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Formal methods use mathematical models for analysis and verification at any part of the program

life-cycle. We describe the state of the art in the industrial use of formal methods, concentrating
on their increasing use at the earlier stages of specification and design. We do this by reporting on

a new survey of industrial use, comparing the situation in 2009 with the most significant surveys

carried out over the last 20 years. We describe some of the highlights of our survey by presenting
a series of industrial projects, and we draw some observations from these surveys and records of

experience. Based on this, we discuss the issues surrounding the industrial adoption of formal

methods. Finally, we look to the future and describe the development of a Verified Software
Repository, part of the worldwide Verified Software Initiative. We introduce the initial projects

being used to populate the repository, and describe the challenges they address.

Categories and Subject Descriptors: D.2.4 [Software/Program Verification]: Assertion check-

ers, Class invariants, Correctness proofs, Formal methods, Model checking, Programming by

contract; F.3.1 [Specifying and Verifying and Reasoning about Programs]: Assertions,
Invariants, Logics of programs, Mechanical verification, Pre- and post-conditions, Specification

techniques; F.4.1 [Mathematical Logic]: Mechanical theorem proving; I.2.2 [Automatic Pro-

gramming]: Program verification.

Additional Key Words and Phrases: Experimental software engineering, formal methods surveys,

Grand Challenges, Verified Software Initiative, Verified Software Repository.

1. INTRODUCTION

Formal methods are mathematical techniques, often supported by tools, for devel-
oping software and hardware systems. Mathematical rigour enables users to analyse
and verify these models at any part of the program life-cycle: requirements engi-
neering, specification, architecture, design, implementation, testing, maintenance,
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and evolution.
The vital first step in a high-quality software development process is requirements

engineering. Formal methods can be useful in eliciting, articulating, and represent-
ing requirements [George and Vaughn 2003]. Their tools can provide automated
support needed for checking completeness, traceability, verifiability, and reusability,
and for supporting requirements evolution, diverse viewpoints, and inconsistency
management [Ghose 2000].

Formal methods are used in specifying software: developing a precise statement
of what the software is to do, while avoiding constraints on how it is to be achieved.
Examples of these methods include ASM [Börger and Stärk 2003], B [Abrial 1996],
and VDM [Jones 1990]. A specification is a technical contract between programmer
and client to provide them both with a common understanding of the purpose of
the software. The client uses the specification to guide application of the software;
the programmer uses it to guide its construction. A complex specification may be
decomposed into sub-specifications, each describing a sub-component of the system,
which may then be delegated to other programmers, so that a programmer at one
level becomes a client at another (design by contract [Meyer 1991]).

Complex software systems require careful organisation of the architectural struc-
ture of their components: a model of the system that suppresses implementation
detail, allowing the architect to concentrate on the analyses and decisions that are
most crucial to structuring the system to satisfy its requirements [Allen and Garlan
1992; van Lamsweerde 2003]. Wright is an example of an architectural descrip-
tion language based on the formalisation of the abstract behaviour of architectural
components and connectors [Allen 1997].

Formal methods are used in software design. Data refinement involves state
machine specification, abstraction functions, and simulation proofs; see the early
paper by Hoare [Hoare 1972], its central role in methods like VDM [Jones 1990],
and in program refinement calculi [Dijkstra 1975; Morris 1987; Morgan 1988; Back
and von Wright 1990].

At the implementation level, formal methods are used for code verification. Every
program-specification pair implicitly asserts a correctness theorem that, if certain
conditions are satisfied, the program will achieve the effect described by its docu-
mentation. Code verification is the attempt to prove this theorem, or at least to
find out why the theorem fails to hold. The inductive assertion method of pro-
gram verification was invented by Floyd and Hoare [Floyd 1967; Hoare 1969], and
involves annotating the program with mathematical assertions, which are relations
that hold between the program variables and the initial input values, each time
control reaches a particular point in the program. Code can also be generated au-
tomatically from formal models; examples include the B-method [Abrial 1996] and
SCADE [Berry 2008], both discussed in Sects 4.2 and 4.5.

It is natural that formal methods should underlie principled testing methods, and
Gaudel has established this as an important research topic [Gaudel 1995]. Hoare
describes the use of formal assertions in Microsoft, not for program proving, but for
testing [Hoare 2002a]. A survey of current research in formal aspects of testing is
in [Hierons et al. 2008]. Formal methods are used in software maintenance [Younger
et al. 1996] and evolution [Ward and Bennett 1995]. Perhaps the widest application
ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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of formal methods is in the maintenance of legacy code: in some of Microsoft’s most
successful products, every tenth line is an assertion [Hoare 2002b].

In this paper, we assess the current state of the art in the industrial application
of formal methods, concentrating on their increasing use at the earlier stages of
specification and design. We first revisit several influential surveys of the use of
formal methods and verification technology in industry (Sect. 2). We then present
the results of a new survey of industrial practice in Sect. 3; this is the most compre-
hensive survey ever published, and gives us a view of how industrial application has
changed over the last 20 years. In Sect. 4, we describe selected industrial projects
from the last 20 years, representing a cross-section of applications including national
infrastructure, computer microcode, electronic finance, and security applications.
Sect. 5 contains our observations about the current state of the art, based on the
survey findings and highlighted projects. A weakness in the current situation is
lack of a substantial body of technical and cost-benefit evidence from applications
of formal methods and verification technology; in Sect. 6, we describe the Verified
Software Repository that is being built in response to this challenge. Finally, in
Sect. 7, we draw some conclusions about current practice and experience. A list of
acronyms is provided as an appendix.

2. SURVEYS OF FORMAL METHODS PRACTICE

The transfer of formal methods technology into industry has been an objective
for researchers and practitioners for several decades. The potential benefits for
reduced defect densities in specifications, designs, and code have to be achieved
at reasonable cost and within the constraints of real industrial settings. By the
early 1990s, questions were being asked about whether formal methods could ever
be viable parts of industrial development processes. Several significant surveys
from that time identified challenges to verification practice and experience that
subsequent research has sought to address. We briefly review some of the major
publications surveying the state of industrial application.

Hall’s defence of formal methods as an engineering approach identifies seven
“myths” about formal methods [Hall 1990]. Wing explained the underlying con-
cepts and principles for formal methods to newcomers [Wing 1990]. Thomas pre-
sented evidence for the cost effectiveness of industrial use of formal methods from
a CEO’s perspective [Thomas 1992]. Austin carried out a survey into the indus-
trial use of formal methods, in order to discover the reasons for their rather low
acceptance in industry [Austin and Parkin 1993]. Austin used a questionnaire to
assess the uses made of formal methods in both research and application, and to
gather opinions on the barriers to wider industry adoption. A majority of responses
analysed (126) reported on the use of model-oriented formalisms (such as VDM)
and concentrated on specification rather than verification.

Craigen and his colleagues surveyed the application of formal methods, aiming
at providing an authoritative record of the applications of formal methods [Craigen
et al. 1993a; 1993b]. Their survey covered 12 case studies, each based on an applica-
tion of formal techniques in an industrial setting. A combination of questionnaires,
literature reviews, and interviews was used to derive information on each appli-
cation. The range of formalisms included model-oriented approaches, a process
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calculus (CSP), and verification environments. None of the studies addressed sys-
tems bigger than around 300 KLOC, and the majority were much smaller (mostly
high-integrity applications). The survey came to positive conclusions about the
improving maturity of formal methods and the fact that they had been applied to
significant systems. Regulatory support for enhanced software engineering prac-
tices was important in providing increased motivation for adoption. They observed
that “Tool support, while necessary for the full industrialisation process, has been
found neither necessary nor sufficient for successful application of formal methods
to date.” Nevertheless, Bloomfield noted that the immaturity of theories and tool
bases meant that some successful applications require a “heroic” level of effort,
that tools are developed but not transferred across platforms or research groups,
and that tools are not always accompanied by advances in methodology or the-
ory [Bloomfield and Craigen 1999].

Rushby produced a technical report for NASA, explaining to stakeholders from
the aerospace domain what formal methods are and how they can be applied in
the development and certification of critical systems [Rushby 1993]. The percep-
tion of a long-term crisis in software development motivated a wider interest in
the potential of verification [Gibbs 1994; Cuadrado 1994]. Bowen and Hinchey’s
article [Bowen and Hinchey 1995] is similar to [Hall 1990], but in a humorous fash-
ion, stating commandments that shall be followed when applying formal methods;
this was revisited in [Bowen and Hinchey 2006]. They also edited a book con-
taining a collection of 15 different applications of formal methods using different
formalisms [Hinchey and Bowen 1995]. Hinchey and Bowen [Hinchey and Bowen
1996] felt that standards, tools, and education would “make or break” industrial
adoption, while Glass [Glass 1996] saw a chasm between academics who “see formal
methods as inevitable” and practitioners who “see formal methods as irrelevant”.
Other articles cite weaknesses in notations, tools and education as challenges to
wider acceptance of formal methods technology.

In spite of the optimistic conclusions of some surveys, a round-table article in
IEEE Software in 1996 [Saiedian 1996] showed the divergence of opinion on whether
formal methods were delivering hoped-for improvements in practice. Clarke and
Wing’s article was the output of a working group, and it gave a brief introduction
to the notions in formal methods, listed notable industrial applications, and rec-
ommended future directions for the formal methods community [Clarke and Wing
1996]. Kelly’s technical reports were orchestrated by NASA and formed a guide-
book on the use of formal methods for specification and verification of software and
computer systems [NASA 1998] and [NASA 1997].

Bloomfield’s wide-ranging review [Bloomfield and Craigen 1999] includes evalua-
tions of research programmes, major conferences, and industrial application areas.
A leading point is the suggestion that models of technology diffusion should con-
sciously be applied to formal methods adoption. Although they saw significant
take-up in critical application domains, the authors identified several reasons for
the general failure to adopt formal techniques.

The surveys take very different viewpoints. Some, such as Craigen’s, base conclu-
sions on analyses of a selected group of applications. Others, such as Austin’s, have
a wider ranging view of industry and academia. Still others, such as Bloomfield’s,
ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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use reviews of whole research programmes. In spite of the differences in approach,
there is some agreement on significant challenges to successful industrial adoption.

In the next section, we present a new quantitative survey of industrial practice
in formal methods. In Sect. 5, we compare the results of the new survey with the
major finding of the previous surveys.

3. A SURVEY OF CURRENT USE AND TRENDS

In order to help gain further understanding of trends and advances against the chal-
lenges identified in the papers described above, we undertook a survey to gather
information in a consistent format from a number of industrial projects known to
have employed formal techniques. We sent an open invitation to as many commu-
nities as we could to participate in our survey. This may have biased it towards
those with whom we have the strongest contacts; we have, for instance, few con-
tributions on model checking. In spite of this, the uniform way in which the data
was collected does allow comparisons between projects, and gives some insight into
current practice and long-term trends in the use of formal methods.

Using a structured questionnaire, data was collected between November 2007 and
December 2008 on 62 industrial projects known from the published literature, mail-
ing lists, and personal experience to have employed formal techniques. The projects
surveyed came (in decreasing order) from Europe, Northern America, South Amer-
ica, Australia, and Asia. If an individual had experience of more than one project,
then separate questionnaires were completed for each project. In 56 of the projects,
data was collected directly from individuals who had been involved those projects,
and in the remaining six cases we used information available in the literature.

3.1 Data Collected

Figure 1 presents the application areas to which the projects related. The largest
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single application domain was transport, followed by the financial sector. Other ma-
jor sectors were defence, telecommunications, and office and administration. Other
areas with only one or two responses were: nuclear, health care, consumer elec-
tronics, space, semantic web, resource planning, automated car parking, embedded
software, engineering, and manufacturing. Some 20% of responses additionally in-
dicated that the projects related to software development tools themselves, such
as operating systems, compilers, and CASE tools, and a further 10% related to
computing applications within the domain, such as high-performance computing,
runtime code optimisation, file system replication, access control, communications
protocols, and microcomputer design.

The types of applications are presented in Figure 2. The largest groups were
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Fig. 2. Application Types

real-time applications, distributed applications, transaction processing and high
data volume. Others included parallel programming, hardware, control engineer-
ing, HCI, service-oriented computing, and graphics. Certification standards were
indicated as applying in 30% of responses, notably the International Electrotechni-
cal Commission’s IEC 61508, and the Common Criteria and UK Level E6 for In-
formation Technology Security Evaluation. Others included CENELEC EN50128
for railways, DO-178B Level A for avionics, UK MoD software Defence Standards
00-55 and 00-56, and IEEE Standard 754 for Floating Point Numbers.

Figure 3 presents the start dates of the projects. After taking account of the fact
that ongoing projects are unlikely to be represented in the survey, it would seem
that the frequency of projects is higher in recent years, although this could simply
be a reflection of the way that the data was collected, with more recent projects
being more responsive.

As shown in Figure 4, 50% of respondents gave an indication of the size of the
ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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Fig. 4. Project size in Lines of Code

software in terms of lines of code. Of these, the split was roughly equal on a
logarithmic scale between 1–10 KLOC, 10–100 KLOC, and 100–1000 KLOC.

Figure 5 presents the rates of use of various techniques, such as specification
and modelling, execution (specification interpretation and testing), inspection (of
specification and model).

We looked for dependencies between application domain and type of software
developed, but found only one significant correlation, which was a high representa-
tion of transaction processing software in the financial domain (Fisher’s exact test,
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Fig. 5. Techniques used

double tailed, p < 0.01).1 Without comparison to general data relating software
type and application domain, this may be assumed to reflect a trend in software as
a whole, rather than being related to the application of formal techniques. Simi-
larly, no significant dependencies at all were found between the techniques used for
different application domains, and only a few, reasonably mild, correlations were
observed between the techniques used for different types of software. These latter
correlations demonstrate a higher than average use of model checking in consumer
electronics and of inspection in transaction processing software (Fisher’s Exact Test,
double tailed, p = 0.03 for each).

On the other hand, on correlating the techniques used against the project date,
we found that the use of model checking has increased greatly from 13% in the
1990s to 51% in this decade. This is a highly significant change (Fisher’s exact
test, double tailed, p = 0.003). In contrast, no significant change was found in this
period for the use of proof, refinement, execution or test case generation.

When asked to indicate which roles were part of the project team from a pre-
defined list (product management, program management, development, user ex-
perience, tester, release management, architect, other), the largest responses were
“tester” (50%) and “architect” (46%) with all other responses being under 10%.
Regarding previous expertise in the techniques used, 40% reported “considerable
previous experience”, 45% reported “some previous experience”, and 22% reported
“no previous expertise”. The total adds up to more than 100% because some re-
spondents reported mixed teams of more than one category. Of those reporting
“no previous expertise”, one half were in a mixed team with more experienced
colleagues; the others were introducing techniques to a team not previously expe-
rienced in these techniques. Regarding training, 33% reported “no training given”,
54% reported “some training given”, and 5% reported “considerable training given”.

1Fisher’s exact test is a statistical significance test used in the analysis of the relationship between

two or more variables, where sample sizes are small.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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3.2 Outcomes—the Effect on Time, Cost, and Quality

Figure 6 shows the overall effect of the use of formal techniques on time, cost,

Time Cost Quality

Improvement No effect/no dataWorsening

53%

35%

12%

56%

7%

92%

8%

37%

Fig. 6. Did the use of formal techniques have an effect on time, cost, and quality?

and quality. The effect on time taken to do the work was on average beneficial.
Three times as many reported a reduction in time, rather than an increase. Many
responses indicated that it was difficult to judge the effect on time taken, although
several noted increased time in the specification phase, which may or may not have
been compensated for by decreasing time later. For example:

“Difficult to judge but extensive specification phase probably added
elapsed time, although it may have saved time later.”

“Long specification phase probably added to elapsed time.”

“Modest increase in time spent during early design. . . was recovered
many times over during system integration and testing.”

Of cases expressing a view, five times as many projects reported reduced costs as
those that reported increased costs. Some notable comments with respect to the
effect on cost include:

“We observed a substantial improvement in productivity once the code
generation subsystem of the tool had been bootstrapped, due to the use
of code generation from specifications. . . ”

“The cost increase was largely due to the lack of precise, complete in-
formation about the required externally visible behavior of the software
product. . . Once the code was implemented the required behavior was
clear, and applying formal specification and formal verification was rel-
atively straightforward. The one expensive part of the code verification
process was the annotation of the code with pre- and postconditions.
Once the annotated code was available, showing the correspondence be-
tween the annotated code and the abstract specification of the required
behavior was straightforward. This latter process included adding more

ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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annotations and correcting annotations that were incorrect. During this
process, the abstract specification and the required security properties
changed very little.”

In contrast, the use of formal techniques is believed by respondents to have improved
quality, with 92% of all cases reporting an increase in quality compared to other
techniques, and no cases reporting a decrease in quality. Most were related to
the detection of faults (36%). Other common reasons given for improvement were:
improvements in design (12%), increased confidence in correctness (10%), improved
understanding (10%), and early identification of faults or other issues (4%).

3.3 Respondents’ Conclusions

As shown in Figure 7, respondents have generally been positive about the successful
use of formal methods, although, due to the bias in selection described above, one
would expect stakeholders that did not see value in the use of formal methods to be
under-represented among the responses. Figure 8 illustrates that the respondents
in general were satisfied with the formal techniques used in their projects, whereas
Figure 9 shows that in 9% of the projects, the tools applied have not fully been
able to live up to expectations. Finally, Figure 10 demonstrates that a majority of
the respondents wish to use a similar technology again on new projects.

0% 0% 5%

34%

61%

0%

20%

40%

60%

80%

Strongly Disagree Disagree Mixed Opinion Agree Strongly Agree

The use of  formal methods in this project was sucessful

Fig. 7. Overall satisfaction with the used of formal techniques

0% 0%
5%

49% 46%

0%

20%

40%

60%

Strongly Disagree Disagree Mixed Opinion Agree Strongly Agree

The techniques used were appropriate for the tasks required 

Fig. 8. Overall satisfaction with the techniques used
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The tools used were able to cope with the tasks undertaken. 

Fig. 9. Overall satisfaction with the tools used

0%

25%

75%

0%

20%

40%
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80%

Will not use a similar methodology 
again

Will possibly use a similar 
methodology again

Will use a similar methodology 
again

Will you be using the same or similar methodology again?

Fig. 10. Intention to use formal techniques again

3.4 Discussion on the Results of the Survey

Take-up by users. The survey shows that the take up of formal techniques is
distributed across a wide range of application domains, including a considerable
number related to the production of the software development tools themselves.
This reflects the fact that many of the tools used are general-purpose, as pro-
gramming languages are, so research on generic methods (that is independent of
application area) is still relevant and should proceed alongside development of more
special-purpose generators.

Tools and techniques. Some projects undertook extensive and comprehensive
analysis, significant manual intervention in the formal analysis, and therefore a
major change to existing informal techniques. On the other hand, some projects
managers were more interested in broad rather than deep analysis, hoping for some
benefit from little or no manual effort.

It is clear that Moore’s law has had a very significant impact on the availability
of computational power over the two decades spanned by the projects reported
in the survey, with typical desktop computing and storage resources increasing
by perhaps some 10,000 times in that period. Together with significant theoretical
advances, this has had a major impact on the scale of problem that can be addressed
by automated techniques, such as model checking, and would seem to indicate a
continuing increase in the level of automation and move towards formal methods
disappearing “under the hood” in due course (see [Tiwari et al. 2003] for a discussion
of this movement). Such a trend is epitomised by the following quote from a project
that employed significant levels of model checking:

“To be useful during product development, formal methods needs to pro-
vide answers in seconds or minutes rather than days. Model-checking

ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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can do this very effectively when applied to the right kinds of system
designs. To take advantage of this, model-checking has to be tightly inte-
grated into the commercial design and verification tools that developers
are already using.”

To what degree, and in what timescale, will mathematical proof succumb to Moore’s
law? One respondent reflected on the tools available as follows:

“Tools for formal methods are still very weak compared with what is
theoretically possible.”

The effect on time, cost, and quality. Of those expressing an opinion, significantly
more projects are seen to have reduced timescales and costs and improved quality
by using formal techniques. But it is perhaps surprising that in a majority of
projects surveyed, there is no data available on relative time and costs. On the
other hand, the overall satisfaction with their use among the respondents is clear
(Figures 7 and 10).

“No precise measurements have been done. By rule-of-thumb it was es-
timated that the design effort exceeded a conventional effort by about
10%. Presumably maintenance costs were reduced drastically. But this
judgement is based only on hypothetically assumed fault rates of soft-
ware developed conventionally.”

4. HIGHLIGHTED PROJECTS

We present a series of industrial formal methods projects, chosen to show a cross-
section of work over the last two decades. The emphasis is on developing verified
systems cost-effectively, and the applications include microcode and firmware, rail-
ways, national infrastructure, smart cards, and a biometric-based security applica-
tion. From Sect. 4.1 onwards, each project is included in the survey described in the
last section, but we start with a review of the range of verification tools reported
in the literature as having been used in industry.

There is a trade-off between the level of automation achievable in verification and
the complexity of the analysis performed. At one end of the range there are static
analysers that identify potential program defects, such as variable use before defini-
tion, constant conditions, and possibly out-of-range expressions. Examples include
heuristic tools such as the 30-year-old Unix utility lint [Johnson 1978], which flags
potential defects in C programs, and more recent tools such as Splint [Evans and
Larochelle 2002], which provides annotation-assisted lightweight static checking.
These kinds of program analysis tools are in use in industry; see [Hoare 2002a] for a
description of the instrumentation of legacy Microsoft code with assertions for use
in massive regression testing, and [Larus et al. 2004] for a short survey of the use
of tools within Microsoft. Modern analysers such as PREfix [Bush et al. 2000] and
PREfast can analyse multi-million-line C and C++ programs for potential null-
pointer dereferences, improper memory allocation and deallocation, uninitialised
variable use, simple resource-state errors, improper library use, and problematic
programming idioms. Such tools often use formally unsound analytical techniques
and so may produce false positives (identifying spurious errors), although efforts
ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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are made to minimise these. The SLAM tool on the other hand can certify a pro-
gram free from a particular kind of error [Ball and Rajamani 2002] by checking that
API usage follows certain sequencing rules given by the user. It has been used to
find many bugs in Windows device drivers, and is distributed as the Static Driver
Verifier, part of the Windows development kit. The ESP tool [Das et al. 2002] is
similar to SLAM, but trades precision against large-scale tractability for analysing
huge code bases; it has been used to find buffer over-runs in large-scale system code
and to validate an OS kernel’s security properties.

Further along the verification spectrum there are tools such as model checkers
and abstract interpreters. The SPIN automata-based model checker has been used
to find logical design errors in distributed systems, such as those used on the Deep
Space 1, Cassini, Mars Exploration Rovers, and Deep Impact space missions [Holz-
mann 2004]. SPIN checks the logical consistency of a specification, reporting on
deadlocks, unspecified message receptions, incompleteness, race conditions, and
unwarranted assumptions about the relative speeds of processes. An example of
an abstract interpreter is the Astrée real-time embedded-software static anal-
yser [Blanchet et al. 2003], which tries to prove the absence of all run-time errors in
a C program. It does this completely automatically for the primary flight-control
software for the Airbus A340 and the electric flight-control codes for the A380.

At the furthest end of the verification spectrum, theorem provers can verify arbi-
trary conjectures in a given logic with varying degrees of automation. For example,
Vampire is an automatic theorem prover for first-order classical logic [Riazanov and
Voronkov 2002]. KIV, on the other hand, is an interactive theorem prover with a
user-definable object logic [Balser et al. 2000], and it has been used in a wide range
of applications, from verifying protocols for medical procedures [Hommersom et al.
2007] to verifying protocols for smart cards [Haneberg et al. 2008].

4.1 The Transputer Project

The Transputer series of microprocessor chips were designed specifically for par-
allel processing [Inmos Ltd 1988b]. Gibbons describes the development of one of
the Transputers: the T800 floating-point unit [Gibbons 1993], which combined a
32-bit reduced instruction set CPU, some memory, four bidirectional communica-
tions links, and a floating-point arithmetic unit on a single chip. Its successor, the
T9000, was rather more sophisticated, with richer connectivity, memory model, and
pipelined processor. A Transputer based on T9000 technology, the ST20, is still
very widely used in chip-sets for set-top box and GPS applications. The program-
ming language for the Transputer is Occam [Inmos Ltd 1988a; Jones and Goldsmith
1988], a simple, low-level, executable subset of CSP [Hoare 1985].

Inmos started to develop the T800 in 1986, using a conventional approach that
required months of testing, since floating-point units are notoriously complex de-
vices and prone to design bugs. As the extent of the required testing became clear,
work started on the formal development of a correct-by-construction floating-point
unit [Shepherd 1988; Barrett 1987; 1989; Shepherd and Wilson 1989; Barrett 1990;
May et al. 1992]. The natural language IEEE-754 standard for floating-point arith-
metic [IEEE 1985] was formalised in Z [Spivey 1989; Woodcock and Davies 1996].
The specification is described in [Barrett 1987; 1989], and revealed some problems
in the standard. For example, the standard requires that diagnostic information

ACM Computing Surveys, Vol. V, No. N, Month 20YY.



D
RAFT

14 · Jim Woodcock et al.

about the results of invalid operations (such as the square root of a negative num-
ber) be propagated through further operations. But this is not always possible. The
next task was to show that a floating-point package written in Occam and used in
previous Transputers was a correct implementation of IEEE-754. The attempted
verification using Hoare logic [Hoare 1969] revealed errors in rounding and remain-
der operations. Barrett later remarked to Gibbons that “it was only a very small
class of test vectors that would have shown up the errors” [Gibbons 1993]. With
corrections in place, the Occam package was verified correct and used as an inter-
mediate representation of the functionality of the required microcode. It was too
abstract to be directly useful for hardware design, so the Occam transformation
system [Goldsmith et al. 1987] was used to apply the laws of Occam program-
ming [Roscoe and Hoare 1988] to produce an equivalent microcode program.

The development of the floating-point unit, from natural language to silicon,
was at least three months faster than the alternative informal development that
ran concurrently [Barrett 1990]. Each month’s delay in production was estimated
to cost US$1M [Barrett 1990]. Gibbons reports that exactly two bugs have been
found in the floating-point microcode [Gibbons 1993]. The first was introduced by
the translation program that converted the micro-level Occam into assembly code
for the chip; the second was introduced by a hand optimisation of this assembly
code. Oxford University and Inmos jointly received a Queen’s Award for Techno-
logical Achievement in 1990 “to recognise and encourage outstanding achievements
advancing process or product technology in the UK”.

4.2 Railway Signalling and Train Control

In 1988, GEC Alsthom, MATRA Transport, and RATP (the Parisian public trans-
port operator) started working on a computerised signalling system for controlling
the RER regional express network commuter trains in Paris (reported in [Bowen
and Stavridou 1993]). The objective of the project was to increase network traf-
fic by 25%, while preserving existing safety levels. The resulting SACEM system
with embedded hardware and software was delivered in 1989 and has controlled
the speed of all trains on RER Line A in Paris, involving seven billion passenger
journeys, since its introduction.

The SACEM software consists of 21,000 lines of Modula-2 code, of which 63% is
regarded as safety-critical and has been subjected to formal specification and verifi-
cation [Guiho and Hennebert 1990; Hennebert and Guiho 1993]. The specification
was constructed in B [Abrial 1996] and the proofs were done interactively using
automatically generated verification conditions for the code. The validation effort
for the entire system (including non-safety-critical procedures) was about 100 man-
years. Hennebert and Guiho [Guiho and Hennebert 1990] claim that the system is
safer as a result of the formal specification and verification exercise. The project
team reported a difficulty in communication between the verifiers and the signalling
engineers, who were not familiar with the B-method. This was overcome by pro-
viding the engineers with a French description derived manually from the formal
specification. The SACEM system is further described in [Guiho and Hennebert
1990], which presents various dependability requirements and their implementation.
Techniques to ensure safety include on-line error detection, software validation, and
fault tolerance of the onboard-ground compound system.
ACM Computing Surveys, Vol. V, No. N, Month 20YY.
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Paris Métro Line 14 Roissy Shuttle

Line length (km) 8.5 3.3

Number of stops 8 5

Inter-train time (s) 115 105

Speed (km/hr) 40 26

Number of trains 17 14

Passengers/day 350,000 40,000

Number of lines of Ada 86,000 158,000

Number of lines of B 115,000 183,000

Number of proofs 27,800 43,610

Interactive proof percentage 8.1 3.3

Interactive proof effort (person-months) 7.1 4.6

Table I. Statistics for the Paris Métro Line 14 and Roissy Shuttle projects.

Abrial (the creator of B) reports on two further railway projects carried out
using B [Abrial 2007]: Line 14 of the Paris Métro, a system in use since October
1998 [Behm et al. 1999]; and the driverless Paris Roissy Airport shuttle, in use
since 2007 [Badeau and Amelot 2005]. Only the safety-critical parts were developed
using B, representing one-third of each software system. Table I (taken from [Abrial
2007]) shows the main characteristics of the two systems. Since Line 14 is completely
automatic, the safety-critical part concerns the running and stopping of trains and
the opening and closing of train and platform doors. No unit tests were performed
for the Line 14 or Roissy Shuttle projects; they were replaced by some global tests
that were all successful. This reduced the overall costs significantly.

4.3 Mondex Smart Card

In the early 1990s, the National Westminster Bank and Platform Seven2 developed
a smartcard-based electronic cash system, Mondex, suitable for low-value cash-like
transactions, with no third-party involvement, and no cost per transaction. A dis-
cussion of the security requirements can be found in [Stepney et al. 2000; Woodcock
et al. 2008]; a description of some wider requirements can be found in [Aydal et al.
2007]. It was crucial that the card was secure, otherwise money could be electron-
ically counterfeited, so Platform Seven decided to certify Mondex to one of the
very highest standards available at the time: ITSEC Level E6 [ITSEC 1991], which
approximates to Common Criteria Level 7 [CCRA 2006]. This mandates stringent
requirements on software design, development, testing, and documentation proce-
dures. It also mandates the use of formal methods to specify the high-level abstract
security policy model and the lower-level concrete architectural design. It requires
a formal proof of correspondence between the two, in order to show that the con-
crete design obeys the abstract security properties. The evaluation was carried out
by the Logica Commercial Licenced Evaluation Facility, with key parts of the work
subcontracted to the University of York to ensure independence.

The target platform smartcard had an 8-bit microprocessor, a low clock speed,
limited memory (256 bytes of dynamic RAM, and a few kilobytes of slower EEP-

2Platform Seven is a software house spun out from NatWest; it is now owned by DataCard, a

major shareholder in Gemplus, another smart card company.
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ROM), and no built-in operating system support for tasks such as memory man-
agement. Power could be withdrawn at any point during the processing of a trans-
action. Logica was contracted to deliver the specification and proof using Z [Spivey
1989; Woodcock and Davies 1996]. They had little difficulty in formalising the con-
crete architectural design from the existing semi-formal design documents, but the
task of producing an abstract security policy model that both captured the desired
security properties (in particular, that “no value is created” and that “all value
is accounted for”) and provably corresponded to the lower-level specification, was
much harder. A very small change in the design would have made the abstraction
much easier, but was thought to be too expensive to implement, as the parallel
implementation work was already well beyond that point. The 200-page proof was
carried out by hand, and revealed a small flaw in one of the minor protocols; this
was presented to Platform Seven in the form of a security-compromising scenario.
Since this constituted a real security problem, the design was changed to rectify it.
The extensive proofs that were carried out were done manually, a decision taken
at the time to keep costs under control. Recent work (reported below) has shown
that this was overly cautious, and that Moore’s Law has swung the balance further
in favour of cost-effective mechanical verification.

In 1999, Mondex achieved its ITSEC Level E6 certificate: the very first product
ever to do so. As a part of the ITSEC E6 process, the entire Mondex development
was additionally subject to rigorous testing, which was itself evaluated. No errors
were found in any part of the system subjected to the use of formal methods.

Mondex was revived in 2006 as a pilot project for the Grand Challenge in Verified
Software (see Sect. 6). The main objective was to test how the state of the art
in mechanical verification had moved on in ten years. Eight groups took up the
challenge using the following formal methods (with references to a full discussion of
the kinds of analysis that were performed in each case): Alloy [Ramananandro 2008],
ASM [Haneberg et al. 2008], Event-B [Butler and Yadav 2008], OCL [Kuhlmann and
Gogolla 2008], PerfectDeveloper, π-calculus [Jones and Pierce 2007], Raise [George
and Haxthausen 2008], and Z [Freitas and Woodcock 2008]. The cost of mechanising
the Z proofs of the original project was 10% of the original development cost, and
so did not dominate costs as initially believed. Interestingly, almost all techniques
used in the Mondex pilot achieved the same level of automation, producing similar
numbers of verification conditions and requiring similar effort.

4.4 AAMP Microprocessors

Miller reports experiences from several projects at Rockwell Collins [Miller 1998].
One of their earliest experiments was to specify and refine a micro Real Time Ex-
ecutive µRTE in the RAISE notation, RSL [RAISE Language Group 1992; RAISE
Method Group 1995]. This was not a successful project: the language was thought
to be too complex and required substantial training, and the only tools available
were syntax and type checkers, with no support for developing and managing proofs.

A subsequent experiment with SRI International, sponsored by NASA [Miller
and Srivas 1995; Srivas and Miller 1995], formally verified the microcode for the
AAMP5 microprocessor using PVS [Owre et al. 1992]. The AAMP5 is a proprietary
microprocessor widely used in Rockwell Collins products. It has a stack-based ar-
chitecture, a large instruction set, makes extensive use of microcode, has a pipelined
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architecture, and complex processing units. It contains approximately 500,000 tran-
sistors with performance between an Intel 386 and 486. Rockwell Collins specified
the AAMP5 at both the register transfer and instruction set level, with a retrieve
relation between the two to prove the correctness of microcode instructions. The
main lesson learned from the AAMP5 project was that it was technically possible
to prove the correctness of microcode, and that their engineers could read and write
formal specifications.

Two errors were found in the AAMP5 microcode while creating the specification,
and this convinced them that there is value in just writing a formal specification.
But they also convinced themselves that mechanical proofs of correctness provide a
very high level of assurance. They did this by seeding two very subtle errors in the
microcode that they delivered to SRI, and then waiting to see if they would find
them. SRI did indeed discover the errors using a systematic process: the only way
not to have found the errors would have been to fail to carry out the proofs.

The biggest problem for the AAMP5 project was that the cost was too high: more
than 300 hours per instruction. This figure appears to have been inflated for a
variety of reasons, including the steep learning curve using PVS for the first time
and the need to develop many supporting application-oriented theories. They knew
their costs would drop dramatically the next time around, but they could not
predict by how much, so they undertook a second experiment [Miller et al. 1996],
the verification of the microcode in the AAMP-FV, again sponsored by NASA and
with SRI. The goal was to demonstrate dramatic reduction in cost through reuse
of the AAMP5 infrastructure and expertise.

Significantly, the AAMP-FV project confirmed that the expertise gained on the
AAMP5 project could be exploited to dramatically reduce the cost of formal veri-
fication. Of the 80 AAMP-FV instructions, 54 were proven correct, and the cost of
their verification dropped by almost an order of magnitude from that of the AAMP5
project. But as more complex instructions were attempted, proof techniques first
developed on the AAMP5 project broke down and new approaches had to be de-
vised. This phase progressed more as an exploratory project, with a steep learning
curve and unexpected delays. One of the main contributions of the AAMP-FV
project was the development of methods to handle complex microcode.

The latest project involves the AAMP7 processor, which has a separation kernel
built into the micro-architecture. Rockwell carried out a proof in ACL2 that a line-
by-line model of the microcode adheres to a security policy about how partitions
are allowed to communicate [Wilding et al. 2001; Greve and Wilding 2002]. What is
hard about proofs of this kind is the complexity of dealing with pointer-laden data
structures. The work received National Security Agency certification as a Multiple
Independent Levels of Security device for use in cryptographic applications, at
EAL-7 of the Common Criteria.

4.5 Airbus

Airbus have used SCADE for the last ten years for the development of DO-178B
Level A controllers for the A340-500/600 series, including the Flight Control Sec-
ondary Computer and the Electric Load Management Unit. A summary of these
and other industrial applications is described in [Berry 2008]. Esterel Technologies
reports the following benefits: (i) A significant decrease in coding errors: for the
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Airbus A340 project, 70% of the code was generated automatically. (ii) Shorter re-
quirements changes: the SCADE tool suite manages the evolution of a system model
as requirements change, and in the Airbus A340 project, requirements changes were
managed more quickly than before, with improved traceability. (iii) Major produc-
tivity improvement: Airbus reported major gains, in spite of the fact that each new
Airbus project requires twice as much software as its predecessor.

Having achieved significant savings on the overall design cycle, Airbus adopted
SCADE for A380 projects, where most on-board computers developed by Airbus
and its suppliers benefit from SCADE technology. The SCADE Suite is used for
the development of most of the A380 and A400M critical on-board software, and for
the secondary flying command system of the A340-500/600 aircraft, in operational
use since August 2002. The A380 and A400M Cockpit Control and Display System
and the On-board Airport Navigation System Display have been developed using
SCADE Display, oriented towards the specification of graphical interfaces.

4.6 The Maeslant Kering Storm Surge Barrier

The Maeslant Kering is a movable barrier protecting the port of Rotterdam from
flooding as a result of adverse weather and sea conditions. The decision to de-
ploy and to reopen the barrier is made on the basis of meteorological data by a
computer system. In terms of the international standard IEC 61508 [IEC 1997],
the application was placed at Safety Integrity Level 4, for which the use of for-
mal methods is “highly recommended”. The developers (CMG) were deliberately
cautious in defining goals for a formal methods deployment [Kars 1997; Tretmans
et al. 2001; Wijbrans et al. 2008]. Refinement technology was not felt to be fea-
sible for a system of this scale. It was also felt to be too high-risk an option to
introduce several new techniques in one project. The approach was therefore to in-
tegrate modelling and verification technology within the normal design trajectory.
The approach used formal modelling and verification in the analysis, design and
realisation phases of system development. The focus of the formal work was the
decision-making subsystem and its interfaces to the environment.

Data and operations were modelled in Z [Spivey 1989; Woodcock and Davies
1996], and this was embedded into a Promela model describing control, and de-
signs were validated using the SPIN model checker [Holzmann 2004]. Promela and
SPIN were selected because of the developers’ prior experience with the tool and a
perceived ease of use, meaning that the CMG engineers could perform most of the
modelling and analysis work without having to bring in outside assistance. The
Promela/Z linkage was ad hoc and did not itself have a formal semantics.

The final detailed design specified 29 programs with 20,000 lines of Z. Imple-
mentation was done via systematic coding in a safe subset of C++. There was no
formal code verification. The final implementation was 200 KLOC for the opera-
tional system and 250 KLOC of supporting code (simulators, test systems, etc.).
Informal but systematic test derivation from the Z model resulted in 80–90% code
coverage for black box testing, with the remainder covered by white box tests. The
problems raised during the process were logged; about 85% of them arose during
development phases and around 15% during reliability and acceptance test. The
residual faults have been minor. About half the faults detected during develop-
ment were in code or design, the remainder being weaknesses in test specifications,
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configuration parameters or documentation.
The experience was largely positive, its report [Tretmans et al. 2001] deliberately

echoing Hall’s Seven Myths [Hall 1990]. The software was believed by the developers
to be of significantly better quality than would otherwise have been achieved, and
that this quality benefit would hold for non-critical systems also. A significant shift
was noted in effort and cost towards specification and design phases. The authors
noted that abstraction skills were an essential part of the modelling process and
that the ease of constructing formal models should not seduce engineers away from
devoting effort to selecting appropriate abstractions.

No major defects have been reported in the system developed using formal tech-
niques. A mid-life upgrade was reported in 2008 [Wijbrans et al. 2008] and the
development of the successor application will continue to use formal techniques.

4.7 The Tokeneer Secure Entry System

The Tokeneer ID Station (TIS) project [Barnes et al. 2006], carried out by Praxis
High Integrity Systems in conjunction with SPRE Inc., under the direction of
NSA (National Security Agency), has shown that it is possible to produce high-
quality, low-defect systems conforming to the Common Criteria requirements of
Evaluation Assurance Level 5 (EAL5) [CCRA 2006]. The Tokeneer system was
originally developed by the NSA to investigate various aspects of biometrics in ac-
cess control, and consists of a secure enclave with controlled physical entry. Within
the secure enclave are a number of workstations whose users have security tokens
(e.g., smartcards) in order to gain access to the workstations. Users present their
security tokens to a reader outside the enclave, which uses information on the to-
ken to carry out biometric tests (e.g., fingerprint reading) of the user. If the user
passes these tests, then the door to the enclave is opened and the user is allowed
entry. At entry time, the system adds authorisation information to the security
token describing exactly the sort of access allowed for this visit to the enclave, such
as times of working, security clearance, and roles that can be taken on.

Praxis completed MULTOS, an important project using formal methods, in 2002
(see [Hall and Chapman 2002]. MULTOS is a Multi-Application Operating System
that allows several applications to reside on a single smart card. The success of this
project led to a proposal by the NSA for a demonstrator project in secure software
engineering. Praxis undertook this development over nine months in 2003, and a
conference paper was eventually cleared for publication [Barnes et al. 2006]. The
Tokeneer project material [Tokeneer 2009] was released under an NSA Technology
Transfer Agreement in July 2008 as a contribution to the Verified Software Grand
Challenge (see Sect. 6).

The TIS project re-developed one component of the Tokeneer system. To fa-
cilitate the development, TIS device simulators implemented by the independent
reliability consultants (SPRE Inc.) were used in place of actual TIS devices. The
core functionality of the system was written in SPARK, a subset of Ada with an
accompanying tool-set, which was specifically designed for writing software for high-
integrity applications [Barnes 2003]. The support software to interface it to sim-
ulated peripherals was written in full Ada. Tables II and III, taken from [Barnes
et al. 2006], record the project’s size, productivity, and effort. The project re-
quired 260 person-days of effort, comprising three part-time staff working over nine
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Size/source lines
Productivity
(LOC/day)

Ada

SPARK

annotations and
comments

During

coding
overall

TIS core 9,939 16,564 203 38

Support software 3,697 2,240 182 88

Table II. Tokeneer: size and productivity.

Project phase
Effort

%
Effort

Person-days

Project management 11 28.6

Requirements 10 26.0

System specification 12 31.2

Design Core functions 15 39.0

TIS Core code and proof 29 75.4

System test 4 10.4

Support software and integration 16 41.6

Acceptance 3 7.8

Total 100 260.0

Table III. Tokeneer: breakdown by project phase.

months. The number of defects found in the system during independent system
reliability testing and since delivery in 2003 is two. One was discovered by code
inspection after the completion of the project (see Spinellis’s blog for an account of
finding this bug [Spinellis 2008]).

A second bug was found by Praxis when they examined an undischarged proof
obligation. It relates to code that validates integer values read from a file. These in-
tegers represent seconds, and are converted into tenths-of-seconds, which can cause
an overflow error. The SPARK tools were used to generate verification conditions
for partial correctness and run-time errors, but without side-conditions relating to
Adas Overflow Check, because of limited capability to discharge such VCs. Follow-
ing improvements to the tools, the VCs were re-generated and checked, discovering
the bug. The developers note [Chapman 2008] that the defect was not discovered
by any testing during the original project, or any use or attempt to analyse the
system since the initial delivery.

Barnes reports [Barnes et al. 2006] that the testing team from SPRE Inc. actually
discovered two in-scope failures as part of their testing regime: both concerned
missing items from the user manual, rather than errors in the TIS Core. The
entry in Table III for system test does not include the testing contribution from
SPRE Inc. Barnes estimates [Barnes et al. 2006] that a more representative figure
might be 25%. The functional specification, written in Z and explanatory English,
consists of about 100 pages.

The task set by NSA was to develop a system in conformance with the require-
ments in the Common Criteria for EAL5. In fact, Praxis exceeded the EAL5
requirements in a number of areas, because they found that it was actually cost-
effective to use some of the more rigorous techniques. Praxis met the EAL5 criteria
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in the main body of the core development work, covering configuration control,
fault management, and testing. They exceeded EAL5, coming up to EAL6 or
EAL7 levels, in the development areas covering the specification, design, imple-
mentation, and correspondence between representations. Other aspects were out
of scope, such as delivery and operational support.

4.8 The “Mobile FeliCa” IC Chip Firmware

“FeliCa” is a contactless IC card technology widely used in Japan, developed and
promoted by Sony Corporation. Mobile telephones with FeliCa chips can serve as
electronic purses, travel tickets, door keys, etc. FeliCa Networks Inc. decided to
use VDM++ and VDMTools [Fitzgerald et al. 2008] for the development of the
firmware for a new generation IC chip containing new features but nevertheless
operating to the strict timing requirements provided by earlier generations.

The project lasted three years and three months, and involved 50 to 60 people
with an average age of a little over 30 years. No members had knowledge of or
experience with the formal method at the time of project launch. VDM++ training
(in Japanese) was provided for the development team by CSK. In addition an
external VDM consultant from CSK Systems was used throughout the project. The
new version of the firmware was subsequently released in millions of IC chips [Kurita
et al. 2008; Larsen and Fitzgerald 2007].

A large number of VDM++ test cases were developed and then executed using
the VDMTools interpreter. Using the VDMTools test coverage analysis facility, it
was possible to display test coverage information on the VDM++ model after exe-
cuting the entire test suite. Here, 82% of the VDM++ model was covered, and the
remaining parts of the model were manually inspected. The main outputs included
a 383-page protocol manual written in Japanese, a 677-page external specification
document written in VDM++ (approximately 100 KLOC including comments, of
which approximately 60 KLOC are test cases formulated in VDM++). The imple-
mentation was approximately 110 KLOC of C/C++, including comments.

FeliCa Networks took the view that the application had been highly effective [Ku-
rita et al. 2008]. From a quality perspective, more errors were found in the early
phases of the development than in other similar projects at FeliCa Networks. In
total 440 defects were detected in the requirements and the specifications. Of these,
278 were found directly a result of the use of VDM++. Of these, 162 were found by
review of the model, whereas 116 were discovered using the VDMTools interpreter
with test cases against the executable VDM++ model.

5. OBSERVATIONS

In spite of their successes, verification technology and formal methods have not seen
widespread adoption as a routine part of systems development practice, except, ar-
guably, in the development of critical systems in certain domains. Indeed, we expect
diffusion of rigorous verification and design technology to take place gradually, and
not result in their explicit adoption as a distinct technology [Butterfield 1997].

Previous surveys and our recent review indicate that there have been successes
in the application of verification and formal methods to problems of industrial scale
and significance, and within industrial settings. Leading hardware developers con-
tinue to apply model checking and proof technology. In software, the exploitation
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of formal techniques has provided some evidence of the potential for applications
focused on particular domains, including code verification. Application in the more
traditional high-integrity critical applications remains strong, and is largely per-
formed by technical specialists.

In this section, we revisit concerns raised in previous surveys and identify progress,
trends, and remaining challenges in the light of more recent projects. We hope that
these challenges will be taken up by researchers willing to advance the current state
of the art in formal methods.

5.1 Lightweight and Heavyweight Formal Methods

The entry cost for formal methods must seem rather high to the hard-pressed
software project manager [Snook and Harrison 2001], although, as noted in Sect. 4.4,
the cost of repeated use can decrease dramatically. One of the main difficulties in
engineering is the cost-effective choice of what to do and where. No engineer gives
the same attention to all the rivets: those below the waterline are singled out;
similarly, a formalism need not be applied in full depth to all components of an
entire product and through all stages of their development, and that is what we see
in practice. The various levels of rigour include the following:

—Best efforts to point out likely generic errors. Examples range from lint [John-
son 1978] to Coverity Prevent (a commercial tool developed from the Stanford
Checker). The latter performs two sorts of analysis: inter-procedural data-flow
analysis, which describes function characteristics with implications for externally
observable behaviour; and statistical analysis to detect important trends in the
code suggesting anomalies.

—Near-guarantee that all potential errors of a certain class have been flagged. A
major exemplar here is the extended static checking of ESC/Java2 [Chalin et al.
2006], a system for automatically detecting at compile-time errors that are nor-
mally not detected until run-time, such as: array-bound errors, null dereferences,
and race conditions and deadlocks in multi-threaded programs.

—Run-time checking of assertions and other redundant information supplied by
the programmer. See [Clarke and Rosenblum 2006] for a historical perspective.
Major tools are based on JML [Burdy et al. 2005] and Spec# [Leino 2007].

—Contractual programming, with assertions at major interfaces. Examples include
Eiffel [Meyer 1991] and SPARK [Barnes 2003].

—Lightweight formal methods. This term has been applied to various forms of
application that do not entail such a deep application of the technology. For
example, Jones’s approach [Jones 1996] favours rigour over full formality, and
the production of human-readable proofs that could be formalised if the need
arises. Jackson and Wing [Jackson and Wing 1996] suggest a focused application
of nonetheless fully formal techniques to partial problems.

All of these deserve targeted research, and the science behind all of them has much
in common. It is the duty of the engineer to determine at what places and how far
to exploit the science. Our review does not suggest that there is a single strategy for
the successful application of verification and formal methods technology. However, a
lightweight approach appears to underpin many recent industry applications. Fully
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formal techniques are used, but are typically focused on specific subsystems and on
the verification of particular properties. The success of this approach depends on,
and is limited by, the quality of tool support.

The significant developments in tools and tool chains might be expected to affect
the forms of deployment of formal techniques in future. Where the achievement of
certification is a significant driver, specialist practitioners may be used to construct
formal models, formulate conjectures for verification, and guide and interpret the
results of semi-automated formal analyses. However, the increasing capability of
automated formal analysis makes it possible to have an impact on larger-scale
developments, not necessarily critical, that are driven by the need to reduce time
to market, defect rates or costs of testing and maintenance. In such projects, we
might expect to see widespread use of enhanced static analysis tools incorporating
model checking or proof capabilities.

5.2 Tool Support

The case studies reported in Sect. 4 were predominantly applications of formal
methods performed by technical specialists using tools that, with few exceptions,
were not felt to be rugged enough for wide-scale application. Almost all surveys in
the area point to the importance of producing tools that are well-enough supported
to merit commercial application. Particular challenges identified include: support
for automated deduction, especially where human interaction with a proof tool is
required; common formats for the interchange of models and analyses; and the lack
of responsive support for tools users in the case of the many tools offered on a “best
efforts” basis. The development of such robust tooling involves addressing practical
issues such as providing multi-language support, porting to a variety of platforms,
version control, and assistance for co-operative working by multiple engineers on
single developments. Several studies listed in Sect. 2 and around a quarter of
the projects surveyed in Sect. 3 identify the lack of commercially supported or
“ruggedised” tools as an impediment to take-up of formal methods. In spite of the
observation that tools are neither necessary nor sufficient for an effective formal
methods application [Craigen et al. 1993a], it appears almost inconceivable that an
industrial application would now proceed without tools.

The research community has focused considerable effort on the development of
new theories to underpin verification, the improvement of tools and, to a limited
but increasing extent, tools integration. The work on Mondex originally involved
the manual construction of proofs; its more recent revival gives an indication of the
improvements in the level of tool support in recent years, whether as a result of
improved capability or the underlying Moore’s Law increase in processing power.
In more recent highlighted projects, and in the new survey, there are examples of
robust tools at industrial strength. However, these have still had only limited take-
up and there remain many interesting challenges in the underpinning theories of
verification as well as in user interaction with verification tools. We must remark
that some of the free comments received in the new survey indicate that tools are
still not usable, in the words of one respondent, “by mere mortals”.
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5.3 Increasing Automation

Rushby [Rushby 2000], quoting Norman [Norman 1999], compares verification tools
to early radio sets, with “dozens of controls to adjust such arcane features as re-
generation and filter bandwidth, and operators were expected to understand the
fundamentals of radio reception”. A modern radio, on the other hand, is trivial to
operate. Model checkers are following this trend, where the goal is to finally become
a push-button technology for certain classes of software, such that the trade-off be-
tween precision and computational cost of correctness analysis can be controlled by
a few simple parameters [Clarke et al. 2008]. Wherever possible, proof tools need
to disappear, so that they are fully hidden behind the other tools for analysis, test-
ing, and design automation. Clarke and Wing [Clarke and Wing 1996] anticipate
formal verification technology being applied by developers “with as much ease as
compilers”. Craigen et al. [Craigen et al. 1993a; 1993b] suggest that tools need to
be integral parts of development environments, that the gap between the tools and
the standard production process needs to disappear, and that certain analyses could
be invoked within existing development environments. There are strong arguments
in favour of this approach as a means of moving formal verification technology from
innovators to first adopters [Bloomfield and Craigen 1999].

Research is moving towards tools that may be used to provide value-added anal-
yses “under the hood” of existing development environments. The SLAM and SDV
experience (Sect. 4), for example, suggests that a targeted approach can yield sig-
nificant benefits on an existing code base, when the tools are carefully integrated
with existing development environments.

Successful take-up of formal verification technology involves “packing specific
analyses into easier to use but more restricted components” [Bloomfield and Craigen
1999]. Such automatic analyses must return results that are comprehensible to the
user [Arvind et al. 2008]. However, interactions with formal analysis engines must
be done at the level of the design language, not the formalism.

Successful integration requires that tools become decoupled components that
can be integrated into existing tools for design, programming or static analysis.
The integration of multiple verification approaches has been pioneered in develop-
ment environments such as PROSPER [Dennis et al. 2003] and “plug-in” archi-
tectures such as Eclipse have been successfully applied for tools supporting Event-
B [RODIN-Project-Members 2007] and VDM [Overture-Core-Team 2007]. Inte-
grations between graphical design notations and the mathematical representations
required for formal analysis are increasingly common. For example, the UML to
B link [Snook and Butler 2006] allows use of a familiar modelling notation to be
coupled to a formal analytic framework, and support for the verification of im-
plementations of systems specified using control law diagrams has been addressed
using Z, CSP, and Circus [Cavalcanti et al. 2005].

Integration with existing development processes is also significant. The recent
survey suggests that model checkers and test generators have significant application
in industry. We could speculate that this is because they can be integrated into
existing development processes with less upheaval than the adoption of a complete
new design or programming framework.
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5.4 Cost Effectiveness

Austin and Parkin [Austin and Parkin 1993] note the absence of a convincing body
of evidence for the cost-effective use of formal methods in industry as a major barrier
to industrial adoption, although they also suggest that it is a problem naturally
associated with process change. Craigen et al. [Craigen et al. 1993a] point to the lack
of a generally accepted cost model as the reason for this lack of evidence, although
past surveys and highlighted projects provide many anecdotes supporting the claim
that formal techniques can be used to derive low-defect systems cost effectively. In
our survey, only half of the contributions reported the cost consequences, either
way, of using formal techniques. The picture is complicated, even where costs are
carefully monitored in trial applications of formal methods. The Rockwell Collins
work (Sect. 4.4) makes the point that the cost of a one-off formal methods project
is significantly greater than the cost of repeated projects within a domain.

There have been some studies comparing developments with and without the use
of formal techniques, such as in the defence sector [Larsen et al. 1996]. Weaknesses
were identified in the quantitative claims made for earlier projects [Finney and
Fenton 1996], suggesting that strong empirical evidence is needed to encourage
adoption. Bloomfield and Craigen [Bloomfield and Craigen 1999] comment that
the results of some scientific studies do not scale to engineering problems, and that
there has been over-selling and excessive expectation.

Evidence on the technical and cost profiles of commercial applications may not
be publicly accessible, but nonetheless, it suggests that pilot studies in verification
technology are not always being conducted with a view to gathering information on
subsequent stages in technology adoption. Pilot applications of verification technol-
ogy should be observable and the observations made should be relevant to the needs
of those making critical design decisions. For example, the FeliCa networks study
(Sect. 4.8) focused on measuring queries against informal requirements documents
that were attributable to formal modelling and analysis, because this was seen as a
significant feature in a development process where the object was to improve speci-
fications. The Deploy project [Romanovsky 2008; Deploy 2009] explicitly addresses
the movement from innovators to early adopters by means of studies measuring the
effects of verification tools integrated into existing development processes.

The decision to adopt development technology is risk-based and convincing ev-
idence of the value of formal techniques in identifying defects (with as few false
positives as possible) can be at least as powerful as a quantitative cost argument.
We would argue for the construction of a strong body of evidence showing the util-
ity of formal techniques and ease of use at least as strongly as we would call for the
gathering of more evidence regarding development costs.

6. THE VERIFIED SOFTWARE REPOSITORY

In 2003, Tony Hoare proposed the Verifying Compiler as a Grand Challenge for
Computer Science [Hoare 2003]. As the proposal started to gain the support of the
community, it became the Grand Challenge in Verified Software [Hoare and Misra
2008] and then the Verified Software Initiative, which was officially launched at the
2008 Conference on Verified Software: Theories, Tools, and Experiments [Shankar
and Woodcock 2008]. The UK effort is in the Grand Challenge in Dependable
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Systems Evolution (GC6), and current work includes building a Verified Software
Repository [Bicarregui et al. 2006].

The Repository will eventually contain hundreds of programs and program mod-
ules, amounting to several million lines of code. The code will be accompanied by
full or partial specifications, designs, test cases, assertions, evolution histories, and
other formal and informal documentation. Each program will have been mechan-
ically checked by one or more tools, and this is expected to be the major activity
in the VSI. The eventual suite of verified programs will be selected by the research
community as a realistic representative of the wide range of computer applications,
including smart cards, embedded software, device routines, modules from a stan-
dard class library, an embedded operating system, a compiler for a useful language
(possibly Java Card), parts of the verifier itself, a program generator, a communi-
cations protocol (possibly TCP/IP), a desk-top application, parts of a web service
(perhaps Apache). We emphasise the academic role of the repository in advanc-
ing science, but this does not preclude parts of the repository containing reusable
verified components directed towards real-life application domains.

The notion of verification will include the entire spectrum, from avoidance of spe-
cific exceptions like buffer overflow, general structural integrity (or crash-proofing),
continuity of service, security against intrusion, safety, partial functional correct-
ness, and (at the highest level) total functional correctness [Hoare and Misra 2008].
Similarly, the notion of verification will include the entire spectrum, from unit test-
ing to partial verification through bounded model checking to fully formal proof.
To understand exactly what has been achieved, each claim for a specific level of cor-
rectness will be accompanied by a clear informal statement of the assumptions and
limitations of the proof, and the contribution that it makes to system dependability.
The progress of the project will be marked by raising the level of verification for
each module in the repository. Since the ultimate goal of the project is scientific,
the ultimate level achieved will always be higher than what the normal engineer
and customer would accept.

In the following sections we describe five early pilot projects that will be used
initially to populate the repository. The verified file-store in Sect. 6.1 is inspired
by a space-flight application. FreeRTOS in Sect. 6.2 is a real-time scheduler that
is very widely used in embedded systems. The bidding process for the Radio Spec-
trum Auctions described in Sect. 6.3 has been used with bids ranging from several
thousands of dollars to several billions. The cardiac pacemaker in Sect. 6.4 is a
real system, and is representative of an important class of medical devices. Finally,
Microsoft’s hypervisor in Sect. 6.5 is based on one of their future products. The
topics of two other pilot projects have been described above: Mondex, in Sect. 4.3,
is a smart card for electronic finance; and Tokeneer, in Sect. 4.7, is a security ap-
plication involving biometrics. These seven pilot projects encompass a wide variety
of application areas and each poses some important challenges for verification.

6.1 Verified File Store

Pnueli first suggested the verification of the Linux kernel as a pilot project. Joshi
and Holzmann suggested a more modest aim: the verification of the implementation
of a subset of the Posix file store interface suitable for flash-memory hardware with
strict fault-tolerant requirements to be used by forthcoming NASA missions [Joshi
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and Holzmann 2007]. The space-flight application requires two important robust-
ness requirements for fault-tolerance: (i) no corruption in the presence of unexpected
power-loss; and (ii) recovery from faults specific to flash hardware (e.g., bad blocks,
read errors, bit corruption, wear-levelling, etc.). In recovery from power loss in par-
ticular, the file system is required to be reset-reliable: if an operation is in progress
when power is lost, then on reboot, the file system state will be as if the operation
either has successfully completed or has never started.

The Posix file-system interface [Josey 2004] was chosen for four reasons: (i) it
is a clean, well-defined, and standard interface that has been stable for many
years; (ii) the data structures and algorithms required are well understood; (iii) al-
though a small part of an operating system, it is complex enough in terms of
reliability guarantees, such as unexpected power-loss, concurrent access, or data
corruption; and (iv) modern information technology is massively dependent on re-
liable and secure information availability.

An initial subset of the Posix standard has been chosen for the pilot project.
There is no support for: (i) file permissions; (ii) hard or symbolic-links; or (iii) en-
tities other than files and directories (e.g., pipes and sockets). Adding support
for (i) is not difficult and may be done later, whereas support for (ii) and (iii) is
more difficult and might be beyond the scope of the challenge. Existing flash-
memory file-systems, such as YAFFS2, do not support these features, since they
are not usually needed for embedded systems.

6.2 FreeRTOS

Richard Barry (Wittenstein High Integrity Systems) has proposed the correctness
of their open source real-time mini-kernel as a pilot project. FreeRTOS is designed
for real-time performance with limited resources, and is accessible, efficient, and
popular. It runs on 17 different architectures and is very widely used in many
applications. There are over 5,000 downloads per month from SourceForge, making
it the repository’s 250th most downloaded code (out of 170,000 codes). It is less
than 2,500 lines of pointer-rich code. This makes it small, but very interesting.

There are really two challenges here. The first is to analyse the program for
structural integrity properties. The second is to make a rational reconstruction of
FreeRTOS, starting from an abstract specification, and refining down to working
code, with all verification conditions discharged with a high level of automation.
These challenges push the current state of the art in both program analysis and
refinement of pointer programs.

6.3 Radio Spectrum Auctions

Robert Leese (Smith Institute) has proposed the management of Radio Spectrum
Auctions as a pilot project. The radio spectrum is an economically valuable re-
source, and OfCom, the independent regulator and competition authority for the
UK communications industries, holds auctions to sell the rights to transmit over
particular wavelengths. The auction is conducted in two phases: the primary stage
is a clock auction for price discovery; the supplementary stage is a sealed-bid auc-
tion. Both are implemented through a web interface. These auctions are often
combinatorial, offering bundles of different wavelengths, which may then also be
traded in secondary markets. The underlying auction theory is still being de-
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veloped, but there are interesting computational problems and challenges to be
overcome in getting a trustworthy infrastructure, besides the economic ones.

6.4 Cardiac Pacemaker

Boston Scientific has released into the public domain the system specification for
a previous generation pacemaker, and are offering it as a challenge problem. They
have released a specification that defines functions and operating characteristics,
identifies system environmental performance parameters, and characterises antici-
pated uses. This challenge has multiple dimensions and levels. Participants may
choose to submit a complete version of the pacemaker software, designed to run on
specified hardware, they may choose to submit just a formal requirements docu-
ments, or anything in between.

McMaster University’s Software Quality Research Laboratory is putting in place
a certification framework to simulate the concept of licensing. This will enable the
Challenge community to explore the concept of licensing evidence and the role of
standards in the production of such software. Furthermore, it will provide a more
objective basis for comparison between putative solutions to the Challenge.

6.5 Hypervisor

Schulte and Paul initiated work within Microsoft on a hypervisor (a kind of sepa-
ration kernel), and it has been proposed by Thomas Santen as a challenge project.
The European Microsoft Innovation Center is collaborating with German academic
partners and the Microsoft Research group for Programming Languages and Meth-
ods on the formal verification of the new Microsoft Hypervisor to be released as
part of Windows Server 2008. The Hypervisor will allow multiple guest operating
systems concurrently on a single hardware platform. By proving the mathematical
correctness of the Hypervisor they will control the risks of malicious attack.

7. CONCLUSIONS

In this paper we have presented what is perhaps the most comprehensive review
ever made of formal methods application in industry. We see a resurgence of inter-
est in the industrial applications, as shown by the recent emergence of the Verified
Software Initiative. In most current applications of formal methods, tools and tech-
niques are being used that have been around for some time, although significant
advances in verification technology have yet to filter through to more widespread
use. We conclude our paper with some observations on the vitality of formal meth-
ods and the maturity of its underlying theory and supporting tools. We discuss how
to conduct experiments in this area. Finally, we describe future studies in formal
methods, practice and experience.

7.1 Vitality of Formal Methods

Formal methods continue to be a very active research area. There are several spe-
cialist journals, including Formal Aspects of Computing and Formal Methods in
System Design, both of which emphasise practical applications as well as theory.
The major conferences include the Formal Methods Symposium and Computer-
Aided Verification, both of which have very competitive submissions processes.
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Keyword Number of papers Papers/year (2007)

Tools & techniques

“ACL2” 65 5

“ASM” 364 51

“Alloy” 322 38

“Isabelle” 967 91

“JML” 561 20

“PVS” 109 5

“SPIN model checker” 110 7

“VDM” 303 29

Verification-related keywords

“Correct” 4,610 387

“Formal methods” 1,473 94

“Model checking” 2,547 288

“Proof” 4,531 313

“Theorem proving” 709 19

“Verification” 10,007 937

Testing and validation

“Testing” 21,421 1,810

“Validation” 2,902 286

Other areas

“Compiler” 2,698 128

“Database” 23,333 1,236

“eXtreme programming” 192 5

“Java” 5,217 427

“Object orientation” 7,841 265

“Quantum computation” 2,799 367

“Requirements” 5,275 475

“UML” 2,819 271

“Vision” 8,969 790

Total number of papers in DBLP 1,177,462 118,566

Table IV. DBLP Computer Science Bibliography

There was a World Congress in 1999, which will be repeated in 2009. Other impor-
tant conferences include Principles of Programming Languages (POPL), Logic in
Computer Science (LICS), and the Conference on Automated Deduction (CADE).
There are very many smaller, specialised conferences and workshops. Some of these
are focused on tools and techniques, such as ABZ, which covers the Alloy, ASM, B,
and Z notations, and the Refinement Workshop. Others tackle specific theoretical
issues, such as Integrated Formal Methods, whilst others cover specific application
areas, such as Formal Methods for Open Object-based Distributed Systems and For-
mal Methods for Human-Computer Interaction.

The DBLP Computer Science Bibliography [DBLP 2009] contains references to
over one million papers, indexed by metadata that is searchable by keywords, and
Table IV presents the results of a few searches (dated 9 March 2009). It is interesting
to see that there appear to be as many papers published in the general area of
verification (23,877 papers, 2,038/year) as there are in testing and validation (24,323
papers, 2,096/year). Verification represents 2% of all papers recorded in DBLP, and
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verification and validation together account for 4%. At the bottom of the table,
we include some keywords from other areas of computer science as a contrast. For
example, there are as many papers published in the tools and techniques we have
listed as there are in UML; there is twice as much academic interest in JML as
in eXtreme Programming; verification and validation each have as many papers as
databases, although the latter is a declining area, judging by the rate of publication.
Of course, all these figures are rather imprecise, relying on unvalidated metadata.

It is difficult to say precisely how many researchers there are in verification
and formal methods, perhaps because these areas have reached a level of matu-
rity that they underpin other areas, with verification being an enabling activity
in, say, knowledge acquisition or adaptive systems. It has been estimated that
there are 1,000 researchers in verification in the USA [Shankar 2009], with perhaps
300 professors, 200 graduate students, about 250 industrial researchers at places
like Microsoft, Intel, Cisco, IBM, Cadence, Synopsys, and Mentor Graphics, and
50 government researchers in NASA, NSA, NRL, and another 200 or so people
doing verification-related work in industry. The UK Engineering and Physical Sci-
ence Research Council [EPSRC 2009] currently funds about 400 research projects
in Software Engineering and the Fundamentals of Computing, with a combined
value of £144 million (US$200 million) (it also funds many other topics in com-
puter science, many of which also rely on verification). Of the 144 projects, about
95 mention one of the verification keywords in Table IV, with a combined value
of £30 million ($40 million). These projects have 75 different principal investi-
gators with 300 research assistants, making a total with accompanying graduate
students of about 500 researchers. Similar rough estimates have been offered for
continental Europe (1,000), China (250), the Nordic countries (500), Japan (250),
and Australia, Brazil, Canada, New Zealand, Singapore, and South Africa (1,000,
collectively). This makes about 4,000 researchers. Of course these figures are very
rough, and a more rigorous analysis is needed.

7.2 Maturity of Tools and Advances in Theory

There were “heroic” efforts to use formal methods 20 years ago when few tools were
available (to use Bloomfield’s phrase [Bloomfield and Craigen 1999]). For exam-
ple, in the 1980s the application of the Z notation to the IBM CICS transaction
processing system was recognised as a major (award-winning) technical achieve-
ment [Houston and King 1991], but it is significant that it used only very simple
tools: syntax and type-checkers. In the 1990s, the Mondex project (Sect. 4.3) was
largely a paper-and-pencil exercise, but it still achieved the highest level of certi-
fication. Our evidence is that times have changed: today many people feel that
it would be inconceivable not to use some kind of verification tool. Whether they
are right or not, there has been a sea-change among verification practitioners about
what can be achieved: people seem much more determined to verify industrial prob-
lems. This change in attitude, combined with the increase in computing capacity
predicted by Moore’s Law, and the dramatic advances in research in verification
technology (described elsewhere in this issue of Computing Surveys) means that
the time is right to attempt to make significant advances in the practical appli-
cation of formal methods and verification in industry. In certain areas, there are
collections of mature tools with broadly similar capabilities. For example, the Mon-
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dex experiment also shows very similar results from the application of state-based,
refinement-oriented techniques and their tools. This suggests that there is scope
for convergence and inter-operation between tools.

There has been a move beyond the theory for verification of well-structured sub-
sets of a programming language, to deal with the more potentially undisciplined
aspects of programming; for example, pointer swinging [O’Hearn et al. 2001] and
concurrency [Vafeiadis and Parkinson 2007]. The increasing popularity of design
patterns for disciplined use of these features [Krishnaswami et al. 2009] could sup-
port, and be supported by, verification technology.

Satisfiability Modulo Theories (SMT) is a decision problem for logical formulas
with respect to combinations of background theories expressed in classical first-
order logic with equality [Barrett et al. 2008]. The range of theories include integers,
real numbers, lists, arrays, and bit vectors. The solvers can handle formulas in
conjunctive normal forms with hundreds of thousands of variables and millions of
clauses. They make it possible to apply classical decision procedures to domains
where they were previously applicable only in theory [Avigad 2007].

Research in automated theorem proving has made major advances over recent
years, particularly in first-order logic, which is expressive enough to specify many
problems conveniently. A number of sound and complete calculi have been de-
veloped, enabling fully automated systems [TPTP 2009a]. More expressive logics,
such as higher-order and modal logics, allow the convenient expression of a wider
range of problems than first-order logic, but theorem proving for these logics is less
developed. The advancement of these systems has been driven by a large library
of standard benchmarks, the Thousands of Problems for Theorem Provers (TPTP)
Problem Library [TPTP 2009b], and the CADE ATP System Competition (CASC),
a yearly competition of first-order systems for many important classes of first-order
problems [CADE 2009]. A major opportunity is to turn competition successes into
practical application.

7.3 Experimentation

Many projects using formal methods demonstrate early phase benefits, but we were
surprised that many respondents to our questionnaire did not know the cost impli-
cations of their use of formal methods and verification. Formal methods champions
need to be aware of the need to measure costs. Through the Verified Software Ini-
tiative, there are many experiments that use material that is realistic to industrial
use, and which promises to scale. The experience gained in these experiments con-
tributes to the development of theory, tools, and practice, and it is the tools that
will be commercialised to transfer the science and technology to industrial use.

The work reported at Rockwell Collins in Sect. 4.4 is that second and third
use of a formal technology and tool chain can lead to order-of-magnitude cost
reductions. That is why the first use should always be by scientists, and may be
horrifically expensive (we are pushing the boundaries); but even so, the experiment
must record costs. This is the experience of the human genome project. The first
(composite) human genome cost US$4 billion to sequence. It can now be done for
an individual for $4,000. When it gets to $400, the technique will be routinely
applied in healthcare.

One of the goals of the VSR should be to set the standard for the well-designed
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experiment. It should state clearly the hypothesis being tested and address the
validity of the experiment as a means of testing the hypothesis. It should try to
measure every aspect of the work undertaken, and understand the validity of the
measurements being made. But not all experiments in software engineering are
set up this way, and we believe that for the Verified Software Repository there
should be better appreciation of experimental method. Each experiment must be
designed to make the next experiment easier, by leaving a re-usable trail of theory
and theorems, by abstracting specifications from a domain of related problems, and
by suggesting improvements in the tools used.

7.4 The Future

More details about our survey and its data can be found at [VSR 2009]. We are
continuing to collect further data on industrial formal methods projects. Anyone
wishing to contribute should contact any of the authors for further details. We
are planning to review the state of practice and experience in formal methods in
five, 10, and 15 years’ time, as one way of assessing the industrial uptake of formal
methods. Perhaps at the end of this we will have hard evidence to support Hoare’s
vision of a future world in which computer software is always the most reliable
component in any system which it controls, and no one can blame the software any
more [Hoare 2007].
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ASM Abstract State Machine
CA Certification Authority
CADE Conference on Automated Deduction
CASE Computer Aided Software Engineering
CENELEC The European Committee for Electrotechnical Standardization
CICS Customer Information Control System
CSP Communicating Sequential Processes
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EMIC European Microsoft Innovation Center
FDR Failure Divergence Refinement
HCI Human Computer Interface
IEC International Electrotechnical Commission
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KIV Karlsruhe Interactive Verifier
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MBD Model Based Development
NSA National Security Agency
OCL Object Constraint Language
PROSPER Proof and Specification Assisted Design Environments
RODIN Rigorous Open Development Environment for Complex Systems
PVS Prototype Verification System
RTE Real Time Executive
RTOS Real Time Operating System
SCADE Safety Critical Application Development Environment
SDV Static Driver Verifier
SIL Safety Integrity Level
UML Unified Modelling Language
VDM Vienna Development Method
VSI Verified Software Initiative
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