
Model-Checking Concurrent Systems

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

https://www.risc.jku.at

Wolfgang Schreiner https://www.risc.jku.at 1/51

1. The Model Checker Spin

2. Model Checking in RISCAL

3. Automatic Model Checking

Wolfgang Schreiner https://www.risc.jku.at 2/51

The Model Checker Spin

Spin system:

Gerard J. Holzmann et al, Bell Labs, 1980–.
Freely available since 1991.
Symposium series since 1995 (31th symposium “Spin 2025”).
ACM System Software Award in 2001.

Spin resources:

Web site: http://spinroot.com.
Survey paper: Holzmann “The Model Checker Spin”, 1997.
Book: Holzmann “The Spin Model Checker — Primer and Reference
Manual”, 2004.

Goal: verification of (concurrent/distributed) software models.

Wolfgang Schreiner https://www.risc.jku.at 3/51

The Model Checker Spin

On-the-fly LTL model checking of finite state systems.

System S modeled by automaton SA.

Explicit representation of automaton states.
There exist various other approaches (discussed later).

On-the-fly model checking.

Reachable states of SA are only expended on demand.
Partial order reduction to keep state space manageable.

LTL model checking.
Property P to be checked described in PLTL.

Propositional linear temporal logic.

Description converted into property automaton PA.

Automaton accepts only system runs that do not satisfy the property.

Model checking based on automata theory.

Wolfgang Schreiner https://www.risc.jku.at 4/51

The Spin System Architecture

Wolfgang Schreiner https://www.risc.jku.at 5/51

Features of Spin

System description in Promela.
Promela = Process Meta-Language.

Spin = Simple Promela Interpreter.

Express coordination and synchronization aspects of a real system.
Actual computation can be e.g. handled by embedded C code.

Simulation mode.
Investigate individual system behaviors.
Inspect system state.
Graphical interface ispin for visualization.

Verification mode.
Verify properties shared by all possible system behaviors.
Properties specified in PLTL and translated to “never claims”.

Promela description of automaton for negation of the property.

Generated counter examples may be investigated in simulation mode.

Verification and simulation are tightly integrated in Spin.
Wolfgang Schreiner https://www.risc.jku.at 6/51

The Spin User Interface

Wolfgang Schreiner https://www.risc.jku.at 7/51

The Client/Server System in Promela

/* definition of a constant MESSAGE */

mtype = { MESSAGE };

/* two arrays of channels of size 2,

each channel has a buffer size 1 */

chan request[2] = [1] of { mtype };

chan answer [2] = [1] of { mtype };

/* the system of three processes */

init

{

run client(1);

run client(2);

run server();

}

/* the mutual exclusion property */

ltl mutex { []!(client[1]@C && client[2]@C)}

/* the client process type */

proctype client(byte id)

{

do :: true ->

request[id-1] ! MESSAGE;

W: answer[id-1] ? MESSAGE;

C: skip; // the critical region

request[id-1] ! MESSAGE

od;

}

Wolfgang Schreiner https://www.risc.jku.at 8/51

The Client/Server System in Promela

/* the server process type */

proctype server()

{

/* three variables of two bit each */

unsigned given : 2 = 0;

unsigned waiting : 2 = 0;

unsigned sender : 2;

do :: true ->

/* receiving the message */

R: if

:: request[0] ? MESSAGE ->

S1: sender = 1

:: request[1] ? MESSAGE ->

S2: sender = 2

fi;

/* answering the message */

if

:: sender == given ->

if

:: waiting == 0 ->

given = 0

:: else ->

given = waiting;

waiting = 0;

answer[given-1] ! MESSAGE

fi;

:: given == 0 ->

given = sender;

answer[given-1] ! MESSAGE

:: else

waiting = sender

fi;

od;

}

Wolfgang Schreiner https://www.risc.jku.at 9/51

The Spin Simulation View

Wolfgang Schreiner https://www.risc.jku.at 10/51

Simulating the System Execution in Spin

Wolfgang Schreiner https://www.risc.jku.at 11/51

The Spin Verification View

Wolfgang Schreiner https://www.risc.jku.at 12/51

Specifying a System Property in Spin

The easiest way to specify an LTL property is to specify it inline.

The formula is specified globally (i.e., outside all proctype or

init declarations) with the following syntax:

ltl [name] ’{’ formula ’}’

... The names of operators can either be abbreviated with the symbols

shown above, or spelled out in full (as always, eventually, until,

implies, and equivalent. The alternative operators weakuntil, stronguntil,

and release (for the V operator, see above), are also supported. This

means that the following two are equivalent:

ltl p1 { []<> p }

ltl p2 { always eventually p }

ltl p3 { eventually (a > b) implies len(q) == 0 }

There is just one restriction: you cannot use the predefined operators

empty, nempty, full, nfull in inline ltl formula...

Wolfgang Schreiner https://www.risc.jku.at 13/51

Spin LTL

Grammar:

ltl ::= opd | (ltl) | ltl binop ltl | unop ltl

Operands (opd):

true, false, user-defined names starting with a lower-case letter,

or embedded expressions inside curly braces, e.g.,: { a+b>n }.

Unary Operators (unop):

[] (the temporal operator always)

<>(the temporal operator eventually)

! (the boolean operator for negation)

Binary Operators (binop):

U (the temporal operator strong until)

W (the temporal operator weak until)

V (the dual of U): (p V q) means !(!p U !q))

&& (the boolean operator for logical and)

|| (the boolean operator for logical or)

/\ (alternative form of &&)

\/ (alternative form of ||)

-> (the boolean operator for logical implication)

<-> (the boolean operator for logical equivalence)

Wolfgang Schreiner https://www.risc.jku.at 14/51

Spin Atomic Predicates

(a+b > c)

(len(q) < 5)

(process@Label)

(process[pid]@Label)

PROMELA conditions with references to global system variables.

C-like boolean expressions.
len(q): the number of messages in channel q.
process@Label : true if the execution of the process with process type
process is in the state marked by Label.
process[pid]@Label : true if the execution of the process with type
process and process identifier pid is in the state marked by Label.

Process init receives identifier 0.
Processes instantiated with run receive identifiers 1, 2,

Atomic predicates can describe arbitrary state conditions.

Wolfgang Schreiner https://www.risc.jku.at 15/51

The Spin Verification Options

Verification mode

Safety: predefined safety properties.
Liveness: predefined liveness properties.
Use Claim: user-defined (LTL) properties.

Needs liveness option acceptance cycles.

Storage mode
Exhaustive: full error search.

May require (too) much memory.

Hash-compact and bitstate/supertrace: probabilistic search.

Less memory consuming but not guaranteed to find all errors.
Number of reported hash collisions should not be too high.

Advanced Parameters

Physical Memory Size: increase, if checker runs out of memory.
Maximum Search Depth: reduce to find shorter counterexamples.

By default, select “acceptance cycles”, “use claim”, and “exhaustive”.
Wolfgang Schreiner https://www.risc.jku.at 16/51

The Spin Verification Output

(Spin Version 6.1.0 -- 4 May 2011)

+ Partial Order Reduction

Full statespace search for:

never claim + (mutex)

assertion violations + (if within scope of claim)

acceptance cycles + (fairness disabled)

invalid end states - (disabled by never claim)

State-vector 48 byte, depth reached 137, errors: 0

157 states, stored

68 states, matched

225 transitions (= stored+matched)

0 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):

...

pan: elapsed time 0 seconds

No errors found -- did you verify all claims?

Wolfgang Schreiner https://www.risc.jku.at 17/51

More Promela Features

Active processes, inline definitions, atomic statements, output.
mtype = { P, C, N }

mtype turn = P;

inline request(x, y) { atomic { x == y -> x = N } }

inline release(x, y) { atomic { x = y } }

#define FORMAT "Output: %c\n"

active proctype producer()

{

do

:: request(turn, P) -> printf(FORMAT, ’P’); release(turn, C);

od

}

active proctype consumer()

{

do

:: request(turn, C) -> printf(FORMAT, ’C’); release(turn, P);

od

}
Wolfgang Schreiner https://www.risc.jku.at 18/51

More Promela Features

Embedded C code.

/* declaration is added locally to proctype main */

c_state "float f" "Local main"

active proctype main()

{

c_code { Pmain->f = 0; }

do

:: c_expr { Pmain->f <= 300 };

c_code { Pmain->f = 1.5 * Pmain->f ; };

c_code { printf("%4.0f\n", Pmain->f); };

od;

}

Can embed computational aspects into a Promela model (only works in
verification mode where a C program is generated from the model).

Wolfgang Schreiner https://www.risc.jku.at 19/51

1. The Model Checker Spin

2. Model Checking in RISCAL

3. Automatic Model Checking

Wolfgang Schreiner https://www.risc.jku.at 20/51

Model Checking in RISCAL

Also RISCAL includes an LTL model checker.

shared system clientServer

{

...

// the safety property

ltl 2 [∀i1:Client,i2:Client with i1 ̸= N ∧ i2 ̸= N ∧ i1 < i2.

¬(pc[i1] = C ∧ pc[i2] = C)];

// the liveness property

ltl[fairness] ∀i:Client with i ̸= N.
2 ([pc[i] = S] ⇒ (3[pc[i] = C]));

...

}

Linear temporal logic with quantifiers.

State formulas (can be also quantified) embedded by [].

Builtin mechanism for checking liveness properties with fairness.

Wolfgang Schreiner https://www.risc.jku.at 21/51

Model Checking in RISCAL

Fairness annotations of individual actions.

action D(i:Client) with i ̸= N ∧ sender = N ∧ rbuffer[i] ̸= 0;

fairness strong_all; // strongly fairly accept request from every client

{ sender := i; rbuffer[i] := 0; }

action A1(i:Client) with i ̸= N ∧
sender ̸= N ∧ sender = given ∧ waiting[i] ̸= 0 ∧
sbuffer[i] = 0;

fairness strong_all; // treat every waiting client strongly fairly

{ given := i; waiting[i] = 0; sbuffer[given] := 1; sender := N; }

action REQ(i:Client) with i ̸= N ∧ request[i] ̸= 0 ∧ rbuffer[i] = 0;

fairness strong_all; // strongly fairly forward request from every client

{ request[i] := 0; rbuffer[i] := 1; }

Allows much more efficient checking than by encoding fairness in LTL.

Wolfgang Schreiner https://www.risc.jku.at 22/51

Model Checking in RISCAL

Checking with N = 4 clients quickly succeeds (state space explodes with
LTL encoding of fairness, also overwhelms Spin).

Wolfgang Schreiner https://www.risc.jku.at 23/51

1. The Model Checker Spin

2. Model Checking in RISCAL

3. Automatic Model Checking

Wolfgang Schreiner https://www.risc.jku.at 24/51

The Basic Approach

Translation of the original problem to a problem in automata theory.

Original problem: S |= P.

S = ⟨I ,R⟩, PLTL formula P.
Does property P hold for every run of system S?

Construct system automaton SA with language L(SA).
A language is a set of infinite words.
Each such word describes a system run.
L(SA) describes the set of runs of S .

Construct property automaton PA with language L(PA).

L(PA) describes the set of runs satisfying P.

Equivalent Problem: L(SA) ⊆ L(PA).

The language of SA must be contained in the language of PA.

There exists an efficient algorithm to solve this problem.

Wolfgang Schreiner https://www.risc.jku.at 25/51

Finite State Automata

A (variant of a) labeled transition system in a finite state space.

Take finite sets State and Label .

The state space State.
The alphabet Label .

A (finite state) automaton A = ⟨I ,R,F ⟩ over State and Label :

A set of initial states I ⊆ State.
A labeled transition relation R ⊆ Label × State × State.
A set of final states F ⊆ State.

Büchi automata: F is called the set of accepting states.

We will only consider infinite runs of Büchi automata.

Wolfgang Schreiner https://www.risc.jku.at 26/51

Runs and Languages

An infinite run r = s0
l0→ s1

l1→ s2
l2→ . . . of automaton A:

s0 ∈ I and R(li , si , si+1) for all i ∈ N.
Run r is said to read the infinite word w(r) := ⟨l0, l1, l2, . . .⟩.

A = ⟨I ,R,F ⟩ accepts an infinite run r :
Some state s ∈ F occurs infinitely often in r .
This notion of acceptance is also called Büchi acceptance.

The language L(A) of automaton A:
L(A) := {w(r) : A accepts r}.
The set of words which are read by the runs accepted by A.

Example: L(A) = (a∗bb∗a)∗aω + (a∗bb∗a)ω [= (b∗a)ω].
w i = ww . . .w (i occurrences of w).
w∗ = {w i : i ∈ N} = {⟨⟩,w ,ww ,www , . . .}.
wω = wwww . . . (infinitely often).
An infinite repetition of an arbitrary number
of b followed by a.

Edmund Clarke: “Model Checking”, 1999.

Wolfgang Schreiner https://www.risc.jku.at 27/51

A Finite State System as an Automaton

The automaton SA = ⟨I ,R,F ⟩ for a finite state system S = ⟨IS ,RS⟩:
State := StateS ∪ {ι}.

The state space StateS of S is finite; additional state ι (“iota”).

Label := P(AP).
Finite set AP of atomic propositions.

All PLTL formulas are built from this set only.

Powerset P(S) := {s : s ⊆ S}.
Every element of Label is thus a set of atomic propositions.

I := {ι}.
Single initial state ι.

R(l , s, s ′) :⇔ l = L(s ′) ∧ (RS(s, s
′) ∨ (s = ι ∧ IS(s

′))).
L(s) := {p ∈ AP : s |= p}.
Each transition is labeled by the set of atomic propositions satisfied
by the successor state.

F := State.
Every state is accepting.

Wolfgang Schreiner https://www.risc.jku.at 28/51

A Finite State System as an Automaton

Edmund Clarke et al: “Model Checking”, 1999.

If r = s0 → s1 → s2 → . . . is a run of S , then SA accepts the labelled

version rl := ι
L(s0)→ s0

L(s1)→ s1
L(s2)→ s2

L(s3)→ . . . of r .

Wolfgang Schreiner https://www.risc.jku.at 29/51

A System Property as an Automaton

Also an PLTL formula can be translated to a finite state automaton.

We need the automaton PA for a PLTL property P.

Requirement: r |= P ⇔ PA accepts rl .
A run satisfies property P if and only if automaton AP accepts the
labeled version of the run.

Example: 2p.

Example: 3p.

Wolfgang Schreiner https://www.risc.jku.at 30/51

Further Examples

Example: 32p.

Gerard Holzmann: “The Spin Model Checker”, 2004.

Example: 23p.

Gerard Holzmann: “The Model Checker Spin”, 1997.

Arbitrary PLTL formulas can be converted to automata (we omit the
details).

Wolfgang Schreiner https://www.risc.jku.at 31/51

System Properties

State equivalence: L(s) = L(t).

Both states have the same labels.
Both states satisfy the same atomic propositions in AP.

Run equivalence: w(rl) = w(r ′l).
Both runs have the same sequences of labels.
Both runs satisfy the same PLTL formulas built over AP.

Indistinguishability: w(rl) = w(r ′l) ⇒ (r |= P ⇔ r ′ |= P)

PLTL formula P cannot distinguish between runs r and r ′ whose
labeled versions read the same words.

Consequence: S |= P ⇔ L(SA) ⊆ L(PA).

If every run of S satisfies P, then every word w(rl) in L(SA) equals
some word w(r ′l) in L(PA), and vice versa.

A skeleton of the correctness proof of the problem reduction.

Wolfgang Schreiner https://www.risc.jku.at 32/51

The Next Steps

Problem: L(SA) ⊆ L(PA)

Equivalent to: L(SA) ∩ L(PA) = ∅.
Complement L := {w : w ̸∈ L}.

Equivalent to: L(SA) ∩ L((¬P)A) = ∅.
L(PA) = L((¬P)A).

Equivalent Problem: L(SA) ∩ L((¬P)A) = ∅.
We will introduce the synchronized product automaton A⊗ B.

A transition of A⊗B represents a simultaneous transition of A and B.

Property: L(A) ∩ L(B) = L(A⊗ B).

Final Problem: L(SA ⊗ (¬P)A) = ∅.
We have to check whether the language of this automaton is empty.
We have to look for a word w accepted by this automaton.

If no such w exists, then S |= P.
If such a w = w(rl) exists, then r is a counterexample, i.e. a run of S
such that r ̸|= P.

Wolfgang Schreiner https://www.risc.jku.at 33/51

Synchronized Product of Two Automata

Given two finite automata A = ⟨IA,RA,StateA⟩ and B = ⟨IB ,RB ,FB⟩.
Synchronized product A⊗ B = ⟨I ,R,F ⟩.

State := StateA × StateB .
Label := LabelA = LabelB .
I := IA × IB .
R(l , ⟨sA, sB⟩, ⟨s ′A, s ′B⟩) :⇔ RA(l , sA, s

′
A) ∧ RB(l , sB , s

′
B).

F := StateA × FB .

Special case where all states of automaton A are accepting.

Wolfgang Schreiner https://www.risc.jku.at 34/51

Synchronized Product of Two Automata

Edmund Clarke: “Model Checking”, 1999.

<r1,q1>

<r1,q2>

<r2,q1>

<r2,q2>

a

b

a

b

ba

Wolfgang Schreiner https://www.risc.jku.at 35/51

Example

Check whether S |= 2(P ⇒ #3Q).

B. Berard et al: “Systems and Software Verification”, 2001.

The product automaton accepts a run, thus the property does not hold
(shown S has no ι but ti labeled with properties of predecessor state).

Wolfgang Schreiner https://www.risc.jku.at 36/51

Checking Emptiness

How to check whether L(A) is non-empty?

If L(A) is non-empty, A accepts some run r .

r represents a counterexample for the property to be checked.

Since r is accepted, it contains infinitely many occurrences of some
accepting state s.

r = ι → . . . → s → . . . → s → . . . → s → . . .

Since the state space is finite, r must contain a cycle s → . . . → s.

Finite prefix ι → . . . → s.
Infinite repetition of cycle s → . . . → s.

We have to search for such an acceptance cycle.

An accepting state s that is reachable from itself.

The search for an acceptance cycle in the reachability graph is the core
problem of PLTL model checking; it can be solved by depth-first search.

Wolfgang Schreiner https://www.risc.jku.at 37/51

Basic Structure of Depth-First Search

Visit all states of the reachability graph of an automaton ⟨{ι},R,F ⟩.

global
StateSpace V := {}
Stack D := ⟨⟩

proc main()
push(D, ι)
visit(ι)
pop(D)

end

proc visit(s)
V := V ∪ {s}
for ⟨l , s, s ′⟩ ∈ R do

if s ′ ̸∈ V
push(D, s ′)
visit(s ′)
pop(D)

end
end

end

State space V holds all states visited so far; stack D holds path from
initial state to currently visited state.

Wolfgang Schreiner https://www.risc.jku.at 38/51

Searching for a State

Algorithm to check violation of assertion f (i.e., 2f with state formula f).

global
StateSpace V := {}
Stack D := ⟨⟩

proc main()
// r becomes true, iff
// counterexample run is found
push(D, ι)
r := search(ι)
pop(D)

end

function search(s)
V := V ∪ {s}
if s ̸|= f then
print D
return true

end
for ⟨l , s, s′⟩ ∈ R do

if s′ ̸∈ V
push(D, s′)
r := search(s′)
pop(D)
if r then return true end

end
end
return false

end

Stack D can be used to print counterexample run.
Wolfgang Schreiner https://www.risc.jku.at 39/51

Searching for an Acceptance Cycle

Algorithm to check whether a general temporal formula is violated.

global
StateSpace V := {}
Stack D := ⟨⟩
Stack C := ⟨⟩

function searchCycle(s)
for ⟨l , s, s′⟩ ∈ R do

if has(D, s′) then
print D; print C ; print s′

return true
else if ¬has(C , s′) then

push(C , s′);
r := searchCycle(s′)
pop(C);
if r then return true end

end
end
return false

end

proc main()
push(D, ι); r := search(ι); pop(D)

end

boolean search(s)
V := V ∪ {s}
for ⟨l , s, s′⟩ ∈ R do

if s′ ̸∈ V
push(D, s′)
r := search(s′)
pop(D)
if r then return true end

end
end
if s ∈ F then

r := searchCycle(s)
if r then return true end

end
return false

end

Wolfgang Schreiner https://www.risc.jku.at 40/51

Depth-First Search for Acceptance Cycle

At each call of search(s),
s is a reachable state,
D describes a path from ι to s.

search calls searchCycle(s)
on a reachable accepting state s
in order to find a cycle from s to itself.

At each call of searchCycle(s),
s is a state reachable from a reachable accepting state sa,
D describes a path from ι to sa,
D → C → s describes a path from ι to s (via sa).

Thus we have found an accepting cycle D → C → s ′, if

there is a transition s
l→ s ′,

such that s ′ is contained in D.

If the algorithm returns “true”, there exists a violating run; the converse
follows from the exhaustiveness of the search.

Wolfgang Schreiner https://www.risc.jku.at 41/51

Implementing the Search

The state space V ,
is implemented by a hash table for efficiently checking s ′ ̸∈ V .

Rather than using explicit stacks D and C ,
each state node has two bits d and c ,
d is set to denote that the state is in stack D,
c is set to denote that the state is in stack C .

The counterexample is printed,
by searching, starting with ι, the unique sequence of reachable nodes
where d is set until the accepting node sa is found, and
by searching, starting with a successor of sa, the unique sequence of
reachable nodes where c is set until the cycle is detected.

Furthermore, it is not necessary to reset the c bits, because
search first explores all states reachable by an accepting state s before
trying to find a cycle from s; from this, one can show that
called with first accepting node sa reachable from itself, searchCycle
needs not revisit nodes with c bits set in previous searches.
With this improvement, every state is only visited once.

Wolfgang Schreiner https://www.risc.jku.at 42/51

Complexity of the Search

The complexity of checking S |= P is as follows.

Let |P| denote the number of subformulas of P.

|State(¬P)A | = O(2|P|).

|StateA⊗B | = |StateA| · |StateB |.
|StateSA⊗(¬P)A | = O(|StateSA | · 2|P|)
The time complexity of search is linear in the size of State.

Actually, in the number of reachable states (typically much smaller).
Only true for the improved variant where the c bits are not reset.
Then every state is visited by searchCycle at most once.

PLTL model checking is linear in the number of reachable states but
exponential in the size of the formula.

Wolfgang Schreiner https://www.risc.jku.at 43/51

The Overall Process

Basic PLTL model checking for deciding S |= P.

Convert system S to automaton SA.
Atomic propositions of PLTL formula are evaluated on each state.

Convert negation of PLTL formula P to automaton (¬P)A.
How to do so, we have not yet described.

Construct synchronized product automaton SA ⊗ (¬P)A.
After that, formula labels are not needed any more.

Find acceptance cycle in reachability-graph of product automaton.
A purely graph-theoretical problem that can be efficiently solved.
Time complexity is linear in the size of the state space of the system
but exponential in the size of the formula to be checked.
Weak scheduling fairness with k components: runtime is increased by
factor k + 2 (worst-case, “in practice just factor 2” [Holzmann]).

The basic approach immediately leads to state space explosion; further
improvements are needed to make it practical.

Wolfgang Schreiner https://www.risc.jku.at 44/51

On the Fly Model Checking

For checking L(SA ⊗ (¬P)A) = ∅, it is not necessary to construct the
states of SA in advance.

Only the property automaton (¬P)A is constructed in advance.

This automaton has comparatively small state space.

The system automaton SA is constructed on the fly.

Construction is guided by (¬P)A while computing SA ⊗ (¬P)A.
Only that part of the reachability graph of SA is expanded that is
consistent with (¬P)A (i.e. can lead to a counterexample run).

Typically only a part of the state space of SA is investigated.

A smaller part, if a counterexample run is detected early.
A larger part, if no counterexample run is detected.

Unreachable system states and system states that are not along possible
counterexample runs are never constructed.

Wolfgang Schreiner https://www.risc.jku.at 45/51

Partial Order Reduction

Core problem of model checking: state space explosion.
Take asynchronous composition S0||S1|| . . . ||Sk−1.

Take state s where one transition of each component is enabled.
Assume that the transition of one component does not disable the
transitions of the other components and that no other transition
becomes enabled before all the transitions have been performed.

Take state s ′ after execution of all the transitions.
There are k! paths leading from s to s ′.
There are 2k states involved in the transitions.

Sometimes it suffices to consider
a single path with k + 1 states.

Edmund Clarke: “Model Checking”, 1999.

Wolfgang Schreiner https://www.risc.jku.at 46/51

Example

Check (T1||T2) |= 3g ≥ 2.

Gerard Holzmann: “The Spin Model Checker”, 1999.

For checking 3g ≥ 2, it suffices to check only one ordering of the
independent transitions x = 1 and y = 1 (not true for checking 2x ≥ y).

Wolfgang Schreiner https://www.risc.jku.at 47/51

Example

Edmund Clarke et al: “Model Checking”, 1999.

System after partial order reduction.
Wolfgang Schreiner https://www.risc.jku.at 48/51

Other Optimizations

Statement merging.
Special case of partial order reduction where a sequence of transitions
of same component is combined to a single transition.

State compression.
Collapse compression: each state holds pointers to component states;
thus component states can be shared among many system states.
Minimized automaton representation: represent state set V not by
hash table but by finite state automaton that accepts a state
(sequence of bits) s if and only if s ∈ V .
Hash compact: store in the hash table a hash value of the state
(computed by a different hash function). Probabilistic approach: fails
if two states are mapped to the same hash value.
Bitstate hashing: represent V by a bit table whose size is much larger
than the expected number of states; each state is then only
represented by a single bit. Probabilistic approach: fails if two states
are hashed to the same position in the table.

Wolfgang Schreiner https://www.risc.jku.at 49/51

Other Approaches to Model Checking

There are fundamentally different approaches to model checking than the
automata-based one implemented in Spin.

Symbolic Model Checking (e.g. SMV, NuSMV).
Core: binary decision diagrams (BDDs).

Data structures to represent boolean functions.
Can be used to describe state sets and transition relations.

The set of states satisfying a CTL formula P is computed as the BDD
representation of a fixpoint of a function (predicate transformer) FP .

If all initial system states are in this set, P is a system property.

BDD packages for efficiently performing the required operations.
Bounded Model Checking (e.g. NuSMV2).

Core: propositional satisfiability.
Is there a truth assignment that makes propositional formula true?

There is a counterexample of length at most k to a LTL formula P, if
and only if a particular propositional formula Fk,P is satisfiable.

Problem: find suitable bound k that makes method complete.

SAT solvers for efficiently deciding propositional satisfiability.

Wolfgang Schreiner https://www.risc.jku.at 50/51

Other Approaches to Model Checking

Counter-Example Guided Abstraction Refinement (e.g. BLAST).
Core: model abstraction.

A finite set of predicates is chosen and an abstract model of the
system is constructed as a finite automaton whose states represent
truth assignments of the chosen predicates.

The abstract model is checked for the desired property.

If the abstract model is error-free, the system is correct; otherwise an
abstract counterexample is produced.
It is checked whether the abstract counterexample corresponds to a
real counterexample; if yes, the system is not correct.
If not, the chosen set of predicates contains too little information to
verify or falsify the program; new predicates are added to the set.
Then the process is repeated.

Core problem: how to refine the abstraction.

Automated theorem provers are applied here.

Various model checkers for software verification use this approach.

Wolfgang Schreiner https://www.risc.jku.at 51/51

