
Specifying and Verifying System Properties

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

https://www.risc.jku.at

Wolfgang Schreiner https://www.risc.jku.at 1/59

1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

Wolfgang Schreiner https://www.risc.jku.at 2/59

Motivation

We need a language for specifying system properties.

A system S is a pair ⟨I ,R⟩.
Initial states I , transition relation R.
More intuitive: reachability graph.

Starting from an initial state s0, the system runs evolve.

Consider the reachability graph as an infinite computation tree.
Different tree nodes may denote occurrences of the same state.

Each occurrence of a state has a unique predecessor in the tree.

Every path in this tree is infinite.

Every finite run s0 → . . . → sn is extended to an infinite run
s0 → . . . → sn → sn → sn → . . .

Or simply consider the graph as a set of system runs.

Same state may occur multiple times (in one or in different runs).

Temporal logic describes such trees respectively sets of system runs.

Wolfgang Schreiner https://www.risc.jku.at 3/59

Computation Trees versus System Runs

Edmund Clarke et al: “Model Checking”, 1999.

Set of system runs:
[a, b] → c → c → . . .
[a, b] → [b, c] → c → . . .
[a, b] → [b, c] → [a, b] → . . .
[a, b] → [b, c] → [a, b] → . . .
. . .

Wolfgang Schreiner https://www.risc.jku.at 4/59

State Formula

Temporal logic is based on classical logic.

A state formula F is evaluated on a state s.

Any predicate logic formula is a state formula:
p(x),¬F ,F0 ∧ F1,F0 ∨ F1,F0 ⇒ F1,F0 ⇔ F1,∀x : F ,∃x : F .
In propositional temporal logic only propositional logic formulas are
state formulas (no quantification):
p,¬F ,F0 ∧ F1,F0 ∨ F1,F0 ⇒ F1,F0 ⇔ F1.

Semantics: s |= F (“F holds in state s”).
Example: semantics of conjunction.

(s |= F0 ∧ F1) :⇔ (s |= F0) ∧ (s |= F1).
“F0 ∧ F1 holds in s if and only if F0 holds in s and F1 holds in s”.

Classical logic reasoning on individual states.

Wolfgang Schreiner https://www.risc.jku.at 5/59

Temporal Logic

Extension of classical logic to reason about multiple states.
Temporal logic is an instance of modal logic.

Logic of “multiple worlds (situations)” that are in some way related.
Relationship may e.g. be a temporal one.
Amir Pnueli, 1977: temporal logic is suited to system specifications.
Many variants, two fundamental classes.

Branching Time Logic
Semantics defined over computation trees.

At each moment, there are multiple possible futures.

Prominent variant: CTL.
Computation tree logic; a propositional branching time logic.

Linear Time Logic
Semantics defined over sets of system runs.

At each moment, there is only one possible future.

Prominent variant: PLTL.
A propositional linear time logic.

Wolfgang Schreiner https://www.risc.jku.at 6/59

Branching Time Logic (CTL)

We use temporal logic to specify a system property F .

Core question: S |= F (“F holds in system S”).

System S = ⟨I ,R⟩, temporal logic formula F .

Branching time logic:

S |= F :⇔ S , s0 |= F , for every initial state s0 of S .
Property F must be evaluated on every pair of system S and initial
state s0.
Given a computation tree with root s0, F is evaluated on that tree.

CTL formulas are evaluated on computation trees.

Wolfgang Schreiner https://www.risc.jku.at 7/59

State Formulas

We have additional state formulas.

A state formula F is evaluated on state s of System S .

Every (classical) state formula f is such a state formula.
Let P denote a path formula (later).

Evaluated on a path (state sequence) p = p0 → p1 → p2 →

R(pi , pi+1) for every i ; p0 need not be an initial state.

Then the following are state formulas:

A P (“in every path P”),
E P (“in some path P”).

Path quantifiers: A,E.

Semantics: S , s |= F (“F holds in state s of system S”).

S , s |= f :⇔ s |= f .
S , s |= A P :⇔ S , p |= P, for every path p of S with p0 = s.
S , s |= E P :⇔ S , p |= P, for some path p of S with p0 = s.

Wolfgang Schreiner https://www.risc.jku.at 8/59

Path Formulas

We have a class of formulas that are not evaluated over individual states.

A path formula P is evaluated on a path p of system S .

Let F and G denote state formulas.
Then the following are path formulas:

X F (“next time F”),
G F (“always F”),
F F (“eventually F”),
F U G (“F until G”).

Temporal operators: X,G,F,U.

Semantics: S , p |= P (“P holds in path p of system S”).

S , p |= X F :⇔ S , p1 |= F .
S , p |= G F :⇔ ∀i ∈ N : S , pi |= F .
S , p |= F F :⇔ ∃i ∈ N : S , pi |= F .
S , p |= F U G :⇔ ∃i ∈ N : S , pi |= G ∧ ∀j ∈ Ni : S , pj |= F .

Wolfgang Schreiner https://www.risc.jku.at 9/59

Path Formulas

Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.

Wolfgang Schreiner https://www.risc.jku.at 10/59

Path Quantifiers and Temporal Operators

Edmund Clarke et al: “Model Checking”, 1999.

Wolfgang Schreiner https://www.risc.jku.at 11/59

Linear Time Logic (LTL)

We use temporal logic to specify a system property P.

Core question: S |= P (“P holds in system S”).

System S = ⟨I ,R⟩, temporal logic formula P.

Linear time logic:

S |= P :⇔ r |= P, for every run r of S .
Property P must be evaluated on every run r of S .
Given a computation tree with root s0, P is evaluated on every path
of that tree originating in s0.

If P holds for every path, P holds on S .

LTL formulas are evaluated on system runs.

Wolfgang Schreiner https://www.risc.jku.at 12/59

Formulas

No path quantifiers; all formulas are path formulas.
Every formula is evaluated on a path p.

Also every state formula f of classical logic (see below).
Let F and G denote formulas.
Then also the following are formulas:

X F (“next time F”), often written #F ,
G F (“always F”), often written 2F ,
F F (“eventually F”), often written 3F ,
F U G (“F until G”).

Semantics: p |= P (“P holds in path p”).
pi := ⟨pi , pi+1, . . .⟩.
p |= f :⇔ p0 |= f .
p |= X F :⇔ p1 |= F .
p |= G F :⇔ ∀i ∈ N : pi |= F .
p |= F F :⇔ ∃i ∈ N : pi |= F .
p |= F U G :⇔ ∃i ∈ N : pi |= G ∧ ∀j ∈ Ni : p

j |= F .

Wolfgang Schreiner https://www.risc.jku.at 13/59

Formulas

Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.

Wolfgang Schreiner https://www.risc.jku.at 14/59

Branching versus Linear Time Logic

We use temporal logic to specify a system property P.

Core question: S |= P (“P holds in system S”).

System S = ⟨I ,R⟩, temporal logic formula P.

Branching time logic:

S |= P :⇔ S , s0 |= P, for every initial state s0 of S .
Property P must be evaluated on every pair (S , s0) of system S and
initial state s0.
Given a computation tree with root s0, P is evaluated on that tree.

Linear time logic:

S |= P :⇔ r |= P, for every run r of s.
Property P must be evaluated on every run r of S .
Given a computation tree with root s0, P is evaluated on every path
of that tree originating in s0.

If P holds for every path, P holds on S .

Wolfgang Schreiner https://www.risc.jku.at 15/59

Branching versus Linear Time Logic

B. Berard et al: “Systems and Software Verification”, 2001.

Linear time logic: both systems have the same runs.

Thus every formula has same truth value in both systems.

Branching time logic: the systems have different computation trees.

Take formula AX(EX Q ∧ EX ¬Q).
True for left system, false for right system.

The two variants of temporal logic have different expressive power.

Wolfgang Schreiner https://www.risc.jku.at 16/59

Branching versus Linear Time Logic

Is one temporal logic variant more expressive than the other one?
CTL formula: AG(EF F).

“In every run, it is at any time still possible that later F will hold”.
Property cannot be expressed by any LTL logic formula.

LTL formula: 32F (i.e. FG F).
“In every run, there is a moment from which on F holds forever.”.
Naive translation AFG F is not a CTL formula.

G F is a path formula, but F expects a state formula!

Translation AFAG F expresses a stronger property (see next page).
Property cannot be expressed by any CTL formula.

None of the two variants
is strictly more expressive
than the other one; no
variant can express every
system property.

Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.

Wolfgang Schreiner https://www.risc.jku.at 17/59

Branching versus Linear Time Logic

Proof that AFAG F (CTL) is different from 32F (LTL).

Wolfgang Schreiner https://www.risc.jku.at 18/59

1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

Wolfgang Schreiner https://www.risc.jku.at 19/59

Linear Time Logic

Why using linear time logic (LTL) for system specifications?

LTL has many advantages:
LTL formulas are easier to understand.

Reasoning about computation paths, not computation trees.
No explicit path quantifiers used.

LTL can express most interesting system properties.
Invariance, guarantee, response, . . . (see later).

LTL can express fairness constraints (see later).
CTL cannot do this.
But CTL can express that a state is reachable (which LTL cannot).

LTL has also some disadvantages:
LTL is strictly less expressive than other specification languages.

CTL∗ or µ-calculus.

Asymptotic complexity of model checking is higher.
LTL: exponential in size of formula; CTL: linear in size of formula.
In practice the number of states dominates the checking time.

Wolfgang Schreiner https://www.risc.jku.at 20/59

Frequently Used LTL Patterns

In practice, most temporal formulas are instances of particular patterns.

Pattern Pronounced Name

2F always F invariance
3F eventually F guarantee
23F F holds infinitely often recurrence
32F eventually F holds permanently stability
2(F ⇒ 3G) always, if F holds, then response

eventually G holds
2(F ⇒ (G U H)) always, if F holds, then precedence

G holds until H holds

Typically, there are at most two levels of nesting of temporal operators.

Wolfgang Schreiner https://www.risc.jku.at 21/59

Examples

Mutual exclusion: 2¬(pc1 = C ∧ pc2 = C).

Alternatively: ¬3(pc1 = C ∧ pc2 = C).
Never both components are simultaneously in the critical region.

No starvation: ∀i : 2(pc i = W ⇒ 3pc i = R).

Always, if component i waits for a response, it eventually receives it.

No deadlock: 2¬∀i : pc i = W .

Never all components are simultaneously in a wait state W .

Precedence: ∀i : 2(pc i ̸= C ⇒ (pc i ̸= C U lock = i)).

Always, if component i is out of the critical region, it stays out until it
receives the shared lock variable (which it eventually does).

Partial correctness: 2(pc = L ⇒ C).

Always if the program reaches line L, the condition C holds.

Termination: ∀i : 3(pc i = T).

Every component eventually terminates.

Wolfgang Schreiner https://www.risc.jku.at 22/59

Example

If event a occurs, then b must occur before c can occur (a run
. . . , a, (¬b)∗, c , . . . is illegal).
First idea (wrong)

a ⇒ . . .

Every run d , . . . becomes legal.

Next idea (correct)
2(a ⇒ . . .)

First attempt (wrong)
2(a ⇒ (b U c))

Run a, b,¬b, c , . . . is illegal.
Second attempt (better)

2(a ⇒ (¬c U b))

Run a,¬c ,¬c ,¬c , . . . is illegal.
Third attempt (correct)

2(a ⇒ ((2¬c) ∨ (¬c U b)))
Specifier has to think in terms of allowed/prohibited sequences.

Wolfgang Schreiner https://www.risc.jku.at 23/59

Temporal Rules

Temporal operators obey a number of fairly intuitive rules.
Extraction laws:

2F ⇔ F ∧#2F .
3F ⇔ F ∨#3F .
F U G ⇔ G ∨ (F ∧#(F U G)).

Negation laws:
¬2F ⇔ 3¬F .
¬3F ⇔ 2¬F .
¬(F U G) ⇔ ((¬G) U (¬F ∧ ¬G)) ∨ ¬3G .

Distributivity laws:
2(F ∧ G) ⇔ (2F) ∧ (2G).
3(F ∨ G) ⇔ (3F) ∨ (3G).
(F ∧ G) U H ⇔ (F U H) ∧ (G U H).
F U (G ∨ H) ⇔ (F U G) ∨ (F U H).
23(F ∨ G) ⇔ (23F) ∨ (23G).
32(F ∧ G) ⇔ (32F) ∧ (32G).

Wolfgang Schreiner https://www.risc.jku.at 24/59

Classes of System Properties

There exists two important classes of system properties.

Safety Properties:
A safety property is a property such that, if it is violated by a run, it
is already violated by some finite prefix of the run.

This finite prefix cannot be extended in any way to a complete run
satisfying the property.

Example: 2F (with state property F).

The violating run F → F → ¬F → . . . has the prefix F → F → ¬F
that cannot be extended in any way to a run satisfying 2F .

Liveness Properties:
A liveness property is a property such that every finite prefix can be
extended to a complete run satisfying this property.

Only a complete run itself can violate that property.

Example: 3F (with state property F).

Any finite prefix p can be extended to a run p → F → . . . which
satisfies 3F .

Wolfgang Schreiner https://www.risc.jku.at 25/59

System Properties

Not every system property is itself a safety property or a liveness property.

Example: P :⇔ (2A) ∧ (3B) (with state properties A and B)

Conjunction of a safety property and a liveness property.

Take the run [A,¬B] → [A,¬B] → [A,¬B] → . . . violating P.

Any prefix [A,¬B] → . . . → [A,¬B] of this run can be extended to a
run [A,¬B] → . . . → [A,¬B] → [A,B] → [A,B] → . . . satisfying P.
Thus P is not a safety property.

Take the finite prefix [¬A,B].
This prefix cannot be extended in any way to a run satisfying P.
Thus P is not a liveness property.

So is the distinction “safety” versus “liveness” really useful?.

Wolfgang Schreiner https://www.risc.jku.at 26/59

System Properties

The real importance of the distinction is stated by the following theorem.

Theorem:

Every system property P is a conjunction S ∧ L of some safety
property S and some liveness property L.

If L is “true”, then P itself is a safety property.
If S is “true”, then P itself is a liveness property.

Consequence:

Assume we can decompose P into appropriate S and L.
For verifying M |= P, it then suffices to verify:

Safety: M |= S .
Liveness: M |= L.

Different strategies for verifying safety and liveness properties.

For verification, it is important to decompose a system property in its
“safety part” and its “liveness part”.

Wolfgang Schreiner https://www.risc.jku.at 27/59

Verifying Safety

We only consider a special case of a safety property.

M |= 2F .
F is a state formula (a formula without temporal operator).
Verify that F is an invariant of system M.

M = ⟨I ,R⟩.
I (s) :⇔ . . .
R(s, s ′) :⇔ R0(s, s

′) ∨ R1(s, s
′) ∨ . . . ∨ Rn−1(s, s

′).

Induction Proof.
∀s : I (s) ⇒ F (s).

Proof that F holds in every initial state.

∀s, s ′ : F (s) ∧ R(s, s ′) ⇒ F (s ′).
Proof that each transition preserves F .
Reduces to a number of subproofs:

F (s) ∧ R0(s, s
′) ⇒ F (s ′)

. . .
F (s) ∧ Rn−1(s, s

′) ⇒ F (s ′)

Wolfgang Schreiner https://www.risc.jku.at 28/59

Example

var x := 0
loop

p0 : wait x = 0
p1 : x := x + 1

|| loop
q0 : wait x = 1
q1 : x := x − 1

State = {p0, p1} × {q0, q1} × Z.

I (p, q, x) :⇔ p = p0 ∧ q = q0 ∧ x = 0.
R(⟨p, q, x⟩, ⟨p′, q′, x ′⟩) :⇔ P0(. . .) ∨ P1(. . .) ∨ Q0(. . .) ∨ Q1(. . .).

P0(⟨p, q, x⟩, ⟨p′, q′, x ′⟩) :⇔ p = p0 ∧ x = 0 ∧ p′ = p1 ∧ q′ = q ∧ x ′ = x .
P1(⟨p, q, x⟩, ⟨p′, q′, x ′⟩) :⇔ p = p1 ∧ p′ = p0 ∧ q′ = q ∧ x ′ = x + 1.
Q0(⟨p, q, x⟩, ⟨p′, q′, x ′⟩) :⇔ q = q0 ∧ x = 1 ∧ p′ = p ∧ q′ = q1 ∧ x ′ = x .
Q1(⟨p, q, x⟩, ⟨p′, q′, x ′⟩) :⇔ q = q1 ∧ p′ = p ∧ q′ = q0 ∧ x ′ = x − 1.

Prove ⟨I ,R⟩ |= 2(x = 0 ∨ x = 1).

Wolfgang Schreiner https://www.risc.jku.at 29/59

Inductive System Properties

The induction strategy may not work for proving 2F
Problem: F is not inductive.

F is too weak to prove the induction step.

F (s) ∧ R(s, s ′) ⇒ F (s ′).

Solution: find stronger invariant I .

If I ⇒ F , then (2I) ⇒ (2F).
It thus suffices to prove 2I .

Rationale: I may be inductive.
If yes, I is strong enough to prove the induction step.

I (s) ∧ R(s, s ′) ⇒ I (s ′).

If not, find a stronger invariant I ′ and try again.

Invariant I represents additional knowledge for every proof.

Rather than proving 2P, prove 2(I ⇒ P).

The behavior of a system is captured by its strongest invariant.

Wolfgang Schreiner https://www.risc.jku.at 30/59

Example

Prove ⟨I ,R⟩ |= 2(x = 0 ∨ x = 1).

Proof attempt fails.

Prove ⟨I ,R⟩ |= 2G .
G :⇔

(x = 0 ∨ x = 1) ∧
(p = p1 ⇒ x = 0) ∧
(q = q1 ⇒ x = 1).

Proof works.
G ⇒ (x = 0 ∨ x = 1) obvious.

See the proof presented in class.

Wolfgang Schreiner https://www.risc.jku.at 31/59

Verifying Liveness

var x := 0, y := 0
loop

x := x + 1
|| loop

y := y + 1

State = N× N; Label = {P,Q}.
I (x , y) :⇔ x = 0 ∧ y = 0.
R(l , ⟨x , y⟩, ⟨x ′, y ′⟩) :⇔

(l = P ∧ x ′ = x + 1 ∧ y ′ = y) ∨ (l = Q ∧ x ′ = x ∧ y ′ = y + 1).

⟨I ,R⟩ ̸|= 3x = 1.

[x = 0, y = 0]
Q→ [x = 0, y = 1]

Q→ [x = 0, y = 2]
Q→ . . .

This run violates (as the only one) 3x = 1.
Thus the system as a whole does not satisfy 3x = 1.

For verifying liveness properties, “unfair” runs have to be ruled out.

Wolfgang Schreiner https://www.risc.jku.at 32/59

Enabling Condition

When is a particular transition enabled for execution?

EnabledR(l , s) :⇔ ∃t : R(l , s, t).
Labeled transition relation R, label l , state s.
Read: “Transition (with label) l is enabled in state s (w.r.t. R)”.

Example (previous slide):
EnabledR(P, ⟨x , y⟩)

⇔ ∃x ′, y ′ : R(P, ⟨x , y⟩, ⟨x ′, y ′⟩)
⇔ ∃x ′, y ′ :

(P = P ∧ x ′ = x + 1 ∧ y ′ = y) ∨
(P = Q ∧ x ′ = x ∧ y ′ = y + 1)

⇔ (∃x ′, y ′ : P = P ∧ x ′ = x + 1 ∧ y ′ = y) ∨
(∃x ′, y ′ : P = Q ∧ x ′ = x ∧ y ′ = y + 1)

⇔ true ∨ false
⇔ true.

Transition P is always enabled.

Wolfgang Schreiner https://www.risc.jku.at 33/59

Weak Fairness

Weak Fairness

A run s0
l0→ s1

l1→ s2
l2→ . . . is weakly fair to a transition l , if

if transition l is eventually permanently enabled in the run,

then transition l is executed infinitely often in the run.

(∃i : ∀j ≥ i : EnabledR(l , sj)) ⇒ (∀i : ∃j ≥ i : lj = l).

The run in the previous example was not weakly fair to transition P.

LTL formulas may explicitly specify weak fairness constraints.

Let El denote the enabling condition of transition l .
Let Xl denote the predicate “transition l is executed”.
Define WF l :⇔ (32El) ⇒ (23Xl).

If l is eventually enabled forever, it is executed infinitely often.

Prove ⟨I ,R⟩ |= (WF l ⇒ F).

Property F is only proved for runs that are weakly fair to l .

Alternatively, a model may also have weak fairness “built in”.

Wolfgang Schreiner https://www.risc.jku.at 34/59

Example

State = N× N; Label = {P,Q}.
I (x , y) :⇔ x = 0 ∧ y = 0.
R(l , ⟨x , y⟩, ⟨x ′, y ′⟩) :⇔

(l = P ∧ x ′ = x + 1 ∧ y ′ = y) ∨ (l = Q ∧ x ′ = x ∧ y ′ = y + 1).

⟨I ,R⟩ |= WFP ⇒ 3x = 1.

[x = 0, y = 0]
Q→ [x = 0, y = 1]

Q→ [x = 0, y = 2]
Q→

This (only) violating run is not weakly fair to transition P.

P is always enabled.
P is never executed.

System satisfies specification if weak fairness is assumed.

Wolfgang Schreiner https://www.risc.jku.at 35/59

Strong Fairness

Strong Fairness

A run s0
l0→ s1

l1→ s2
l2→ . . . is strongly fair to a transition l , if

if l is infinitely often enabled in the run,

then l is also infinitely often executed the run.

(∀i : ∃j ≥ i : EnabledR(l , sj)) ⇒ (∀i : ∃j ≥ i : lj = l).

If r is strongly fair to l , it is also weakly fair to l (but not vice versa).

LTL formulas may explicitly specify strong fairness constraints.

Let El denote the enabling condition of transition l .
Let Xl denote the predicate “transition l is executed”.
Define SF l :⇔ (23El) ⇒ (23Xl).

If l is enabled infinitely often, it is executed infinitely often.

Prove ⟨I ,R⟩ |= (SF l ⇒ F).

Property F is only proved for runs that are strongly fair to l .

A much stronger requirement to the fairness of a system.

Wolfgang Schreiner https://www.risc.jku.at 36/59

Example

var x=0
loop

a : x := −x
b : choose x := 0 [] x := 1

State := {a, b} × Z; Label = {A,B0,B1}.
I (p, x) :⇔ p = a ∧ x = 0.
R(l , ⟨p, x⟩, ⟨p′, x ′⟩) :⇔

(l = A ∧ (p = a ∧ p′ = b ∧ x ′ = −x)) ∨
(l = B0 ∧ (p = b ∧ p′ = a ∧ x ′ = 0)) ∨
(l = B1 ∧ (p = b ∧ p′ = a ∧ x ′ = 1)).

⟨I ,R⟩ |= SFB1 ⇒ 3x = 1.

[a, 0]
A→ [b, 0]

B0→ [a, 0]
A→ [b, 0]

B0→ [a, 0]
A→ . . .

This (only) violating run is not strongly fair to B1 (but weakly fair).
B1 is infinitely often enabled.
B1 is never executed.

System satisfies specification if strong fairness is assumed.
Wolfgang Schreiner https://www.risc.jku.at 37/59

Weak versus Strong Fairness

In which situations is which notion of fairness appropriate?

Process just waits to be scheduled for execution.

Only CPU time is required.
Weak fairness suffices.

Process waits for resource that may be temporarily blocked.

Critical region protected by lock variable (mutex/semaphore).
Strong fairness is required.

Non-deterministic choices are repeatedly made in program.

Simultaneous listing on multiple communication channels.
Strong fairness is required.

Many other notions or fairness exist.

Wolfgang Schreiner https://www.risc.jku.at 38/59

1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

Wolfgang Schreiner https://www.risc.jku.at 39/59

A Bit Transmission Protocol

var x , y
var v := 0, r := 0, a := 0

S: loop
0 : choose x ∈ {0, 1}

v , r := x , 1
1 : wait a = 1

r := 0
2 : wait a = 0

||
R: loop

0 : wait r = 1
y , a := v , 1

1 : wait r = 0
a := 0

Transmit a sequence of bits through a wire.

Wolfgang Schreiner https://www.risc.jku.at 40/59

A (Simplified) Model of the Protocol

State := PC1 × PC2 × (N2)5

I (p, q, x , y , v , r , a) :⇔ p = q = 1 ∧ v = r = a = 0.
R(⟨p, q, x , y , v , r , a⟩, ⟨p′, q′, x ′, y ′, v ′, r ′, a′⟩) :⇔

S1(. . .) ∨ S2(. . .) ∨ S3(. . .) ∨ R1(. . .) ∨ R2(. . .).

S1(⟨p, q, x , y , v , r , a⟩, ⟨p′, q′, x ′, y ′, v ′, r ′, a′⟩) :⇔
p = 0 ∧ p′ = 1 ∧ v ′ = x ′ ∧ r ′ = 1 ∧
q′ = q ∧ x ′ = x ∧ y ′ = y ∧ a′ = a.

S2(⟨p, q, x , y , v , r , a⟩, ⟨p′, q′, x ′, y ′, v ′, r ′, a′⟩) :⇔
p = 1 ∧ p′ = 2 ∧ a = 1 ∧ r ′ = 0 ∧
q′ = q ∧ x ′ = x ∧ y ′ = y ∧ v ′ = v ∧ a′ = a.

S3(⟨p, q, x , y , v , r , a⟩, ⟨p′, q′, x ′, y ′, v ′, r ′, a′⟩) :⇔
p = 2 ∧ p′ = 0 ∧ a = 0 ∧
q′ = q ∧ y ′ = y ∧ v ′ = v ∧ r ′ = r ∧ a′ = a.

R1(⟨p, q, x , y , v , r , a⟩, ⟨p′, q′, x ′, y ′, v ′, r ′, a′⟩) :⇔
q = 0 ∧ q′ = 1 ∧ r = 1 ∧ y ′ = v ∧ a′ = 1 ∧
p′ = p ∧ x ′ = x ∧ v ′ = v ∧ r ′ = r .

R2(⟨p, q, x , y , v , r , a⟩, ⟨p′, q′, x ′, y ′, v ′, r ′, a′⟩) :⇔
q = 1 ∧ q′ = 2 ∧ r = 0 ∧ a′ = 0 ∧
p′ = p ∧ x ′ = x ∧ y ′ = y ∧ v ′ = v ∧ r ′ = r .

Wolfgang Schreiner https://www.risc.jku.at 41/59

A Verification Task

⟨I ,R⟩ |= 2(q = 1 ⇒ y = x)

Invariant(p, . . .) ⇒ (q = 1 ⇒ y = x)

I (p, . . .) ⇒ Invariant(p, . . .)
R(⟨p, . . .⟩, ⟨p′, . . .⟩) ∧ Invariant(p, . . .) ⇒ Invariant(p′, . . .)

Invariant(p, q, x , y , v , r , a) :⇔
(p = 0 ⇒ q = 0 ∧ r = 0 ∧ a = 0) ∧
(p = 1 ⇒ r = 1 ∧ v = x) ∧
(p = 2 ⇒ r = 0) ∧
(q = 0 ⇒ a = 0) ∧
(q = 1 ⇒ (p = 1 ∨ p = 2) ∧ a = 1 ∧ y = x)

The invariant captures the essence of the protocol.

Wolfgang Schreiner https://www.risc.jku.at 42/59

A RISCAL Theory

type Bit = N[1]; type PC1 = N[2]; type PC2 = N[1];

pred S1(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,

x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) ⇔
p = 0 ∧ p0 = 1 ∧ v0 = x0 ∧ r0 = 1 ∧ // x0 arbitrary

q0 = q ∧ y0 = y ∧ a0 = a;

pred S2(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,

x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) ⇔
p = 1 ∧ p0 = 2 ∧ a = 1 ∧ r0 = 0 ∧
q0 = q ∧ x0 = x ∧ y0 = y ∧ v0 = v ∧ a0 = a;

pred S3(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,

x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) ⇔
p = 2 ∧ p0 = 0 ∧ a = 0 ∧
q0 = q ∧ x0 = x ∧ y0 = y ∧ v0 = v ∧ r0 = r ∧ a0 = a;

pred R1(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,

x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) ⇔
q = 0 ∧ q0 = 1 ∧ r = 1 ∧ y0 = v ∧ a0 = 1 ∧
p0 = p ∧ x0 = x ∧ v0 = v ∧ r0 = r;

pred R2(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,

x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) ⇔
q = 1 ∧ q0 = 0 ∧ r = 0 ∧ a0 = 0 ∧
p0 = p ∧ x0 = x ∧ y0 = y ∧ v0 = v ∧ r0 = r;

Wolfgang Schreiner https://www.risc.jku.at 43/59

A RISCAL Theory

pred Init(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) ⇔
v = 0 ∧ r = 0 ∧ a = 0 ∧ p = 0 ∧ q = 0;

pred Invariant(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) ⇔
(p = 0 ⇒ q = 0 ∧ r = 0 ∧ a = 0) ∧
(p = 1 ⇒ r = 1 ∧ v = x) ∧
(p = 2 ⇒ r = 0) ∧
(q = 0 ⇒ a = 0) ∧
(q = 1 ⇒ (p = 1 ∨ p = 2) ∧ a = 1 ∧ y = x);

pred Property(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) ⇔
q = 1 ⇒ y = x;

theorem VC0(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) ⇔
Init(x,y,v,r,a,p,q) ⇒ Invariant(x,y,v,r,a,p,q);

theorem VC1(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,

x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) ⇔
Invariant(x,y,v,r,a,p,q) ∧ S1(x,y,v,r,a,p,q,x0,y0,v0,r0,a0,p0,q0) ⇒

Invariant(x0,y0,v0,r0,a0,p0,q0);

...

theorem VC5(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,

x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) ⇔
Invariant(x,y,v,r,a,p,q) ∧ R2(x,y,v,r,a,p,q,x0,y0,v0,r0,a0,p0,q0) ⇒

Invariant(x0,y0,v0,r0,a0,p0,q0);

Wolfgang Schreiner https://www.risc.jku.at 44/59

The Proofs

Executing VC0(Z,Z,Z,Z,Z,Z,Z) with all 192 inputs.

Execution completed for ALL inputs (23 ms, 192 checked, 0 inadmissible).

Executing VC1(Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z) with all 36864 inputs.

Execution completed for ALL inputs (123 ms, 36864 checked, 0 inadmissible).

Executing VC2(Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z) with all 36864 inputs.

Execution completed for ALL inputs (50 ms, 36864 checked, 0 inadmissible).

Executing VC3(Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z) with all 36864 inputs.

Execution completed for ALL inputs (94 ms, 36864 checked, 0 inadmissible).

Executing VC4(Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z) with all 36864 inputs.

Execution completed for ALL inputs (50 ms, 36864 checked, 0 inadmissible).

Executing VC5(Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z) with all 36864 inputs.

Execution completed for ALL inputs (65 ms, 36864 checked, 0 inadmissible).

More instructive: proof attempts with wrong or too weak invariants
(see demonstration).

Wolfgang Schreiner https://www.risc.jku.at 45/59

An Operational System Model in RISCAL

// the types

type Bit = N[1]; type PC1 = N[2]; type PC2 = N[1];

// an operational description of the system

shared system Bits

{

// the system state

var x:Bit; var y:Bit;

var v:Bit = 0; var r:Bit = 0; var a:Bit = 0;

var p:PC1 = 0; var q:PC2 = 0;

// the correctness property

invariant q = 1 ⇒ y = x;

// the system invariants that imply the correctness property

invariant p = 0 ⇒ q = 0 ∧ r = 0 ∧ a = 0;

invariant p = 1 ⇒ r = 1 ∧ v = x;

invariant p = 2 ⇒ r = 0;

invariant q = 0 ⇒ a = 0;

invariant q = 1 ⇒ (p = 1 ∨ p = 2) ∧ a = 1 ∧ y = x;

...

Wolfgang Schreiner https://www.risc.jku.at 46/59

An Operational System Model in RISCAL

...

// the non-deterministically chosen initial state values

init (x0:Bit, y0:Bit) { x := x0; y := y0; }

// the sender actions

action S1(any:Bit) with p = 0; { x := any; v := x; r := 1; p := 1; }

action S2() with p = 1 ∧ a = 1; { r := 0; p := 2; }

action S3() with p = 2 ∧ a = 0; { p := 0; }

// the receiver actions

action R1() with q = 0 ∧ r = 1; { y := v; a := 1; q = 1; }

action R2() with q = 1 ∧ r = 0; { a := 0; q := 0; }

}

We can check that all reachable states of the system satisfy the
correctness property and the invariants; we can also generate from the
system model and invariants the verification conditions and check these.

Wolfgang Schreiner https://www.risc.jku.at 47/59

The Verification in RISCAL

Both kinds of verification succeed.
Wolfgang Schreiner https://www.risc.jku.at 48/59

A Client/Server System

Client system Ci = ⟨IC i ,RC i ⟩.
State := PC × N2 × N2.
Int := {Ri , Si ,Ci}.

IC i (pc, request, answer) :⇔
pc = R ∧ request = 0 ∧ answer = 0.

RC i (l , ⟨pc, request, answer⟩,
⟨pc′, request′, answer ′⟩) :⇔

(l = Ri ∧ pc = R ∧ request = 0 ∧
pc ′ = S ∧ request′ = 1 ∧ answer ′ = answer) ∨

(l = Si ∧ pc = S ∧ answer ̸= 0 ∧
pc ′ = C ∧ request′ = request ∧ answer ′ = 0) ∨

(l = Ci ∧ pc = C ∧ request = 0 ∧
pc ′ = R ∧ request′ = 1 ∧ answer ′ = answer) ∨

(l = REQ i ∧ request ̸= 0 ∧
pc ′ = pc ∧ request′ = 0 ∧ answer ′ = answer) ∨

(l = ANS i ∧
pc ′ = pc ∧ request′ = request ∧ answer ′ = 1).

Client(ident):

param ident

begin

loop

...

R: sendRequest()

S: receiveAnswer()

C: // critical region

...

sendRequest()

endloop

end Client

Wolfgang Schreiner https://www.risc.jku.at 49/59

A Client/Server System (Contd)

Server system S = ⟨IS ,RS⟩.
State := (N3)3 × ({1, 2} → N2)2.
Int := {D1,D2,F ,A1,A2,W }.

IS(given,waiting , sender , rbuffer , sbuffer) :⇔
given = waiting = sender = 0 ∧
rbuffer(1) = rbuffer(2) = sbuffer(1) = sbuffer(2) = 0.

RS(l , ⟨given,waiting , sender , rbuffer , sbuffer⟩,
⟨given′,waiting ′, sender ′, rbuffer ′, sbuffer ′⟩) :⇔

∃i ∈ {1, 2} :
(l = Di ∧ sender = 0 ∧ rbuffer(i) ̸= 0 ∧
sender ′ = i ∧ rbuffer ′(i) = 0 ∧
U(given,waiting , sbuffer) ∧
∀j ∈ {1, 2}\{i} : Uj (rbuffer)) ∨

. . .

U(x1, . . . , xn) :⇔ x ′1 = x1 ∧ . . . ∧ x ′n = xn.
Uj (x1, . . . , xn) :⇔ x ′1(j) = x1(j) ∧ . . . ∧ x ′n(j) = xn(j).

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

D: sender := receiveRequest()

if sender = given then

if waiting = 0 then

F: given := 0

else

A1: given := waiting;

waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

A2: given := sender

sendAnswer(given)

else

W: waiting := sender

endif

endloop

end Server
Wolfgang Schreiner https://www.risc.jku.at 50/59

A Client/Server System (Contd’2)

. . .
(l = F ∧ sender ̸= 0 ∧ sender = given ∧waiting = 0 ∧

given′ = 0 ∧ sender ′ = 0 ∧
U(waiting , rbuffer , sbuffer)) ∨

(l = A1 ∧ sender ̸= 0 ∧ sbuffer(waiting) = 0 ∧
sender = given ∧ waiting ̸= 0 ∧
given′ = waiting ∧ waiting ′ = 0 ∧
sbuffer ′(waiting) = 1 ∧ sender ′ = 0 ∧
U(rbuffer) ∧
∀j ∈ {1, 2}\{waiting} : Uj (sbuffer)) ∨

(l = A2 ∧ sender ̸= 0 ∧ sbuffer(sender) = 0 ∧
sender ̸= given ∧ given = 0 ∧
given′ = sender ∧
sbuffer ′(sender) = 1 ∧ sender ′ = 0 ∧
U(waiting , rbuffer) ∧
∀j ∈ {1, 2}\{sender} : Uj (sbuffer)) ∨

. . .

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

D: sender := receiveRequest()

if sender = given then

if waiting = 0 then

F: given := 0

else

A1: given := waiting;

waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

A2: given := sender

sendAnswer(given)

else

W: waiting := sender

endif

endloop

end Server
Wolfgang Schreiner https://www.risc.jku.at 51/59

A Client/Server System (Contd’3)

. . .
(l = W ∧ sender ̸= 0 ∧ sender ̸= given ∧ given ̸= 0 ∧

waiting ′ := sender ∧ sender ′ = 0 ∧
U(given, rbuffer , sbuffer)) ∨

∃i ∈ {1, 2} :

(l = REQ i ∧ rbuffer ′(i) = 1 ∧
U(given,waiting , sender , sbuffer) ∧
∀j ∈ {1, 2}\{i} : Uj (rbuffer)) ∨

(l = ANS i ∧ sbuffer(i) ̸= 0 ∧
sbuffer ′(i) = 0 ∧
U(given,waiting , sender , rbuffer) ∧
∀j ∈ {1, 2}\{i} : Uj (sbuffer)).

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

D: sender := receiveRequest()

if sender = given then

if waiting = 0 then

F: given := 0

else

A1: given := waiting;

waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

A2: given := sender

sendAnswer(given)

else

W: waiting := sender

endif

endloop

end Server
Wolfgang Schreiner https://www.risc.jku.at 52/59

A Client/Server System (Contd’4)

State := ({1, 2} → PC)× ({1, 2} → N2)
2 × (N3)

2 × ({1, 2} → N2)
2

I (pc, request, answer , given,waiting , sender , rbuffer , sbuffer) :⇔
∀i ∈ {1, 2} : IC(pc i , requesti , answer i) ∧
IS(given,waiting , sender , rbuffer , sbuffer)

R(⟨pc, request, answer , given,waiting , sender , rbuffer , sbuffer⟩,
⟨pc ′, request′, answer ′, given′,waiting ′, sender ′, rbuffer ′, sbuffer ′⟩) :⇔
(∃i ∈ {1, 2} : RC local(⟨pc i , request i , answer i ⟩, ⟨pc ′i , request′i , answer ′i ⟩) ∧

⟨given,waiting , sender , rbuffer , sbuffer⟩ =
⟨given′,waiting ′, sender ′, rbuffer ′, sbuffer ′⟩) ∨

(RS local(⟨given,waiting , sender , rbuffer , sbuffer⟩,
⟨given′,waiting ′, sender ′, rbuffer ′, sbuffer ′⟩) ∧

∀i ∈ {1, 2} : ⟨pc i , request i , answer i ⟩ = ⟨pc ′i , request′i , answer ′i ⟩) ∨
(∃i ∈ {1, 2} : External(i , ⟨request i , answer i , rbuffer , sbuffer⟩,

⟨request′i , answer ′i , rbuffer ′, sbuffer ′⟩) ∧
pc = pc ′ ∧ ⟨sender ,waiting , given⟩ = ⟨sender ′,waiting ′, given′⟩)

Wolfgang Schreiner https://www.risc.jku.at 53/59

The Verification Task

⟨I ,R⟩ |= 2¬(pc1 = C ∧ pc2 = C)

Invariant(pc, request, answer , sender , given,waiting , rbuffer , sbuffer) :⇔
∀i ∈ {1, 2} :

(pc(i) = R ⇒
sbuffer(i) = 0 ∧ answer(i) = 0 ∧
(i = given ⇔ request(i) = 1 ∨ rbuffer(i) = 1 ∨ sender = i) ∧
(request(i) = 0 ∨ rbuffer(i) = 0)) ∧

(pc(i) = S ⇒
(sbuffer(i) = 1 ∨ answer(i) = 1 ⇒

request(i) = 0 ∧ rbuffer(i) = 0 ∧ sender ̸= i) ∧
(i ̸= given ⇒

request(i) = 0 ∨ rbuffer(i) = 0)) ∧
(pc(i) = C ⇒

request(i) = 0 ∧ rbuffer(i) = 0 ∧ sender ̸= i ∧
sbuffer(i) = 0 ∧ answer(i) = 0) ∧

(pc(i) = C ∨ sbuffer(i) = 1 ∨ answer(i) = 1 ⇒
given = i ∧
∀j : j ̸= i ⇒ pc(j) ̸= C ∧ sbuffer(j) = 0 ∧ answer(j) = 0) ∧

. . .
Wolfgang Schreiner https://www.risc.jku.at 54/59

The Verification Task (Contd)

. . .
(sender = 0 ∧ (request(i) = 1 ∨ rbuffer(i) = 1) ⇒

sbuffer(i) = 0 ∧ answer(i) = 0) ∧
(sender = i ⇒

(waiting ̸= i) ∧
(sender = given ∧ pc(i) = R ⇒

request(i) = 0 ∧ rbuffer(i) = 0) ∧
(pc(i) = S ∧ i ̸= given ⇒

request(i) = 0 ∧ rbuffer(i) = 0) ∧
(pc(i) = S ∧ i = given ⇒

request(i) = 0 ∨ rbuffer(i) = 0)) ∧
(waiting = i ⇒

given ̸= i ∧ pc i = S ∧ request i = 0 ∧ rbuffer(i) = 0 ∧
sbuffer i = 0 ∧ answer(i) = 0) ∧

(sbuffer(i) = 1 ⇒
answer(i) = 0 ∧ request(i) = 0 ∧ rbuffer(i) = 0)

The invariant has been elaborated in the course of the verification.

Wolfgang Schreiner https://www.risc.jku.at 55/59

An Operational System Model in RISCAL

Generalized to N ≥ 2 clients.

val N:N; // the number of clients

type Bit = N[1]; // messages are just signals

type Client = N[N]; // client ids 0..N-1, N: no client

type Buffer = Array[N,Bit]; // for each client a single message may be buffered

type PC = N[2]; val R = 0; val S = 1; val C = 2; // the client program counters

// the system with one server and N clients

shared system clientServer

{

var pc: Array[N,PC] = Array[N,PC](R); // the state of the clients

var request: Buffer = Array[N,Bit](0);

var answer: Buffer = Array[N,Bit](0);

var given: Client = N; // the state of the server

var waiting: Buffer = Array[N,Bit](0);

var sender: Client = N;

var rbuffer: Buffer = Array[N,Bit](0);

var sbuffer: Buffer = Array[N,Bit](0);

// the correctness property

invariant ¬∃i1:Client,i2:Client with i1 ̸= N ∧ i2 ̸= N ∧ i1 < i2.

pc[i1] = C ∧ pc[i2] = C;

...

Variable waiting has now to record a set of waiting clients.
Wolfgang Schreiner https://www.risc.jku.at 56/59

An Operational System Model in RISCAL

action R(i:Client) with i ̸= N ∧ pc[i] = R ∧ request[i] = 0; // the client transitions

{ pc[i] := S; request[i] := 1; }

action S(i:Client) with i ̸= N ∧ pc[i] = S ∧ answer[i] ̸= 0;

{ pc[i] := C; answer[i] := 0; }

action C(i:Client) with i ̸= N ∧ pc[i] = C ∧ request[i] = 0;

{ pc[i] := R; request[i] := 1; }

action D(i:Client) with i ̸= N ∧ sender = N ∧ rbuffer[i] ̸= 0; // the server transitions

{ sender := i; rbuffer[i] := 0; }

action F() with sender ̸= N ∧ sender = given ∧
∀i:Client with i ̸= N. waiting[i] = 0;

{ given := N; sender := N; }

action A1(i:Client) with i ̸= N ∧
sender ̸= N ∧ sender = given ∧ waiting[i] ̸= 0 ∧
sbuffer[i] = 0;

{ given := i; waiting[i] = 0; sbuffer[given] := 1; sender := N; }

action A2() with sender ̸= N ∧ sender ̸= given ∧ given = N ∧
sbuffer[sender] = 0;

{ given := sender; sbuffer[given] := 1; sender := N; }

action W() with sender ̸= N ∧ sender ̸= given ∧ given ̸= N;

{ waiting[sender] := 1 ; sender := N; }

action REQ(i:Client) with i ̸= N ∧ request[i] ̸= 0 ∧ rbuffer[i] = 0; // the communication subsystem

{ request[i] := 0; rbuffer[i] := 1; }

action ANS(i:Client) with i ̸= N ∧ sbuffer[i] ̸= 0 ∧ answer[i] = 0;

{ sbuffer[i] := 0; answer[i] := 1; }

}

Wolfgang Schreiner https://www.risc.jku.at 57/59

An Operational System Model in RISCAL

// the correctness property

invariant ¬∃i1:Client,i2:Client with i1 ̸= N ∧ i2 ̸= N ∧ i1 < i2. pc[i1] = C ∧ pc[i2] = C;

// the system invariants that imply the correctness property

invariant ∀i:Client with i ̸= N ∧ pc[i] = R.

sbuffer[i] = 0 ∧ answer[i] = 0 ∧ (request[i] = 0 ∨ rbuffer[i] = 0) ∧
(i = given ⇔ request[i] = 1 ∨ rbuffer[i] = 1 ∨ sender = i);

invariant ∀i:Client with i ̸= N ∧ pc[i] = S.

(sbuffer[i] = 1 ∨ answer[i] = 1 ⇒ request[i] = 0 ∧ rbuffer[i] = 0 ∧ sender ̸= i) ∧
(i ̸= given ⇒ request[i] = 0 ∨ rbuffer[i] = 0);

invariant ∀i:Client with i ̸= N ∧ pc[i] = C.

request[i] = 0 ∧ rbuffer[i] = 0 ∧ sender ̸= i ∧ sbuffer[i] = 0 ∧ answer[i] = 0;

invariant ∀i:Client with i ̸= N ∧ (pc[i] = C ∨ sbuffer[i] = 1 ∨ answer[i] = 1).

given = i ∧ ∀j:Client with j ̸= N ∧ j ̸= i. pc[j] ̸= C ∧ sbuffer[j] = 0 ∧ answer[j] = 0;

invariant sender = N ⇒ ∀i:Client with i ̸= N ∧ (request[i] = 1 ∨ rbuffer[i] = 1).

sbuffer[i] = 0 ∧ answer[i] = 0;

invariant ∀i:Client with i ̸= N ∧ sender = i.

waiting[i] = 0;

invariant ∀i:Client with i ̸= N ∧ sender = i ∧ pc[i] = R ∧ sender = given.

request[i] = 0 ∧ rbuffer[i] = 0;

invariant ∀i:Client with i ̸= N ∧ sender = i ∧ pc[i] = S ∧ sender ̸= given.

request[i] = 0 ∧ rbuffer[i] = 0;

invariant ∀i:Client with i ̸= N ∧ sender = i ∧ pc[i] = S ∧ sender = given.

request[i] = 0 ∨ rbuffer[i] = 0;

invariant ∀i:Client with i ̸= N ∧ waiting[i] = 1.

given ̸= i ∧ pc[i] = S ∧
request[i] = 0 ∧ rbuffer[i] = 0 ∧ sbuffer[i] = 0 ∧ answer[i] = 0;

invariant ∀i:Client with i ̸= N ∧ sbuffer[i] = 1.

answer[i] = 0 ∧ request[i] = 0 ∧ rbuffer[i] = 0;

Wolfgang Schreiner https://www.risc.jku.at 58/59

The Verification in RISCAL

We can (for say N = 4) check that the system execution satisfies the
invariants; we can also check the verification conditions generated from
the system invariants; finally we can prove the conditions for arbitrary N.

Wolfgang Schreiner https://www.risc.jku.at 59/59

	The Basics of Temporal Logic
	Specifying with Linear Time Logic
	Verifying Safety Properties by Computer-Supported Proving

