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Motivation 1

We need a language for specifying system properties.

A system S is a pair (I, R). Ay R N

Initial states /, transition relation R. ) _
More intuitive: reachability graph. eeeen
Starting from an initial state sy, the system runs evolve.
Consider the reachability graph as an infinite computation tree.
Different tree nodes may denote occurrences of the same state.
Each occurrence of a state has a unique predecessor in the tree.
Every path in this tree is infinite.
Every finite run sp — ... — s, is extended to an infinite run
So = ...—>Sn—>Sp—> Sy —
Or simply consider the graph as a set of system runs.

Same state may occur multiple times (in one or in different runs).

Temporal logic describes such trees respectively sets of system runs.
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Computation Trees versus System Runs E {

Set of system runs:
el [a,b] 2 c—c—...
[a, b] = [b,c] = ¢ — ...
[a, b] = [b,c] — [a,b] — ...
[a, b] = [b,c] — [a,b] — ...

Unwind State Graph to obtain Infinite Tree

Figure 3.1
Computation trees.

Edmund Clarke et al: “Model Checking”, 1999.
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State Formula v

Temporal logic is based on classical logic.
A state formula F is evaluated on a state s.

Any predicate logic formula is a state formula:
p(X),“F,Fo/\FhFo\/Fl,Fo:}Fl,F(){:}Fl,VXZF,HXZF.
In propositional temporal logic only propositional logic formulas are
state formulas (no quantification):
p,~F, Fo ANFi,FoV F1, Fo = F1, Fo < F1.
Semantics: s = F (“F holds in state s”).
Example: semantics of conjunction.
(S ': Fo A Fl) = (5 ): Fo) A (S ): Fl).
“Fo A F1 holds in s if and only if Fy holds in s and F; holds in s”.

Classical logic reasoning on individual states.
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Temporal Logic e

Extension of classical logic to reason about multiple states.
Temporal logic is an instance of modal logic.
Logic of “multiple worlds (situations)” that are in some way related.
Relationship may e.g. be a temporal one.
Amir Pnueli, 1977: temporal logic is suited to system specifications.
Many variants, two fundamental classes.
Branching Time Logic
Semantics defined over computation trees.
At each moment, there are multiple possible futures.
Prominent variant: CTL.
Computation tree logic; a propositional branching time logic.
Linear Time Logic
Semantics defined over sets of system runs.
At each moment, there is only one possible future.
Prominent variant: PLTL.
A propositional linear time logic.
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Branching Time Logic (CTL) '&{

We use temporal logic to specify a system property F.
Core question: S = F (“F holds in system S").
System S = (I, R), temporal logic formula F.
Branching time logic:
SEF & S,s = F, for every initial state sy of S.
Property F must be evaluated on every pair of system S and initial

state sp.
Given a computation tree with root sy, F is evaluated on that tree.

CTL formulas are evaluated on computation trees.
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State Formulas v

We have additional state formulas.
A state formula F is evaluated on state s of System §.

Every (classical) state formula f is such a state formula.
Let P denote a path formula (later).

Evaluated on a path (state sequence) p=po — p1 = p2 — .. ..
R(pi, pi+1) for every i; py need not be an initial state.

Then the following are state formulas:

A P (“in every path P"),

E P (“in some path P").
Path quantifiers: A, E.

Semantics: S,s |= F (“F holds in state s of system S").

S,;sEf & sEf.
S,sEAP & S pkE P, for every path p of S with pg = s.
S,sEEP & S pkE P, for some path p of S with py = s.
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Path Formulas E {

We have a class of formulas that are not evaluated over individual states.
A path formula P is evaluated on a path p of system §.
Let F and G denote state formulas.
Then the following are path formulas:
X F (“next time F"),
G F (“always F"),
F F (“eventually F"),
F UG ("F until G").
Temporal operators: X, G, F, U.
Semantics: S, p = P (“P holds in path p of system S").
SSpEXF =S pEF.
S,p=EGF :eVieN:S,p EF.
SSpEFF :3ieN:SpEF.
SSPEFUG :3ieN:S,pi=GAYjeN;:S,pj=F.
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Path Formulas .E {'

o U0 @r
o (@)l g}
MR g B i R
oy e

Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.
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Path Quantifiers and Temporal Operators

2\,
N2

Wolfgang Schreiner
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M,s0=EFg M,so=AF g
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M,so =EG g M,s0=AG g

Edmund Clarke et al: “Model Checking”, 1999.
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Linear Time Logic (LTL) 'E V4

We use temporal logic to specify a system property P.
Core question: S |= P (“P holds in system S").
System S = (I, R), temporal logic formula P.
Linear time logic:

SEP = r= P, forevery run r of S.

Property P must be evaluated on every run r of S.

Given a computation tree with root sy, P is evaluated on every path
of that tree originating in sg.

If P holds for every path, P holds on S.

LTL formulas are evaluated on system runs.
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Formulas N {'

No path quantifiers; all formulas are path formulas.
Every formula is evaluated on a path p.
Also every state formula f of classical logic (see below).
Let F and G denote formulas.
Then also the following are formulas:
X F (“next time F"), often written OF,
G F (“always F"), often written OF,
F F (“eventually F"), often written OF,
F UG ("F until G").
Semantics: p = P (“P holds in path p").
p' = (pis Pit1,---)-
pEfpEf
pEXF :&plEF.
pEGF :&VieN:p =F.
pEFF :=3JieN:p =F.
pEFUG <3JieN:pP=EGAVjeEN;:p =F.
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Formulas .E {'

o U0 @r
o (@)l g}
MR g B i R
oy e

Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.
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Branching versus Linear Time Logic ¢

We use temporal logic to specify a system property P.
Core question: S |= P (“P holds in system S").
System S = (I, R), temporal logic formula P.
Branching time logic:
SEP & S,s0 | P, for every initial state sp of S.
Property P must be evaluated on every pair (S, sp) of system S and
initial state sg.
Given a computation tree with root sy, P is evaluated on that tree.
Linear time logic:

SEP = r= P, forevery run r of s.

Property P must be evaluated on every run r of S.

Given a computation tree with root sy, P is evaluated on every path
of that tree originating in sg.

If P holds for every path, P holds on S.
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Branching versus Linear Time Logic ¢

Ay: Ay

Fig. 2.4. Two automata, indistinguishable for PLTL

B. Berard et al: “Systems and Software Verification”, 2001.

Linear time logic: both systems have the same runs.
Thus every formula has same truth value in both systems.
Branching time logic: the systems have different computation trees.

Take formula AX(EX Q A EX —=Q).
True for left system, false for right system.

The two variants of temporal logic have different expressive power.
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Branching versus Linear Time Logic

Is one temporal logic variant more expressive than the other one?

CTL formula: AG(EF F).
“In every run, it is at any time still possible that later F will hold".

Property cannot be expressed by any LTL logic formula.
LTL formula: GOF (i.e. FG F).

“In every run, there is a moment from which on F holds forever.”.

Naive translation AFG F is not a CTL formula.
G F is a path formula, but F expects a state formula!

Translation AFAG F expresses a stronger property (see next page).
Property cannot be expressed by any CTL formula.

cTL*

None of the two variants
IS strlctly more expressive SR e
than the other one; no dasiel i\
variant can express every S T o
system property Fig. 4-8. Expressiveness of CTL*, CTL+, CTL and LTL
Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.
17/59
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Branching versus Linear Time Logic W

Proof that AFAG F (CTL) is different from GOF (LTL).

(——CD

F F F F F F
VN LA A N R |
F ~F F -~F F F F
RN N [ R
F ~F F F F ~F F F
VRN N N [ T A A
F ~F F F F F F ~F F
P NN (A
~F F F F F F F -~F
Np N A
N
AFAG F <=> false <>[] F <=> true
In every run, there is a moment when In every run, there is a moment
it is guarantueed that from now on from which on F holds forever.

F holds forever.
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Linear Time Logic %

Why using linear time logic (LTL) for system specifications?
LTL has many advantages:
LTL formulas are easier to understand.

Reasoning about computation paths, not computation trees.
No explicit path quantifiers used.
LTL can express most interesting system properties.
Invariance, guarantee, response, ... (see later).
LTL can express fairness constraints (see later).
CTL cannot do this.
But CTL can express that a state is reachable (which LTL cannot).
LTL has also some disadvantages:
LTL is strictly less expressive than other specification languages.
CTL" or p-calculus.
Asymptotic complexity of model checking is higher.
LTL: exponential in size of formula; CTL: linear in size of formula.
In practice the number of states dominates the checking time.
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Frequently Used LTL Patterns
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N2

In practice, most temporal formulas are instances of particular patterns.

Pattern Pronounced Name

oF always F invariance

OF eventually F guarantee

ooF F holds infinitely often recurrence

ooF eventually F holds permanently  stability

O(F = <©G) always, if F holds, then response
eventually G holds

O(F = (G U H)) always, if F holds, then precedence

G holds until H holds

Typically, there are at most two levels of nesting of temporal operators.

Wolfgang Schreiner

https://www.risc.jku.at

21/59



7™\
Examples .E {'

Mutual exclusion: O=(pc; = C A pcy, = C).

Alternatively: =<O(pe; = C A pe, = C).

Never both components are simultaneously in the critical region.
No starvation: Vi : O(pc; = W = Opc; = R).

Always, if component i waits for a response, it eventually receives it.
No deadlock: O—Vi: pc; = W.

Never all components are simultaneously in a wait state W.
Precedence: Vi: O(pc; # C = (pc; # C U lock = i)).

Always, if component i is out of the critical region, it stays out until it

receives the shared lock variable (which it eventually does).
Partial correctness: O(pc = L = C).

Always if the program reaches line L, the condition C holds.
Termination: Vi: O(pe; = T).

Every component eventually terminates.
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Example \

If event a occurs, then b must occur before ¢ can occur (a run
.3, (mb)*, ¢, ... is illegal).
First idea (wrong)
a=...
Every run d, ... becomes legal.
Next idea (correct)
Oa=...)
First attempt (wrong)
o(a= (b U c))
Run a, b, —b, c, ... is illegal.
Second attempt (better)
O(a = (—c U b))
Run a, —c¢, ¢, —c, ... is illegal.
Third attempt (correct)
O(a = ((O—c) Vv (—c U b)))
Specifier has to think in terms of allowed/prohibited sequences.
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Temporal Rules W

Temporal operators obey a number of fairly intuitive rules.

Extraction laws:

OF & FAOOF.

OF & FVOOF.

FUG < GV(FAO(F U G)).
Negation laws:

-OF & O-F.

-OF & O-F.

-(FUG) & ((-G) U (=FA=G))V—=OG.
Distributivity laws:

O(FAG) & (OF)A(DG).
O(FVG) & (OF)V(©G).
(FAGYUH & (FUH)A(GUH).
U(GVH) & (FUG)V(FUH).
OO(FV G) & (OCF) VvV (O0G6).
CO(F A G) & (©OF) A (©OG).
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Classes of System Properties W {'

There exists two important classes of system properties.

Safety Properties:

A safety property is a property such that, if it is violated by a run, it
is already violated by some finite prefix of the run.

This finite prefix cannot be extended in any way to a complete run
satisfying the property.
Example: OF (with state property F).
The violating run F — F — =F — ... has the prefix F - F — —F
that cannot be extended in any way to a run satisfying OF.
Liveness Properties:

A liveness property is a property such that every finite prefix can be
extended to a complete run satisfying this property.

Only a complete run itself can violate that property.

Example: OF (with state property F).
Any finite prefix p can be extended to a run p — F — ... which
satisfies OF.
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System Properties E {

Not every system property is itself a safety property or a liveness property.

Example: P :< (0OA) A (OB) (with state properties A and B)
Conjunction of a safety property and a liveness property.

Take the run [A,—B] — [A,—B] — [A,—B] — ... violating P.
Any prefix [A,—~B] — ... — [A, =B] of this run can be extended to a
run [A,—B] = ... = [A,—-B] = [A, B] — [A, B] — ... satisfying P.
Thus P is not a safety property.

Take the finite prefix [-A, B].
This prefix cannot be extended in any way to a run satisfying P.
Thus P is not a liveness property.

So is the distinction “safety” versus “liveness” really useful?.
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System Properties E {

The real importance of the distinction is stated by the following theorem.
Theorem:
Every system property P is a conjunction S A L of some safety
property S and some liveness property L.
If Lis “true”, then P itself is a safety property.
If Sis “true”, then P itself is a liveness property.
Consequence:

Assume we can decompose P into appropriate S and L.
For verifying M |= P, it then suffices to verify:

Safety: M = S.
Liveness: M = L.

Different strategies for verifying safety and liveness properties.

For verification, it is important to decompose a system property in its
“safety part” and its “liveness part”.
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Verifying Safety N4

We only consider a special case of a safety property.
M = OF.
F is a state formula (a formula without temporal operator).
Verify that F is an invariant of system M.
M = {l,R).
I(s) = ...
R(s,s') & Ro(s,s') V Ri(s,s') V...V Ro—1(s,s").
Induction Proof.
Vs I(s) = F(s).
Proof that F holds in every initial state.
Vs,s': F(s) A R(s,s") = F(s').
Proof that each transition preserves F.
Reduces to a number of subproofs:
F(s) A Ro(s,s") = F(s')

F(s) A Ros(s,5') = F(s)
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Example

A
N

var x :=0

loop
po : wait x =0 I
p1:x:=x+1

State = {po, p1} X {qo, g1} X Z.

I(p,q,x) > p=poAqg=qoAx=0.
R((p,q,x),(p',q",x")) 1= Po(..

Po({p,q,x),(p',q’,x'))
Pi({p,q,x),(p’,q',x"))
Qo((p,q,x),(p',q',x"))
Qi({p,q,x),(p’,q',x"))

Prove (I,R) EO(x =0V x=1)

Wolfgang Schreiner
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loop
go : wait x =1
g:x:=x-—1

IV Qi(..).

:<:>p:po/\x:0/\p’:pl/\q’:q/\x’zx‘
Sp=pAp =pp NG =qgAx =x+1.
S qg=qAx=1Ap =pAqd =g Ax =x.
Sqg=qaAp =pAgd =qgpAXx =x-1.
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Inductive System Properties 1

The induction strategy may not work for proving OF
Problem: F is not inductive.
F is too weak to prove the induction step.
F(s)AR(s,s') = F(s').
Solution: find stronger invariant /.
If | = F, then (0/) = (OF).
It thus suffices to prove O/.
Rationale: I may be inductive.
If yes, I is strong enough to prove the induction step.
1(s) A R(s,s") = I(s).
If not, find a stronger invariant /” and try again.
Invariant / represents additional knowledge for every proof.
Rather than proving OP, prove O(/ = P).

The behavior of a system is captured by its strongest invariant.
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Example

A
N

Prove (I,R) EO(x=0Vvx=1).
Proof attempt fails.
Prove (I, R) = OG.
G &
(x=0vx=1)A
(p=p1=x=0)A
(g=q=x=1).

Proof works.
G = (x =0V x = 1) obvious.

See the proof presented in class.

Wolfgang Schreiner https://www.risc.jku.at
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Verifying Liveness i

var x . =0,y :=0
loop [ loop
x:=x+1 y=y+1

State = N x N; Label = {P, Q}.
I(x,y) & x=0Ay=0.
R(1,(x,y), (X', y") v
(I=PAX =x+1Ay' =y)VI=QAX =xAy =y+1).

(I,R) I Ox = 1.

[x:O,yzo]g[X:O,yzl]g[x:O,y:2]8>...
This run violates (as the only one) ¢x = 1.
Thus the system as a whole does not satisfy Ox = 1.

For verifying liveness properties, “unfair” runs have to be ruled out.
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Enabling Condition ¢

When is a particular transition enabled for execution?
Enabledg(l,s) < 3t : R(I,s, t).
Labeled transition relation R, label /, state s.
Read: “Transition (with label) / is enabled in state s (w.r.t. R)".

Example (previous slide):

Enabledr(P, (x, y))

&3¢,y R(P, by, ()

< X,y
(P=PAX' =x+1Ay =y)V
(P=QAX =xAy =y+1)

S 3xX,y :P=PAX =x+1Ay' =y)V

Bx,y :P=QAX =xAy' =y+1)
& true V false
< true.

Transition P is always enabled.
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Weak Fairness A4

Weak Fairness
A run s o, s LN S b weakly fair to a transition /, if
if transition / is eventually permanently enabled in the run,
then transition / is executed infinitely often in the run.
(30 :Vj > i : Enabledg(l,s)) = (Vi: 3 >i:}=1).
The run in the previous example was not weakly fair to transition P.
LTL formulas may explicitly specify weak fairness constraints.
Let E; denote the enabling condition of transition /.
Let X; denote the predicate “transition / is executed”.
Define WF, :& (ODE/) = (\:|<>X/).
If I is eventually enabled forever, it is executed infinitely often.
Prove (I, R) = (WF, = F).

Property F is only proved for runs that are weakly fair to /.

Alternatively, a model may also have weak fairness “built in".
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Example N

State = N x N; Label = {P, Q}.
I(x,y) ©&x=0Ay=0.
R(I, {(x, y), (X', y")) v
(I=PAX =x+1Ay =y)VI=QAX =xAy =y+1).

(I,R) = WFp = Ox = 1.

[X:0,y:0]Q)[X:O,y:l]g[x:O,y:2]8>....
This (only) violating run is not weakly fair to transition P.

P is always enabled.
P is never executed.

System satisfies specification if weak fairness is assumed.
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Strong Fairness .E {'

Strong Fairness

A run s oy S LN S b s strongly fair to a transition /, if

if 1 is infinitely often enabled in the run,

then [ is also infinitely often executed the run.

(Vi:3j >i: Enabledr(l,s;)) = (Vi:3j>i:l=1).
If ris strongly fair to /, it is also weakly fair to / (but not vice versa).
LTL formulas may explicitly specify strong fairness constraints.

Let E; denote the enabling condition of transition /.
Let X; denote the predicate “transition / is executed"”.
Define SF; := (OCE) = (OOX).

If | is enabled infinitely often, it is executed infinitely often.
Prove (I,R) |= (SF; = F).

Property F is only proved for runs that are strongly fair to /.

A much stronger requirement to the fairness of a system.
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Example 3 *
N7
var x=0
loop
a. X.:=—X

b: choose x :=0[] x:=1

State := {a, b} x Z; Label = {A, By, B1}.

I(p,x) = p=aAx=0.

R(1,{p.x),(p',x")) 1=
(I=AA(p=anp =bAX =—x))V
(I=BA(p=bAp =anx"=0))V
(I=BiAn(p=bAp =aAx =1)).

(I,R) = SFp, = Ox = 1.

[2,0] & [b,0] 2 [a,0] & [b,0] 2 [a,0] & ...

This (only) violating run is not strongly fair to By (but weakly fair).
B, is infinitely often enabled.
B is never executed.

System satisfies specification if strong fairness is assumed.
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Weak versus Strong Fairness 1

In which situations is which notion of fairness appropriate?
Process just waits to be scheduled for execution.

Only CPU time is required.
Weak fairness suffices.

Process waits for resource that may be temporarily blocked.

Critical region protected by lock variable (mutex/semaphore).
Strong fairness is required.

Non-deterministic choices are repeatedly made in program.

Simultaneous listing on multiple communication channels.
Strong fairness is required.

Many other notions or fairness exist.

Wolfgang Schreiner https://www.risc.jku.at 38/59



A
N

1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

Wolfgang Schreiner https://www.risc.jku.at 39/59



A

A Bit Transmission Protocol K *
%
3 v R
r
X y
a
var x,y

varv:=0,r:=0,a:=0

S: loop R: loop
0: choose x € {0,1} I 0:waitr=1
v,r:=x,1 y,a:=v,1
l:waita=1 l:waitr=20
r:=0 a:=0
2:waita=0

Transmit a sequence of bits through a wire.
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N A
A (Simplified) Model of the Protocol v

State := PCl X PC2 X (N2)5

I(p,q,x,y,v,r,a) &p=q=1Av=r=a=0.
R({p,a,x,y.v,r,a),{p',q,x',y' V', 1, d))
S1(...)VvS2(...)vS3(...)VRI(...)VR2(...).

51((p7 aq,xX,y,Vv,r, a>7<p/7q,7X,7y,7Vl7r/7a/>) =
p=0Ap =1AV =xX'Ar=1A
g =gAX =xANy' =ynad =a
S2((p, g, x,y,v,r,a),{p,q' . X",y v, r',d)) =
p=1Ap =2Aa=1Ar" =0A
g =gAX =xANy' =yAv =vAd =a
S3(<P, q,x,y,v,r, a>,<P/7q/,X/,y/,V/7r/,al>) s

Rl((p7 q7X7.y7 v7 r7 a>7<P/7q,7X,7.yl7 vl7r,7a/>) @
g=0Aqg' =1Ar=1Ay' =vAad =1A
pr=pAx' =xAVv =vAr =r.

R2({p, q,x,y,v,r,a),(p',q',x",y', v/, r',a)) =
g=1Aqg =2Ar=0Aa =0A
pr=pAx'=xANy' =yAv =vAr=r.
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A Verification Task .E .

(LR)ED(@=1=y=x)
Invariant(p,...) = (g=1=y = x)

I(p,...) = Invariant(p,...)
R(p,...),{p',..)) A lnvariant(p,...) = Invariant(p’,...)

Invariant(p, q,x,y, v, r,a) &
(p=0=g=0Ar=0Aa=0)A
(p=1l=r=1Av=x)A
(p=2=r=0)A
(g=0=a=0)A
(g=1=(p=1Vvp=2)rha=1Ay=x)

The invariant captures the essence of the protocol.
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A RISCAL Theory .E {’

type Bit = N[1]; type PC1 = N[2]; type PC2 = N[1];

pred S1(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) &
Pp=0APpP0o=1Av0=3x0A71r0=1A//x0 arbitrary
q0 =g A y0o =y A a0 = a;
pred S2(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) &
p=1ApP0o=2ANa=1A10=0A
Q0 =g A x0=x Ay0=y Av0O=v A a0 = a;
pred S3(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) &
p=2Ap0=0Aa=0A
q0 =g Ax0=xAy0=yAv0O=v Ar0O=1r A a0 = a;
pred R1(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) &
qg=0AqQ0=1Ar=1Ay30=v ANad=1A
PO =p Ax0=x Av0=v A r0=r;
pred R2(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) &
q=1ANqg0=0AT1T=0AN2a0=0A
PO =p A x0=xAy0=y Av0=v Ar0=r;
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pred Init(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) &
v=0Ar=0ANa=0Ap=0Aq-=0;
pred Invariant(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) &

(p=0=>g=0ATr=0Aa=0) A
p=1=>r=1Av=x) A
(p=2=>1r=0 A

(g=0=a=0) A

(@q=1=(=1Vp=2) Aa=1Ay=x);
pred Property(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) <&
q=1=y=x;

theorem VCO(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) &
Init(x,y,v,r,a,p,q) = Invariant(x,y,v,r,a,p,q);
theorem VC1(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) &
Invariant(x,y,v,r,a,p,q) A Si(x,y,v,r,a,p,q,x0,y0,v0,r0,a0,p0,q0) =
Invariant(x0,y0,v0,r0,a0,p0,q0);

theorem VC5(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) &
Invariant(x,y,v,r,a,p,q) A R2(x,y,v,r,a,p,q,x0,y0,v0,r0,a0,p0,q90) =
Invariant (x0,y0,v0,r0,a0,p0,q0);
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Executing VCO(Z,Z,Z,7Z,7Z,Z,Z) with all 192 inputs.

Execution completed for ALL inputs (23 ms, 192 checked, O inadmissible).
Executing VC1(Z,Z,Z,2,2,2,2,2,2,2,2,2Z,7Z,Z) with all 36864 inputs.
Execution completed for ALL inputs (123 ms, 36864 checked, O inadmissible).
Executing VC2(Z,Z,%Z,%2,2,2,2,2,2,2,2,2Z,7Z,Z) with all 36864 inputs.
Execution completed for ALL inputs (50 ms, 36864 checked, O inadmissible).
Executing VC3(Z,Z,%Z,2,2,%,2,2,2,L,2,2,7Z,Z) with all 36864 inputs.
Execution completed for ALL inputs (94 ms, 36864 checked, O inadmissible).
Executing VC4(Z,Z,%Z,2,7,2,2,2,2,L,L,2,7Z,Z) with all 36864 inputs.
Execution completed for ALL inputs (50 ms, 36864 checked, O inadmissible).
Executing VC5(Z,Z,%Z,2,2,2,2,2,2,L,L,Z,7Z,Z) with all 36864 inputs.
Execution completed for ALL inputs (65 ms, 36864 checked, O inadmissible).

More instructive: proof attempts with wrong or too weak invariants
(see demonstration).
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An Operational System Model in RISCAL

A\,
N2

// the types

type Bit = N[1]; type PC1 = N[2];

type PC2

= N[1];

// an operational description of the system

shared system Bits

{
// the system state
var x:Bit; var y:Bit;
var v:Bit = 0; var r:Bit
var p:PC1 = 0; var q:PC2

0; var a:Bit
0;

// the correctness property
invariant q = 1 = y =

// the system invariants that imply the

invariant p =0 = q=0 AT =0 A a =
invariant p =1 = r =1 A v = x;
invariant p = 2 = r = 0;

invariant q = 0 = a = 0;

invariant g =1 = (p=1V p=2) A a

Wolfgang Schreiner

https://www.risc.jku.at

]
o

correctness property
0;

1 ANy =x;
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// the non-deterministically chosen initial state values
init (x0:Bit, y0:Bit) { x := x0; y := y0; }

// the sender actions
action Si(any:Bit) with p = 0; { x (= any; v:=x; r ;== 1; p :== 1; }

action 82() withp=1Aa=1; {r:=0; p:=2;}
action S3() withp=2Aa=0; {p:=0; }

// the receiver actions

action R1() withq=0Ar=1; {y:=v; a:=1; q=1; }
action R2() withq=1 A r =0; {a:=0; q:=0; }

We can check that all reachable states of the system satisfy the
correctness property and the invariants; we can also generate from the
system model and invariants the verification conditions and check these.
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The Verification

in RISCAL

2\,
AS3

File Edit SMT TP Help

File: bits.txt
Y
10
2// a bit transmission protocol
3// () 2024, Wolfgang Schreiner <Nolfgang.Schreinererisc.iku.at>
a1
6// the types

B

type PC2 = NI1T

74 an operational description of the system

2shared system Bits
3¢
4 7/ the local variables

2
o
22

23
2
25

2

2
3
34
35
36
P
38

var xiBit; var yiBit

11 the wires
var viBit = 0; var riBit = 0; var a:Bit

/1 the program counters
var piPCl = @; var q:PC2

/1 the correctness property
invariant q = 1 -« y = x;

1/ the systen dnvartants that Lrply the corxectness property
0 i}

invariant q
invariant q = 1 - [p-]vp-z]Aa:]Ay-x,

77 the non-deterninistically chosen initial state values
init (x0:Bit, yOIBit) { X = x

yo;

/1 the sender actions
action S1(any:Bit) with p = 0
«

RISC Algorithm Language (RISCAL)

Analysis
e»0 ves &
Translation: ©Nondeterminism Default Value: 0 Other Values: =

Execution: ©Silent Inputs:  PerMille:  Branches:  Depth:

Visualization: ~Trace " Tree Width: 150  Height: 80C

Parallelism: _IMulti-Threaded Threads:4  _Distributed Servers: &

Operation: B system Bits i

Computing the value of _tbound_0.
Computing the value of _tbound_1

Computing the value of _tbound_2.

Type checking and translation completed
Executing systen Bits

15 systen states found with search depth 7.
Execution completed (1 ms).

The SNT solver Yices started execution.

Theoren _Bits_6_initPre_cverify o is valid.
Theoren _Bits_0_initPre_cverify 1 is valid
Theorem _Bits_0_initPre_cverify_2 is valid
Theorem _Bits_8_initPre_cverify_3 is valid
Theorem _Bits_8_initPre_cverify_4 is valid
Theocen its_0_initpre_cuerify S is valid.
Theoren _Bits_p_actionPre, ify_0 is valid
Thearen _Bite_0_actionpre_o_cvertfy 1 is valid
Theoren _Bits_6_actionPre 0_cverify_2 is valid
Theoren _Bits_o_actionPre_0_cverify_3 is valid.
Theorem _Bits_0_actionPre_o_cverify_d is valid
Theorem _Bits_0_actionPre_0_cverify_s is valid
Theoren _Bits_0_actionPre_l_cverify 0 is valid
cverify 1 is valid.

_cverify 0 is valid
Theorem _Bits_0_actionPre_2_cverify_1 is valid

_cuerify_2 is valid
Theoren _Bits_8_actionPre_2_cverify_3 is valid.

e | Thenren Rits o actinnbre > cuerify 4 is walid

Both kinds of verification succeed.

Wolfgang Schreiner
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Tasks
T —
Execute operation
Verify speciication preconditions
Verify temporal properties
Verify specification
Does system invariant nitialy hold?
Does system invariant nitialy hold?
Dos system invariant nitialy hold?
Does system invariant initialy hold?
Does system invariant niially hold?
Does system invariant nitialy hold?
- actions1
15 system invariant preserved?
15 system invariant preserved?
Is system invariant preserved?
15 system invariant preserved?
15 system invariant preserved?
Is system invariant preserved?
- actionS2
15 system invariant preserved?
15 system invariant preserved?
Is system invariant preserved?
15 system invariant preserved?
Is system invariant preserved?
Is system invariant preserved?
- actionS3
15 system invariant preserved?
Is system invariant preserved?
Is system invariant preserved?
15 system invariant preserved?
Is system invariant preserved?
Is system invariant preserved?
- actionR1
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A Client/Server System

A
N

Client system C; = (IC;, RC;).
State := PC x N x Na.
Int := {R,’,S,', C,'}.

IC;(pc, request, answer) <
pc = R A request = 0 A\ answer = 0.
RC;(l,{pc, request, answer),
(pc’, request’, answer’)) :<
(I = R; A pc = R A request =0 A
pc’ = S A request’ = 1 A answer’ = answer) V
(I=S8; Apc =S5 A answer #0 A
pc’ = C A request’ = request A answer’ = 0) V
(I = Ci A pc = C A request =0 A
pc’ = R A request’ = 1 A answer’ = answer) V

(I = REQ; N request # 0 A

pc’ = pc A request’ = 0 A answer’ = answer) V
(I = ANS; A

pc’ = pc A request’ = request A answer’ = 1).

Wolfgang Schreiner https://www.risc.jku.at

Client (ident):
param ident
begin
loop

R: sendRequest()
S: receiveAnswer ()
C: // critical region

sendRequest ()

endloop
end Client
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Wolfgang Schreiner

A Client/Server System (Contd)

@\,
W

Server system S = (IS, RS).
State := (N3)3 x ({1,2} — Np)2.
Int := {D1, D2, F, AL, A2, W}.

IS(given, waiting, sender, rbuffer, sbuffer) :<
given = waiting = sender = 0 A

rbuffer(1) = rbuffer(2) = sbuffer(1) = sbuffer(2) = 0.

RS(1, {given, waiting , sender, rbuffer, sbuffer),
(given’, waiting’, sender’, rbuffer’, sbuffer’)) 1=
Jie{1,2}:
(I = D; A sender = 0 A rbuffer(i) # 0 A
sender’ = i A rbuffer’(i) = 0 A
U(given, waiting, sbuffer) A
Vj € {1,23\{i} : Uj(rbuffer)) v

U(xt, ..., xn) i & X{ = X1 A ... AX) = Xp.
Sxn) 1@ xq () = xa () A Axq () = xa().-

https://www.risc.jku.at

Server:
local given, waiting, sender
begin

given := 0; waiting := 0
loop
D: sender := receiveRequest()

if sender = given then
if waiting = O then

F: given := 0
else
Al: given := waiting;
waiting := 0
sendAnswer (given)
endif
elsif given = O then
A2: given := sender
sendAnswer (given)
else
W: waiting := sender
endif
endloop

end Server
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A Client/Server System (Contd’2) N

Server:
local given, waiting, sender
(I = F A sender # 0 A sender = given A waiting = 0 A beg%n .
given’ = 0 A sender’ = 0 A given := 0; waiting := 0
U(waiting, rbuffer, sbuffer)) vV Loop )
D: sender := receiveRequest()

if sender = given then

(I = A1 A sender # 0 A sbuffer(waiting) = 0 A if waiting = O then

sender = given A\ waiting # 0 A

given’ = waiting A waiting’ =0 A F: lgiven =0
sbuffer’ (waiting) = 1 A sender’ = 0 A else N
U(rbuffer) A At: given := waiting;
j 1,2 iti - U; Fe waiting := 0
Vj € {1,2}\{waiting} : U;(sbuffer)) v Sonahncuer (given)
(I = A2 A sender # O A sbuffer(sender) = 0 A 1er.1<f11f. o tn
sender # given A given = 0 A elsif given = en
given' = sender N\ A2: given := sender
sbuffer’ (sender) = 1 A sender’ = 0 A lsendAnswer(glven)
U(waiting, rbuffer) A " e Se.t‘ - .
Vj € {1,2}\{sender} : Uj(sbuffer)) v : waiting := sender
endif
o endloop

end Server
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A Client/Server System (Contd’3)

@\,
W

(I = W A sender # 0 A sender # given A given # 0 A
waiting’ := sender A sender’ = 0 A
U(given, rbuffer, sbuffer)) v

Jie {1,2}:

(I = REQ; A rbuffer’ (i) = 1 A
U(given, waiting, sender, sbuffer) N\
Vj € {1,2}\{i} : Uj(rbuffer)) Vv

(I = ANS; A sbuffer(i) # 0 A
sbuffer’ (i) = 0 A
U(given, waiting, sender, rbuffer) A
Vj € {1,2}\{i} : U;(sbuffer)).

https://www.risc.jku.at

Server:
local given, waiting, sender
begin

given := 0; waiting := 0
loop
D: sender := receiveRequest()

if sender = given then
if waiting = O then

F: given := 0
else
Al: given := waiting;
waiting := 0
sendAnswer (given)
endif
elsif given = O then
A2: given := sender
sendAnswer (given)
else
W: waiting := sender
endif
endloop

end Server
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A Client/Server System (Contd’4) N4

State := ({1,2} — PC) x ({1,2} = N2)? x (N3)? x ({1,2} — N,)?

I(pc, request, answer, given, waiting, sender, rbuffer, sbuffer) :<
Vi € {1,2} : IC(pc;, request;, answer;) A
IS(given, waiting, sender, rbuffer, sbuffer)

R({pc, request, answer, given, waiting, sender, rbuffer, sbuffery,

(pc’, request’, answer’, given’, waiting’, sender’, rbuffer’, sbuffer')) :<
(3i € {1,2} : RCocat({pc;, request;, answer;), (pc’, request’, answer})) A

(given, waiting, sender, rbuffer, sbuffer) =

(given', waiting’, sender’, rbuffer’, sbuffer’)) v
(RSiocai ({given, waiting, sender, rbuffer, sbuffer),
(given', waiting’, sender’, rbuffer’, sbuffer')) A

Vi € {1,2} : {pc;, request;, answer;) = (pc, request’, answer;)) V

(3i € {1,2} : External(i, (request;, answeri, rbuffer, sbuffer),
(request’, answer?, rbuffer’, sbuffer’)) A
pc = pc’ A (sender, waiting, given) = (sender’, waiting’, given'))
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The Verification Task °§ {-

(I, R) = 0~(pc1 = C A pey = C)

Invariant(pc, request, answer, sender, given, waiting, rbuffer, sbuffer) :<
Vie{1,2}:
(pc(i) =R =
sbuffer(i) = 0 A answer(i) =0 A
(i = given & request(i) = 1V rbuffer(i) = 1V sender = i) A
(request(i) = 0V rbuffer(i) = 0)) A
(pe(i) =S =
(sbuffer(i) =1V answer(i) =1 =
request(i) = O A rbuffer(i) = 0 A sender # i) A
(i # given =
request(i) = 0V rbuffer(i) = 0)) A
(pe(i) = C =
request(i) = 0 A rbuffer(i) = 0 A sender # i A
sbuffer(i) = 0 A answer(i) = 0) A
(pc(i) = C V sbuffer(i) = 1V answer(i) =1 =
given = i A\
Vj:j#i= pc(j) # C Asbuffer(j) = 0 A answer(j) = 0) A
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The Verification Task (Contd) N4

(sender = 0 A (request(i) = 1V rbuffer(i) = 1) =
sbuffer(i) = 0 A answer(i) = 0) A
(sender = i =
(waiting # i) A
(sender = given A pc(i) = R =
request(i) = 0 A rbuffer(i) = 0) A
(pc(i) = S N i # given =
request(i) = 0 A rbuffer(i) = 0) A
(pe(i) =S N i = given =
request(i) = 0V rbuffer(i) = 0)) A
(waiting = i =
given # i A pc; = S A request; = 0 A rbuffer(i) = 0 A
sbuffer; = 0 A answer(i) = 0) A
(sbuffer(i) =1 =
answer(i) = 0 A request(i) = O A rbuffer(i) = 0)

The invariant has been elaborated in the course of the verification.
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Generalized to N > 2 clients.

val N:N; // the number of clients
type Bit = N[1]; // messages are just signals
type Client = N[N]; // client ids 0..N-1, N: no client

type Buffer = Array[N,Bit]; // for each client a single message may be buffered
type PC = N[2]; val R = 0; val S = 1; val C = 2; // the client program counters

// the system with one server and N clients

shared system clientServer

{
var pc: Array[N,PC] = Array[N,PC](R); // the state of the clients
var request: Buffer = Array[N,Bit](0);
var answer: Buffer = Array[N,Bit](0);

var given: Client = N; // the state of the server
var waiting: Buffer = Array[N,Bit](0);

var sender: Client = N;

var rbuffer: Buffer = Array[N,Bit](0);

var sbuffer: Buffer = Array[N,Bit](0);

// the correctness property

invariant —3il:Client,i2:Client with i1l # N A i2 # N A il < i2.
pclil]l = C A pcli2] = C;

Variable waiting has now to record a set of waiting clients.
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action R(i:Client) with i # N A pcl[i]l = R A request[i] = 0; // the client transitions
{ pclil] := 8; request[i] = 1;

action S(i:Client) with i # N

{ pclil := C; amswer[i] := 0;
action C(i:Client) with i # N
{ pclil := R; request[i] := 1

N
¥
A pclil = S A answer[i] # 0;
¥
A pclil = C A request[i] = 0;
}

action D(i:Client) with i # N A sender = N A rbuffer[i] # 0; // the server transitions
{ sender := i; rbuffer[i] := 0; }
action F() with sender # N A sender = given A
Vi:Client with i # N. waitingl[i] = 0;
{ given := N; sender := N; }
action A1(i:Client) with i # N A
sender # N A sender = given A waiting[i]l # 0 A
sbuffer[i] =
{ given := i; waiting[i] = 0; sbuffer([given] := 1; sender := N; }
action A2() with sender # N A sender # given A given = N A
sbuffer[sender] = 0;

{ given := sender; sbuffer[given] := 1; sender := N; }
action W() with sender # N A sender # given A given # N;
{ waiting[sender] := 1 ; sender := N; }

action REQ(i:Client) with i # N A request[i] # O A rbuffer[i] = 0; // the communication subsystem
{ request[i] := 0; rbuffer[i] := 1; }

action ANS(i:Client) with i # N A sbuffer[i] # O A answer[i] =

{ sbuffer[i] := 0; answer[i] := 1; }
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// the correctness property
invariant —3il:Client,i2:Client with i1 # N A i2 # N A il < i2. pc[i1] = C A pcli2] = C;

// the system invariants that imply the correctness property
invariant Vi:Client with i # N A pc[i] = R.
sbuffer[i] = O A answer[i] = 0 A (request[i] = 0 V rbuffer[i]l = 0) A
(i = given <> request[i] = 1 V rbuffer[i] = 1 V sender = i);
invariant Vi:Client with i # N A pcl[i] = S.
(sbuffer[i] = 1 V answer[i] = 1 = request[i] = 0 A rbuffer[i] = 0 A sender # i) A
(i # given = request[i] = 0 V rbuffer[i] = 0);
invariant Vi:Client with i # N A pcl[i] = C.
request[i] = 0 A rbuffer[i] = 0 A sender # i A sbuffer[i] = 0 A answer[i] = 0;
invariant Vi:Client with i # N A (pc[i]l = C V sbuffer[i] = 1 V answer[i] = 1).
given = i A Vj:Client with j # N A j # i. pc[jl # C A sbuffer[jl = 0 A answer[j] = 0;
invariant sender = N = Vi:Client with i # N A (request[i] = 1 V rbuffer[i] = 1).
sbuffer[i] = 0 A answer[i] = 0;
invariant Vi:Client with i # N A sender = i.
waiting[i] = 0;
invariant Vi:Client with i # N A sender = i A pcl[i]l = R A sender = given.
request[i] = 0 A rbuffer[i] = 0;
invariant Vi:Client with i # N A sender = i A pcl[il = S A sender # given.
request[i] = 0 A rbuffer[i] = 0;
invariant Vi:Client with i # N A sender = i A pcl[i] = S A sender = given.
request[i] = 0 V rbuffer[i] = 0;
invariant Vi:Client with i # N A waitingl[i] = 1.
given # i A pcli]l = 8 A
request[i] = 0 A rbuffer[i] = 0 A sbuffer[i] = 0 A answer[i] = 0;
invariant Vi:Client with i # N A sbuffer[i] = 1.
answer[i] = 0 A request[i] = 0 A rbuffer[i] = 0;
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The Verification in RISCAL .E {-

We can (for say N = 4) check that the system execution satisfies the
invariants; we can also check the verification conditions generated from

the system invariants; finally we can prove the conditions for arbitrary N.
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