation Demonstrate applicability in a credible way

Aims, actions, and expected impacts

Provide guidance for performing, writing, and reviewing formal methods research

Drive the selection of relevant unsolved (benchmark or fundamental) challenges and stimulate research proposals

Foster interactions between academia and industry

Establish connections between formal method developers and users (through explainability) and customers (through economic arguments)

4.2.3 Integration
A formal method should create benefits through integration
with other methods. For example, it could be integrated'”

with

(i) afamiliardesign or engineering technique (e.g. contract-

based design),

(i) a widely used modelling technique (e.g. State Charts
used in UML/SysML),

(iii) a programming language (e.g. JavaScript, C/C++,
Java), or

(iv) aprocess model (e.g. Scrum).

Integration in this way is supposed to increase Usefulness
and Ease of Use.

4.2.4 Explainability

After successfully applying a formal method, what has been
demonstrated should be clear [27]. A minimal requirement
is that it can precisely state which claim has been established
(as in a mathematical theorem). An even stricter require-

10 Conceptually aligned, representing a semantic layer for other meth-
ods, presented through a common tool layer.

ment would be that a certificate can be generated, which
enables checking the claim independently. Last but not least,
itrequires that the claim (including the underlying modelling
assumptions) can be communicated to human domain experts
and maybe even to end users. Explainability in this way is
supposed to increase Usefulness.

4.2.5 Automation

A formal method should come with tool support that pre-
vents users from tedious work steps and helps them focus
on essential and creative steps. In particular, it should pro-
vide automation support for any obvious or useful abstraction
required to apply the method to the maximum benefit.
Automation usually pertains to difficult or tedious tasks and
can, thus, increase Scalability towards industrial-sized sys-
tems.

4.2.6 Scalability

A formal method should be applicable at a practically rele-
vant scale,!! manageable with reasonable effort as a function

11 Where scale may be quantified as, for example, lines of code, the
number of fulfilled requirements or discharged theorems, the size of a
state space, or by a measure of complexity.

@ Springer

M. Gleirscher et al.

of that scale. This principle is likely to be fostered by a clear
Methodology (e.g. superior algorithms, abstraction, modular
approaches) and strong Automation.

4.2.7 Transfer

A formal method should be accompanied by a teaching and
training strategy and corresponding materials. !> This strat-
egy and the materials may differ from one formal method to
another. However, average graduate students and experienced
engineers should also be able to learn and apply a method
with reasonable effort. Notably, the mere availability of good
teaching materials is not enough to reach a sufficiently large
fraction of the student and practitioner cohorts.

4.2.8 Usefulness

The application of a formal method should be effective. For
example, it could be demonstrated (e.g. using case studies or
controlled experiments) what would have been different if a
conventional or non-formal alternative had been used instead
(e.g., comparing relative fault-avoidance or fault-detection
effectiveness and the economic impacts of these metrics).
Usefulness as the governing factor for applicability will result
from other principles, such as Explainability.

4.2.9 Ease of use

A formal method should be efficiently!® applicable. For
example, it could provide concepts, abstractions, or mod-
elling and reasoning primitives that help users with appropri-
ate skills (cf. Training) to apply it with reasonable effort (e.g.
low abstraction effort, low proof complexity, high productiv-
ity) within the specified scope. Ease of Use can be addressed
by other principles, such as Scalability and Automation, but
can also be approached in isolation. Usefulness and Ease
of Use refer to the two main constructs of the Technology
Acceptance Model [53], a widely used class of models for
the assessment of end-user information technology.

4.2.10 Evaluation

The principles above should be properly evidenced. Appli-
cability could be demonstrated compellingly (e.g. with rep-
resentative examples, with tools usable by other researchers
or practitioners, perhaps even with qualified tools [27]) by
showing that a formal method applies well to the range of

12 Educational prerequisites, theoretical background material, exam-
ples, case studies, user guides, and tool manuals.

13 Note that the term “efficiency” here refers to the gain/effort ratio
on the user’s side. Efficiency in terms of short tool run-time or low
algorithmic complexity is subsumed under Automation, Scalability.

@ Springer

engineering problems and systems in its specified scope.
When proposed or presented, a formal method should be
accompanied by information about its benefits and foreseen
challenges, limitations, or barriers. This principle integrates
the scientific method into the argumentation of formal meth-
ods’ applicability.

4.3 Aims, actions, and expected impact

The manifesto aims to provide guidance for performing, writ-
ing, and reviewing formal methods research. It could drive
the selection of unsolved (benchmark or fundamental) chal-
lenges and stimulate research proposals and projects. More-
over, it could foster further interactions between academia
and industry and establish connections between formal
method developers and users (through explainability) and
customers (through economic arguments).

5 Success stories of formal methods
integration and transfer

There is plenty of anecdotal and stronger evidence on apply-
ing formal methods, not least in the form of success stories
of research integration, application, and transfer. Here, we
mention some illustrative examples, without any ambition to
be complete.

5.1 Research integration

Unifying Theories of Programming (UTP) is Hoare & He’s
long-term research agenda [54]. They intend to explore
a common basis for understanding the semantics of the
modelling notations and programming languages used in
describing the behaviour of computer-based systems. Their
technique is to describe diverse modelling and program-
ming paradigms in a common semantic setting. They isolate
the individual features of these paradigms to emphasise
commonalities and differences. They devise formal, often
approximate, links between theories to translate predicates
from one theory into another. The links also translate specifi-
cations into designs and programs as a development method.
Understanding the links between formal methods is essen-
tial, especially for building toolchains for heterogeneous
approaches.

5.2 Method and tool integration
The PTOLEMY project' is a long-term effort to provide
an environment for specification, modelling, and simula-

tion of concurrent systems based on a semantic framework

14 https://ptolemy.berkeley.edu/ptolemyll/summary.htm.

https://ptolemy.berkeley.edu/ptolemyII/summary.htm

A manifesto for applicable formal methods

for integrating components with heterogeneous models of
computation [55]. The AutoFoCuUs plroject15 [45, 56, 57] is
another example of such a long-term effort, focusing on for-
mal methodological support from requirements capture and
visual specification down to code generation, testing, and
artefact evolution. Several large case studies in model-based
development of embedded software were conducted over the
years using different AutoFOCUS generations. Projects such
as PTOLEMY and AutoFOCUS can be considered rigorous
top-down approaches to constructing seamless toolchains for
engineering embedded software.

Another point of view is taken by the jETI platform [58],
integrating tools through web interfaces and enabling users
to specify and realise new interactions between different for-
mal analysis tools. There is also integration between various
paradigms, for instance, approaches combining model check-
ing and theorem proving, as realised in PVS [59] and TLA+
[60].

Yet another success story is the use of program verifi-
cation tools, that make formal methods directly applicable
to programs in widely used programming languages. Based
on Hoare logic and separation logic, these tools leverage
the recent progress in the efficiency of symbolic execution
and SMT solvers. Note that these tools require programmers
to make extensive annotations in the source code. Notable
examples are Frama-C [61] (for C), KeY [40] (for Java),
SPARK [62] (for ADA), Vercors [41] (for concurrent Java
and C with OpenMP or OpenCL), VeriFast (for concurrent
C and Java) and VIPER [63] (with front-ends for Go, Java,
Python and Rust).

5.3 Transfer through automation and unified visual
environments

Fully automated techniques, such as symbolic model check-
ing [64, 65], assertion checking, and abstract interpretation
[36] were demonstrated to be lightweight and scalable and,
thus, turned out to be an effective vehicle for the adoption
of formal methods in security- and safety-critical applica-
tions (e.g. chip production, operating system kernels, railway
systems). Additionally, unified and domain-specific visual
modelling languages [66] (leading to e.g. UML and SysML),
combined with integrated model-driven development envi-
ronments, have played an important role in that adoption
process.

5.4 Transfer via standards
The profit from formal methods is supposed to be maximal
when thoroughly integrated into a company’s design and ver-

ification processes [24]. The chip industry was one of the first

15 https://www.fortiss.org/ergebnisse/software/autofocus-3.

sectors where (automated) theorem provers and model check-
ers have been routinely applied to scrutinise their ever more
complex circuits, for instance, at INTEL [67, 68], IBM [69]
and Oracle [70]. Perhaps this is because chips are mass-
produced. Hence the costs of errors are high, and thus the
effort of applying formal methods paid off early.

Another traditional sector for applying formal methods
is the railway signalling domain, which their safety-critical
nature can easily explain. Very early applications of for-
mal methods to railways have been reported [25]. Many
European projects (e.g. FMERail, INESS) and indeed whole
conferences (e.g. RSSRail'®) studied the application of
such methods to the railway domain. Although this could
still be an academic exercise, increasingly, the agenda of
formal methods in railways is set by engineering compa-
nies (SHIFT2RAIL!7) and infrastructure managers (EUL-
YNX'3). Indeed, the latter is quickly building expertise
centres in model-based software engineering and formal ver-
ification.

In the past, a successful route to the broader deployment
of formal methods in practice has been the standardisation of
their notations, for example, through ISO. Notable standard-
isation efforts in this regard are, for instance, LOTOS [71],
SDL [72], and the Z notation [43], and more recently PSL
[73].

5.5 Non-embedded systems applications

Finally, formal methods are now also applied routinely in
purely software-based platforms. An important initial exam-
ple was the SLAM project at Microsoft [74], aimed at
Windows device driver compliance. Moreover, Facebook [6,
75] and Amazon Web Services [76, 77] have reported on the
application of formal methods for their infrastructure at a
massive scale. Perhaps, this happened because formal meth-
ods have matured. Another possible explanation is that the
availability and security requirements of contemporary soft-
ware platforms are incredibly high. These platforms have
taken up the role of critical infrastructure. Other highlights
in verified software are the formally verified optimising com-
piler CompCert [78] and the formally verified Operating
System Microkernel sel.4 [79].

5.6 Activities towards wider adoption

It could be argued that an even wider adoption can only be
realised by making formal methods applicable by average
software engineers who have received an MSc degree in com-
puting or engineering. Apart from professional, easy-to-use

16 https://rssrail2022.univ-gustave-eiffel fr.

17 https://shift2rail.org.

18 https://www.eulynx.eu.

@ Springer

https://www.fortiss.org/ergebnisse/software/autofocus-3
https://rssrail2022.univ-gustave-eiffel.fr
https://shift2rail.org
https://www.eulynx.eu

M. Gleirscher et al.

tool support, this requires insight into the trade-off between
investments in and benefits from formal methods applica-
tion, as advocated in [80]. It also requires integrating formal
methods tools with other artefacts in the usual design pro-
cesses, for instance, in agile development [81]. The benefits
of formal methods for making the process of code reviews
more efficient have been studied in [82].

The evidence available from these success stories ranges
from single to aggregated opinions of experts as well as
anecdotal to very systematic case studies and thorough yet
sporadic tool evaluations. However, data from across a rep-
resentative range of samples have never been rigorously
measured (e.g. using controlled method experiments [7, 8]).
Hence, albeit impressive, this evidence cannot underpin a
strong argument for a wider deployment of formal meth-
ods in the industry. And without such a deployment, further
formal methods research risks becoming inapplicable. The
underlying hypothesis that applicability is a core driver of
wider deployment is adopted from the theory of the Technol-
ogy Acceptance Model [53].

6 An impact-oriented plan for actions

A manifesto should follow a specific aim, suggest possible
actions, disclose the potential impacts hoped for, and discuss
relevant implications.

6.1 Overview of the expected impact of the
manifesto

We hope that the manifesto for applicable formal methods
will:

1. Foster the collection and curation of real (small, medium,
large) open'® problems (inspired by the success stories in
Section 5) to be tackled by formal methods. At the lowest
level, these can be benchmarks defined by practitioners,
formal method users, or regulators (e.g., a “formal meth-
ods with industry week” with short-term interactions to
identify problems at a national or international level and
follow-up commitments).

2. Provide guidance on how to perform formal method case
studies and write case study papers and how to review
them. We define a case study as an intensive examination
of a single example to generalise across a more extensive
set of examples. This generalisation makes case studies
helpful in teaching and industrial practice.

3. Stimulate new research proposals and interdisciplinary
research collaboration, for example, to improve the inter-
face between different formal methods and their users

19 Challenging problems not yet solved in a satisfactory manner.

@ Springer

(e.g. increase trust through Explainability, see Table 1),
to investigate the economic benefits through formal meth-
ods (e.g. economical value, metrics), or to develop new
business models integrating such methods.

4. Initiate a community of researchers that (i) performs eval-
uations of existing formal approaches and new variants in
practical contexts, (ii) develops new formal approaches
with an interest in achieving applicability early, and (iii)
supports the transfer of these methods into dependable
systems practice.

We detail some of these impact categories below.

6.2 Impact on the conduct, writing, and review of
formal methods research

Showing the novelty of research on applying formal methods
concerning state of the art is more complicated than show-
ing the novelty of a particular formal technique. Examples
and the superiority of an algorithm or tool can explain a for-
malism, and its expressive power can be demonstrated by
experiments, for instance, comparing a range of settings.
However, the evaluation of the applicability of a formal
method as a whole is more intricate. So, what is the rec-
ommended way for research on applying formal methods?
How can one demonstrate its novelty concerning the state of
the art?

A few (old) answers [83] within software engineering
research are: case studies [84], action research [85, Sec. 5.5]
and controlled method experiments [86] [85, Ch. 8]. Fol-
lowing these methods would greatly benefit the formal
methods community; Yin’s?® and Wohlin et al.’s proce-
dures provide welcome guidance. Specific guidelines will
effectively aid researchers in conducting evaluation research,
writing results, and performing peer reviews in a repeatable,
standardised, and fair manner. The manifesto’s principles
(Section 4.2) may serve as an initial template for such guide-
lines. Explicitly addressing the Evaluation principle of this
manifesto, ter Beek and Ferrari [87] propose detailed guide-
lines for empirical studies on formal methods and tools.

6.3 Implications of the manifesto on future formal
methods teaching

It is essential to have good case studies that are relevant to
students. They must be able to recognise the problem being
solved. They should have realistic case studies for every vital
concept taught in a formal methods course. This is particu-
larly important for industrial courses, where it helps if the
presenter has good industrial experience using the formal
method. Robust tools are essential. There must be parsers

20 1. plan, design, prepare, collect, analyse, and share.

A manifesto for applicable formal methods

and type checkers. Model checkers are attractive but can
disappoint if newcomers have difficulty scaling their use.
Theorem provers have a higher entry barrier, but their suc-
cess can be inspiring. A successful course teaches not just
one formal method but families of formal methods: students
like to see the connections between different formal methods.
Industrial courses should show how formal methods fit into
software management processes and popular methodologies.
This includes combining formal methods with testing strate-
gies and their role in formal domain engineering as part of
requirements engineering.

In the context of the many (old) discussions about teaching
programming at grammar and secondary schools, a nearby
idea would also be to extend or even replace specific lessons
in traditional (e.g. procedural) programming paradigms with
carefully thought-through studies in conceptualising pro-
grams (e.g. by using simple automata) and using school
mathematics to specify data and behaviour. Such preparation
in schools could foster formal methods of understanding and
use in later stages of education and training at university and,
finally, in industrial practice.

6.4 Impact on the evaluation of future formal
method research

We expect the manifesto to motivate researchers to carry out
comparative method and tool evaluations (e.g. [88]), realistic
case studies and goal-directed action research, and controlled
method experiments improving over previous lessons learnt
[7,8].

For example, in the ABZ community, there are ongoing
activities to create a case study library.>! Another example is
the VerifyThis collaborative long-term verification challenge
bringing together formal methods researchers to show “that
deductive program verification can produce relevant results
for real systems with acceptable effort””.?> Furthermore, the
“Formal Methods for Autonomous Systems (FMAS)” work-
shop series®> has adopted some principles of this manifesto
as a recommendation for authors when doing their research
evaluation.

Our field still suffers from a lack of sustainable funding
for software as a research infrastructure [89]. After being
recognised by the community, the funding agencies, and their
committees, the manifesto has the potential to create new
lines and formats of research funding shaped explicitly to
the needs of formal method evaluation and tool development,
such as funding for experiments and entrepreneurship fund-
ing for spin-offs. Comparative method experiments (e.g. [7,
8]) and usable tool interfaces require resources beyond PhD

2 https://abz2021.uni-ulm.de/case-study.
22 https://verifythis.github.io.
2 hitps://fmasworkshop.github.io/FMAS2023.

projects or the pure response to scientific questions. Only
appropriately funded research projects will create convincing
evidence. Without such funding, however, an implementation
of the manifesto will unlikely be successful.

6.5 Impact on the further development of the
formal methods community

The manifesto could reduce the current fragmentation of
the formal methods community by subsequently integrat-
ing selective sub-communities, for example, communities
working on common semantic frameworks (e.g. the UTP
community?*) or formal method integration (e.g. the sub-
communities around the “Formal Methods in Industrial Crit-
ical Systems (FMICS)", “Integrated Formal Methods (iFM)”,
“NASA Formal Methods (NFM)”, “Software Engineer-
ing and Formal Methods (SEFM)”, and “Forum Méthodes
Formelles” conference series2). Research artefact evalua-
tion, often performed at these venues, effectively implements
critical parts of the manifesto. Moreover, the manifesto could
inspire new actions of researchers to work towards a collec-
tion of formal methods that follow the proposed principles.

To make ongoing successes (Sect. 5) more sustainable, a
bilateral knowledge transfer should be ensured. The ability of
companies to adopt effective formal methods or even get their
integration publicly funded should create incentives and per-
haps obligations for these enterprises to share their findings
from such efforts with the community. Indeed, the FM Europe
Industry Committee®® runs a communication platform (e.g.
with seminars) to give formal method users from industry an
opportunity to share their insights and receive feedback from
formal method experts.

Closing this transfer feedback loop can integrate parts of
the formal methods community. A further de-fragmentation
of the community could be fostered by a collective formal
methods event, akin to CPS Week, ETAPS, or the Embed-
ded Systems Week, with a critical mass of audiences from
all corners of the community and from industry to create a
win-win situation and a fruitful competition for the tradition-
ally smaller events. Results of orchestrated cross-community
research evaluations (such as the VerifyThis challenge) using
practical benchmarks might as well be presented regularly at
such an event.

24 hitps://www.cs.york.ac.uk/circus/utp2019.

25 http://fmics.inria.fr, http://www.ifmconference.org, https://
shemesh.larc.nasa.gov/nfm2021, https://sefm-conference.github.
io, https://projects.laas.fr/IFSE/FMF/.

26 https://fmeurope.org/industry/.

@ Springer

https://abz2021.uni-ulm.de/case-study
https://verifythis.github.io
https://web.archive.org/web/20230522165813/https://fmasworkshop.github.io/FMAS2023/
https://www.cs.york.ac.uk/circus/utp2019
http://fmics.inria.fr
http://www.ifmconference.org
https://shemesh.larc.nasa.gov/nfm2021
https://shemesh.larc.nasa.gov/nfm2021
https://sefm-conference.github.io
https://sefm-conference.github.io
https://projects.laas.fr/IFSE/FMF/
https://fmeurope.org/industry/

M. Gleirscher et al.

6.6 Impact on software engineering as a legally
recognised profession

In his Turing Award acceptance speech about 40 years ago,
Tony Hoare reviewed type safety precautions in program-
ming languages and concluded: “In any respectable branch
of engineering, failure to observe such elementary precau-
tions would have long been against the law” [26]. In this
regard, for example, U.S. law still does not recognise com-
puting (including software engineering) as a profession [90],
opposing ACM’s self-perception [91]. This is mainly because
software practitioners’ work is not subject to malpractice
claims based on a legal concept known as customary care.
Customary care defines (i.e. standardises) best practice more
stringently?’ than the notion of reasonable care applied to
any occupation or business [90].

From a computing standpoint, ongoing legal debates about
which other occupations®® should be treated as professions
could be advanced by this manifesto, corroborate codes such
as ACM’s Code of Ethics and Professional Conduct [92]%° or
the Ethical Guidelines of the German Informatics Society,’
and help to standardise results from the formal methods com-
munity as reasonable best practices underpinning such codes.

In Denmark, 51% of the developers hired by IT compa-
nies developing software do not have a BSc/MSc degree in
computing.3! This situation is expected to be generalised to
other European countries and, to a minor degree, to critical
application domains. To counter this development, Lichten-
berger [93], for example, suggests (again) treating software
engineering as a classical engineering discipline and striving
for accreditation. Along these lines, this manifesto could aid
in the expansion of existing software engineering profession-
alism3? within such domains.

7 A life without the manifesto

Above, we summarised the actions and expected outcomes
of successfully implementing the manifesto. However, some
negative long-term consequences of not following an agenda
implied by the manifesto are to be foreseen.

Firstly, the progress of formal method research might be
further threatened by missing scalability, vacuous proofs,
lack of user education and training, poor tool integration,

27 Taking state of the art including recent scientific results as a refer-
ence.

28 “[E]very court to consider this question has refused to recognise
software developers as professionals” [90, p. 23].

29 Version 2018: https://www.acm.org/code-of-ethics.

30 https://gi.de/ethicalguidelines.

31 https://www.prosa.dk/artikel/nu-er-der-over- 100000-it-
professionelle.

32 https://en.wikipedia.org/wiki/Software_engineering_professionalism.

@ Springer

lack of researcher engagement and, thus, research funding
[24, pp. 117:23,29].

Secondly, formal methods might be wiped out by oppor-
tunistic trends or powerful convenience technologies (e.g. rely-
ing too much on search- or Al-based software engineering)
that can worsen the highlighted problems. It can be observed
that software solutions constructed through automatic search
may require significant further investments into the reverse
engineering of these solutions to verify them. This may hap-
pen frequently in cases where not all critical properties to be
verified can be encoded into the search criteria.

Thirdly, Al-based program synthesis techniques are about
to replace parts of traditional programming with specifica-
tion tasks [94]. Without applicable formal methods and a
corresponding education, future software developers could
lack the specification skills needed to be literate in this new
programming paradigm and to generate adequate software.
Appreciating Welsh’s reasonable forecast, we might still
need to know how to specify, for example, efficient sort-
ing and searching over human-usable input/output types to
get something as beautiful and concise as quicksort or binary
search correctly from an Al-based code generator [95].

Ultimately, decreasing global coordination among for-
mal methods researchers can lead to an extinction of the
formal methods community, which is currently somewhat
fragmented. It is difficult for the community to maintain
too many notations and too many tools and still make fast
progress. This situation seems unique among related or other
scientific disciplines (i.e. STEM3?). Also, there is a prolifera-
tion of formal method conferences and workshops competing
for the same resources (i.e. papers, reviewers, etc.). Ide-
ally, a representative, coordinated approach could lead to an
authoritative voice towards the scientific, governmental, and
industrial communities and, perhaps, inspire new schemes
for research funding.

8 Conclusions and outlook

The manifesto for applicable formal methods expresses aims
and intentions. We hope it will give crucial impulses to for-
mal methods researchers to implement a modern research
agenda for developing formal methods that can arguably be
used for critical software engineering research. Even more
importantly, these methods should be usable in the practi-
cal engineering of systems and software whose functioning
is vital and whose failure would have unacceptable conse-
quences. Rather than exercising criticism of past develop-
ments, the manifesto strives to foster progress in a currently
dissatisfying situation found in the science of formal meth-
ods.

33 Science, Technology, Engineering, Mathematics.

https://www.acm.org/code-of-ethics
https://gi.de/ethicalguidelines
https://www.prosa.dk/artikel/nu-er-der-over-100000-it-professionelle
https://www.prosa.dk/artikel/nu-er-der-over-100000-it-professionelle
https://en.wikipedia.org/wiki/Software_engineering_professionalism

A manifesto for applicable formal methods

Acknowledgements We are grateful to Maurice ter Beek, Angelo
Gargantini, Frederik Krogsdal Jacobsen, Peter Gorm Larsen, Yan-
nick Moy, Jan Peleska, Elvinia Riccobene, and Bernhard Steffen for
encouraging comments and valuable suggestions, also during the dis-
cussion of this manifesto at our “Applicable Formal Methods (AppFM)”
workshop [96] (https://sites.google.com/view/appfm21/manifesto) co-
located at FM 2021. Further, thanks go to Marie Farrell and Matt
Luckuck for including the manifesto as a recommendation in the FMAS
workshop series submission guidelines. Finally, we thank three anony-
mous reviewers for providing us with many helpful comments.

Author contributions MG contributed the idea for the manifesto. All
authors performed the literature research, wrote and discussed the draft,
and critically revised the work.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press (2004)

2. Aichernig, B.K., Maibaum, T. (eds.). Formal Methods at the Cross-
roads. From Panacea to Foundational Support, LNCS, vol. 2757.
Springer (2003)

3. Gnesi, S., Margaria, T.: Formal Methods for Industrial Critical Sys-
tems: A Survey of Applications. Wiley-IEEE Press (2013)

4. Boulanger, J.-L.: Industrial Use of Formal Methods: Formal Veri-
fication. Wiley-ISTE (2012)

5. Miller, S.P.,, Whalen, M.W., Cofer, D.D.: Software model checking
takes off. Commun. ACM 53, 58-64 (2010)

6. O’Hearn, P. W.: Continuous reasoning. In: Staton, S. (ed.) Logic
in Computer Science (LICS), Proceedings of the 33rd Annual
ACM/IEEE Symposium, pp. 13-25. ACM Press (2018)

7. Sobel, A., Clarkson, M.: Formal methods application: an empirical
tale of software development. IEEE Trans. Softw. Eng. 28, 308-320
(2002)

8. Pfleeger, S.L., Hatton, L.: Investigating the influence of formal
methods. Computer 30, 33—43 (1997)

9. Garlan, D.: Formal methods for software engineers: tradeoffs in
curriculum design. In: Sledge, C. (ed.) Software Engineering Edu-
cation, pp. 131-142. Springer, Berlin Heidelberg (1992)

10. Behrmann, G., David, A., Larsen, K.G., Bernardo, M., Corradini,
F.: A tutorial on UPPAAL. In: Bernardo, M., Corradini, F. (eds.)
SFM. LNCS, vol. 3185, pp. 200-236. Springer, Berlin, Heidelberg
(2004)

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

Parker, D., Norman, G., Kwiatkowska, M.: PRISM Model Checker
(2022). http://www.prismmodelchecker.org/manual/

Jones, C.B.: Software Development: A Rigorous Approach. Pren-
tice/Hall, Englewood Cliffs (1980)

Nipkow, T., Klein, G.: Concrete Semantics. Springer, Cham (2014)
Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert survey
on formal methods. In: ter Beek, M.H., Ni¢kovi¢, D. (eds.) For-
mal Methods for Industrial Critical Systems (FMICS), pp. 3-69.
Springer (2020)

Gleirscher, M., Marmsoler, D.: Formal methods in dependable sys-
tems engineering: a survey of professionals from Europe and North
America. Empir. Softw. Eng. 25, 4473-4546 (2020)

Hall, A.: Seven myths of formal methods. IEEE Softw. 7, 11-19
(1990)

Bowen, J.P., Hinchey, M.G.: Seven more myths of formal methods.
IEEE Softw. 12, 34-41 (1995)

Knight, J.C., DeJong, C.L., Gibble, M.S., Nakano, L.G. Holloway,
C.M., Hayhurst, K.J. (eds.): Why are formal methods not used
more widely? In: Holloway, C.M. Hayhurst, K.J. (eds). 4th NASA
Formal Methods Workshop, pp. 1-12 (1997)

Barroca, L.M., McDermid, J.A.: Formal methods: use and rele-
vance for the development of safety-critical systems. Comp. J. 35,
579-99 (1992)

McDermid, J. et al.: Staples, J., Hinchey, M.G., Liu, S. (eds.)
In: Staples, J., Hinchey, M.G., Liu, S. (eds.) Towards Industrially
Applicable Formal Methods: Three Small Steps, and One Giant
Leap. Formal Engineering Methods (ICFEM), 2nd International
Conference. IEEE (1998)

Parnas, D.L.: Really rethinking ‘formal methods’. Computer 43,
28-34 (2010)

Smith, B.C.: The limits of correctness. ACM SIGCAS Computers
and Society 14(15), 18-26 (1985)

Abrial, J.-R. Osterweil, L.J., Rombach, D., Soff, M.L. (eds.):
Formal methods in industry: achievements, problems, future.
Osterweil, L.J., Rombach, D., Soff, M.L. (eds.) Software Engi-
neering (ICSE), 28th International Conference. ACM (2006)
Gleirscher, M., Foster, S., Woodcock, J.: New opportunities for
integrated formal methods. ACM Comput. Surv. 52, 117:1-117:36
(2019)

Ferrari, A., ter Beek, M.H.: Formal methods in railways: a system-
atic mapping study. ACM Comput. Surv. 55, 1-37 (2022)

Hoare, C.: The emperor’s old clothes. The 1980 ACM turing award
lecture. Commun. ACM. 24, 75-83 (1981)

Gleirscher, M., Sachtleben, R., Peleska, J.: Qualification of proof
assistants, checkers, and generators: where are we and what next?
Sci. Comput. Program. 226, 102930 (2023)

Bourque, P, Fairley, R.E.: Guide to the Software Engineering Body
of Knowledge (SWEBOK Guide). IEEE Computer Society (2014).
http://www.swebok.org

Baudin, P, et al.: The dogged pursuit of bug-free C programs.
Commun. ACM 64, 56-68 (2021)

Rushby, J.: Critical system properties: survey and taxonomy.
Reliab. Eng. Syst. Safe. 43, 189-219 (1994)

Baier, C., Katoen, J.: Principles of Model Checking. MIT Press
(2008)

Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Hand-
book of Model Checking. Springer (2018)

Bertot, Y., Castéran, P.: Texts in theoretical computer science.
In: Interactive Theorem Proving and Program Development—
Coq’Art: The Calculus of Inductive Constructions. An EATCS
Series. Springer (2004)

Paulson, L.C., Nipkow, T., Wenzel, M.: From LCF to Isabelle/HOL.
Form. Asp. Comput. 31, 675-698 (2019)

Owre, S., Rushby, J.M., Shankar, N. Kapur, D.: (ed.) PVS: a proto-
type verification system. In: Kapur, D. (ed.) Automated Deduction

@ Springer

https://sites.google.com/view/appfm21/manifesto
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.prismmodelchecker.org/manual/
http://www.swebok.org

M. Gleirscher et al.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

(CADE), LNCS, 11th International Conference, vol. 607, pp. 748—
752. Springer (1992)

Cousot, P., Cousot, R. Graham, R.M., Harrison, M.A. (eds.):
Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Gra-
ham, R.M., Harrison, M.A. (eds.) POPL, pp. 238-52. ACM, Los
Angeles, California (1977)

Andersen, L.O.: Program analysis and specialization for the C
programming language. Ph.D. thesis, University of Copenhagen
(1994)

Andreasen, E.S., Mgller, A., Nielsen, B.B. Ali, K., Cifuentes, C.
(eds.): Systematic approaches for increasing soundness and preci-
sion of static analyzers. Ali, K., Cifuentes, C. (eds.) State of the Art
in Program Analysis (SOAP), 6th ACM SIGPLAN International
Workshop, pp. 31-36. ACM, Barcelona, Spain (2017)

Leino, K.R.M. Notkin, D., Cheng, B.H.C., Pohl, K. (eds.): Devel-
oping verified programs with Dafny. Notkin, D., Cheng, B.H.C.,
Pohl, K. (eds.) Software Engineering (ICSE), 35th International
Conference, pp. 1488-1490. IEEE (2013)

Ahrendt, W. et al. (ed.): Deductive Software Verification—The
KeY Book—From Theory to Practice, vol. 10001, Lecture Notes
in Computer Science. Springer (2016)

Blom, S., Darabi, S., Huisman, M.: Oortwijn, W. Polikarpova, N.,
Schneider, S.A. (eds.): The VerCors tool set: verification of parallel
and concurrent software. Polikarpova, N., Schneider, S.A. (eds.)
Integrated Formal Methods (iFM), 13th International Conference,
LNCS, vol. 10510, pp. 102-110. Springer, Turin, Italy (2017)
Meyer, B.: Applying ‘design by contract’. Computer 25, 40-51
(1992)

ISO/IEC 13568. Information technology—Z7 formal specification
notation—syntax, type system and semantics. Technical Report, Z
Standards Panel and ISO/IEC JTC 1/SC 22 (2002). https://www.
iso.org/standard/21573.html

Hall, A., Chapman, R.: Correctness by construction. IEEE Softw.
19, 18-25 (2002)

Broy, M., Rumpe, B.: Development use cases for semantics-driven
modeling languages. Commun. ACM 66, 62-71 (2023)

Ladkin, P.B.: A critical-system assurance manifesto: issues arising
from IEC 61508. Technical Report, Faculty of Technology, Biele-
feld University (2018). https://rvs-bi.de/publications/RVS-Bk-17-
01.html

Rae, A., Provan, D., Aboelssaad, H., Alexander, R.: A manifesto
for reality-based safety science. Saf. Sci. 126, 104654 (2020)
Becker, C. et al.: In: Daoudagh, S., Lonetti, F. (eds.) Sustainability
Design and Software: The Karlskrona Manifesto. Software Engi-
neering (ICSE), 37th IEEE International Conference. [IEEE/ACM
(2015)

van der Aalst, W. et al.: Process mining manifesto. In: Daniel,
E., Barkaoui, K., Dustdar, S. (eds.) Business Process Management
Workshops, pp. 169—194. Springer, Berlin Heidelberg (2012)
Hoare, T., Misra, J., Leavens, G.T., Shankar, N.: The verified soft-
ware initiative: a manifesto. ACM Comput. Surv. 41, 1-8 (2009)
Kapor, M.: A software design manifesto. Dr. Dobb’s J. 16, 62—-67
(1991)

Collette, P, Jones, C.B.: Enhancing the tractability of
rely/guarantee specifications in the development of interfer-
ing operations. In: Plotkin, G., Stirling, C.P., Tofte, M., Milner,
R. (eds.) Proof, Language, and Interaction: Essays in Honour of
Robin Milner, pp. 277-308. MIT Press (2000)

Davis, FE.D.: Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Q. 13, 319-40 (1989)
Hoare, T., He, J.: Unifying Theories of Programming. Prentice Hall
(1998)

Eker, J., et al.: Taming heterogeneity: the Ptolemy approach. Proc.
IEEE 91, 127-144 (2003)

@ Springer

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Huber, F., Schitz, B., Schmidt, A., Spies, K.: AUTOFOCUS—a
tool for distributed systems specification. In: Jonsson, B., Parrow,
J. (eds.) Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems (FTRTFT), LNCS, vol. 1135, pp. 467-470. Springer, Berlin,
Heidelberg (1996)

Broy, M.: A logical basis for component-oriented software and
systems engineering. Comput. J. 53, 1758-82 (2010)

Margaria, T., Nagel, R., Steffen, B. Rozenblit, J., O’Neill, T., Peng,
J. (eds.): Remote integration and coordination of verification tools
in JETL In: Rozenblit, J., O’Neill, T., Peng, J. (eds.) Engineer-
ing of Computer-Based Systems (ECBS), 12th IEEE International
Conference, pp. 431-436. IEEE, Greenbelt, MD, USA (2005)
Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K. Alur,
R., Henzinger, T.A. (eds.): PVS: combining specification, proof
checking, and model checking. In: Alur R, Henzinger, T.A. (eds).
Computer Aided Verification (CAV), 8th International Conference,
LNCS, vol. 1102, pp.411-414. Springer, New Brunswick, NJ, USA
(1996)

Lamport, L.: Specifying Systems, The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley (2002)
Baudin, P, et al.: The dogged pursuit of bug-free C programs:
the frama-c software analysis platform. Commun. ACM 64, 56-68
(2021)

McCormick, J.W., Chapin, P.C.: Building High Integrity Applica-
tions with SPARK. Cambridge University Press (2015)

Miiller, P., Schwerhoff, M., Summers, A.J., Jobstmann, B., Leino,
K.R.M. (eds.): Viper: a verification infrastructure for permission-
based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) Verifi-
cation, Model Checking, and Abstract Interpretation (VMCAI),
LNCS, vol. 9583, pp. 41-62. Springer (2016)

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.:
Symbolic model checking: 102 states and beyond. Inform. Com-
put. 98, 142-170 (1992)

Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic
model checking for real-time systems. Inform. Comput. 111, 193—
244 (1994)

Harel, D.: Statecharts: a visual formalism for complex systems.
Sci. Comput. Program. 8, 231-74 (1987)

Harrison, J., Kolaitis, P.G. (ed.). Formal verification at Intel. In:
Kolaitis, P.G. (ed.) Logic in Computer Science (LICS), 18th IEEE
Symposium, 45. IEEE (2003)

Fix, L. Grumberg, O., Veith, H.: (eds) Fifteen years of formal prop-
erty verification in Intel. (eds Grumberg, O. & Veith, H.) 25 Years
of Model Checking, Vol. 5000 of LNCS, 139-144 (Springer, 2008)
Ben-David, S., Eisner, C., Geist, D., Wolfsthal, Y.: Model checking
at IBM. Form. Methods Syst. Des. 22, 101-108 (2003)

Rager, D.L. et al.: Piskac, R., Talupur, M.: Formal verification of
division and square root implementations, an Oracle report. In:
Piskac, R., Talupur, M. (eds.) Formal Methods in Computer-Aided
Design (FMCAD), pp. 149-152 (2016)

ISO 8807. Information processing systems - open systems
interconnection—LOTOS—a formal description technique based
on the temporal ordering of observational behaviour. Standard,
ISO/IEC JTC 1/SC 7 (1989). https://www.iso.org/standard/16258.
html

ITU SDL Z.100. Specification and description language (SDL).
Standard, ITU (2010). http://www.sdl-forum.org/

IEEE. IEEE standard for property specification language (PSL).
IEEE Std 1850-2010 (Revision of IEEE Std 1850-2005), pp. 1-
182 (2010)

Ball, T., Levin, V., Rajamani, S.K.: A decade of software model
checking with SLAM. Commun. ACM 54, 68-76 (2011)
Distefano, D., Féhndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling
static analyses at Facebook. Commun. ACM 62, 62-70 (2019)
Newcombe, C., etal.: How Amazon web services uses formal meth-
ods. Commun. ACM 58, 66-73 (2015)

https://www.iso.org/standard/21573.html
https://www.iso.org/standard/21573.html
https://rvs-bi.de/publications/RVS-Bk-17-01.html
https://rvs-bi.de/publications/RVS-Bk-17-01.html
https://www.iso.org/standard/16258.html
https://www.iso.org/standard/16258.html
http://www.sdl-forum.org/

A manifesto for applicable formal methods

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Chong, N., et al.: Code-level model checking in the software devel-
opment workflow at amazon web services. Softw. Pract. Exp. 51,
772-797 (2021)

Leroy, X.: Formal verification of a realistic compiler. Commun.
ACM 52, 107-115 (2009)

Heiser, G., Klein, G., Andronick, J.: seL.4 in Australia: from
research to real-world trustworthy systems. Commun. ACM 63,
72-75 (2020)

Fitzgerald, J., Larsen, P.G., Jones, C.B., Liu, Z., Woodcock, J.:
Balancing insight and effort: the industrial uptake of formal meth-
ods. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods
and Hybrid Real-Time Systems: Essays in Honor of Dines Bjgrner
and Chaochen Zhou on the Occasion of Their 70th Birthdays, pp.
237-254. Springer, Berlin, Heidelberg (2007)

Gorm Larsen, P, Fitzgerald, J., Wolff, S. Gruner, S., Rumpe, B.: Are
formal methods ready for agility? A reality check. In: Gruner, S.,
Rumpe, B. (eds.) Formal Methods and Agile Methods (FM+AM),
2nd International Workshop, pp. 13-25, Gesellschaft fiir Infor-
matik e.V., Bonn (2010)

Hentschel, M., Hihnle, R., Bubel, R., Abrahdm, E., Huisman, M.:
Can formal methods improve the efficiency of code reviews?. In:
Abrahdm, E. & Huisman, M. (eds.) Integrated Formal Methods—
12th International Conference, IFM 2016, Reykjavik, Iceland, June
1-5, 2016, Proceedings, Lecture Notes in Computer Science, vol.
9681, pp. 3—19. Springer (2016)

Basili, V.R., Selby, R.W., Hutchens, D.H.: Experimentation in soft-
ware engineering. IEEE Trans. Softw. Eng. SE-12,733-743 (1986)
Yin, R.K.: Case Study Research: Design and Methods, 5th edn.
Sage, Los Angeles (2013)

Shull, F., Singer, J., Sjgberg, D.LK. (eds.): Guide to Advanced
Empirical Software Engineering. Springer (2008)

Wohlin, C., et al.: Experimentation in Software Engineering.
Springer, Berlin (2012)

ter Beek, M.H., Ferrari, A.: Empirical formal methods: guidelines
for performing empirical studies on formal methods. Software 1,
381-416 (2022)

Ferrari, A., Mazzanti, F.,, Basile, D., ter Beek, M.H.: System-
atic evaluation and usability analysis of formal methods tools for
railway signaling system design. IEEE Trans. Softw. Eng. 48,
46754691 (2022)

Hihnle, R.: Software as research infrastructure. In: ETAPS Blog
(2023). https://etaps.org/blog/007-reiner-haehnle/

Choi, B.H.: Software professionals, malpractice law, and codes of
ethics. Commun. ACM 64, 22-24 (2021)

Chien, A.A.: Computing is a profession. Commun. ACM 60, 5-5
(2017)

Gotterbarn, D., Miller, K., Rogerson, S.: Software engineering code
of ethics. Commun. ACM 40, 110-118 (1997)

Lichtenberger, F. Bollin, A., Margaria, T., Perseil, 1. (eds.): Mak-
ing formal methods popular: The crux is math education!. In:
Bollin, A., Margaria, T., Perseil, L. (eds.) FMSEE&T, CEUR Work-
shop Proceedings, vol. 1385 (2015). http://ceur-ws.org/Vol-1385/
paper5.pdf

Welsh, M.: The end of programming. Commun. ACM 66, 34-35
(2022)

Meyer, B.: Al does not help programmers. BLOG@CACM
(2023). https://cacm.acm.org/blogs/blog-cacm/273577-ai-does-
not-help-programmers

Gleirscher, M., van de Pol, J., Woodcock, J. (eds.): Applicable For-
mal Methods (AppFM), 1st FM Workshop, EPTCS, vol. 349. Open
Publishing Association (2021). http://eptcs.web.cse.unsw.edu.au/
content.cgi?’AppFM2021. 2111.07538

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Mario Gleirscher is a postdoc
in Computer Science at the Uni-
versity of Bremen, Germany. He
received the PhD and MSc degrees
in Computer Science, with a minor
in Mathematics, from the Tech-
nical University of Munich, Ger-
many. He has a Foundation Degree
in production engineering and sev-
eral years of practical experience
as a consultant, method engineer,
and software developer. His inter-
ests are in process calculi, stochas-
tic reasoning, and controller syn-
thesis. He was awarded a Fellow-
ship at the University of York, UK, funded by the German Research
Foundation (DFG) for his research.

Jaco van de Pol is a full
professor in Computer Science at
Aarhus University since 2018. He
received his PhD from Utrecht
University (1996) on termination
of higher-order rewriting. He held
positions at CWI Amsterdam
(1999) and TU Eindhoven (2004)
and became a full professor at
the University of Twente (2007).
His research interests are auto-
mated verification (high-
performance model checking algo-
rithms) and automated synthesis
(planning, winning strategies,
parameter synthesis). He investigated applications of formal tech-
niques in railway safety, security, distributed and embedded systems,
biological networks, and quantum circuits.

Jim Woodcock is a Professor of
Software Engineering at the Uni-
versity of York, a Fellow of the
Royal Academy of Engineering,
a consulting Chartered Engineer,
and an award-winning researcher
and teacher. He is the Director of
the York Centre for Autonomous
Robotics for Laboratory Exper-
iments and a member of the
RoboStar research group. He is
a Professor of Digital Twins at
Aarhus University, a Professor of
Cyber-Physical Systems, and a
Distinguished ~ Researcher at
Southwest University, Chongqing. He has dedicated his career to
searching for the mathematical principles that are essential to the prac-
tice of software engineering. For the last decade, he has researched
the theory and practice of cyber-physical systems, robotics, and, most
recently, their probabilistic semantics. He is Editor-in-Chief of the
ACM journal Formal Aspects of Computing and of the CUP journal
Research Directions: Cyber-Physical Systems.

@ Springer

https://etaps.org/blog/007-reiner-haehnle/
http://ceur-ws.org/Vol-1385/paper5.pdf
http://ceur-ws.org/Vol-1385/paper5.pdf
https://cacm.acm.org/blogs/blog-cacm/273577-ai-does-not-help-programmers
https://cacm.acm.org/blogs/blog-cacm/273577-ai-does-not-help-programmers
http://eptcs.web.cse.unsw.edu.au/content.cgi?AppFM2021
http://eptcs.web.cse.unsw.edu.au/content.cgi?AppFM2021

	A manifesto for applicable formal methods
	Abstract
	1 Introduction
	1.1 Outline

	2 Background
	2.1 What is a ``formal method''?
	2.2 What makes formal methods so special?
	2.3 What do we mean by ``applicability''?
	2.4 When do we expect a formal method to be applicable?
	2.5 What makes formal method applicability so special?
	2.6 What is a manifesto, and why do we need one?

	3 Related work
	4 The manifesto and its ten principles
	4.1 Motivation and provisional diagnosis
	4.2 The ten principles of applicable formal methods
	4.2.1 Scope
	4.2.2 Methodology
	4.2.3 Integration
	4.2.4 Explainability
	4.2.5 Automation
	4.2.6 Scalability
	4.2.7 Transfer
	4.2.8 Usefulness
	4.2.9 Ease of use
	4.2.10 Evaluation

	4.3 Aims, actions, and expected impact

	5 Success stories of formal methods integration and transfer
	5.1 Research integration
	5.2 Method and tool integration
	5.3 Transfer through automation and unified visual environments
	5.4 Transfer via standards
	5.5 Non-embedded systems applications
	5.6 Activities towards wider adoption

	6 An impact-oriented plan for actions
	6.1 Overview of the expected impact of the manifesto
	6.2 Impact on the conduct, writing, and review of formal methods research
	6.3 Implications of the manifesto on future formal methods teaching
	6.4 Impact on the evaluation of future formal method research
	6.5 Impact on the further development of the formal methods community
	6.6 Impact on software engineering as a legally recognised profession

	7 A life without the manifesto
	8 Conclusions and outlook
	Acknowledgements
	References

