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Motivation .ﬁ {'

We need a language for specifying system properties.

A system S is a pair (I, R).
Initial states /, transition relation R.
More intuitive: reachability graph.

Starting from an initial state so, the system runs evolve.
Consider the reachability graph as an infinite computation tree.
Different tree nodes may denote occurrences of the same state.
Each occurrence of a state has a unique predecessor in the tree.
Every path in this tree is infinite.

Every finite run sp — ... — s, is extended to an infinite run
S0 —> ... —> 5y —>Sp—>Sp— ...

Or simply consider the graph as a set of system runs.
Same state may occur multiple times (in one or in different runs).

Temporal logic describes such trees respectively sets of system runs.
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Computation Trees versus System Runs '% {'

Set of system runs:
[a,] 2 c—c— ...

[a, b] = [b,c] > c— ...
[a, b] = [b,c] — [a,b] — ...
[a, b] = [b,c] — [a,b] — ...

State Transition Graph or
Kripke Model

Unwind State Graph to obtain Infinite Tree

Figure 3.1
Computation trees.

Edmund Clarke et al: “Model Checking”, 1999.
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State Formula N {'

Temporal logic is based on classical logic.
A state formula F is evaluated on a state s.
Any predicate logic formula is a state formula:
p(x),~F,Fo NF1,FoV F1,Fo = F1,Fo < F1,¥x: F,3x: F.
In propositional temporal logic only propositional logic formulas are
state formulas (no quantification):
p,—F,FoANFi,FoV F1,Fo = F1, Fo & Fi.
Semantics: s = F (“F holds in state s").
Example: semantics of conjunction.
(sEFRAFR) & (skEF)A(s E F).
“Fo A\ F1 holds in s if and only if Fy holds in s and F; holds in s".

Classical logic reasoning on individual states.
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Branching Time Logic (CTL) o

We use temporal logic to specify a system property F.

Core question: S |= F (“F holds in system S").
System S = (I, R), temporal logic formula F.

Branching time logic:
SEF & S,s [ F, for every initial state sy of S.
Property F must be evaluated on every pair of system S and initial
state sp.
Given a computation tree with root sy, F is evaluated on that tree.

CTL formulas are evaluated on computation trees.
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Temporal Logic

Extension of classical logic to reason about multiple states.
Temporal logic is an instance of modal logic.
Logic of “multiple worlds (situations)” that are in some way related.
Relationship may e.g. be a temporal one.
Amir Pnueli, 1977: temporal logic is suited to system specifications.
Many variants, two fundamental classes.
Branching Time Logic
Semantics defined over computation trees.
At each moment, there are multiple possible futures.
Prominent variant: CTL.
Computation tree logic; a propositional branching time logic.
Linear Time Logic
Semantics defined over sets of system runs.
At each moment, there is only one possible future.
Prominent variant: PLTL.
A propositional linear time logic.
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State Formulas ) *
N4

We have additional state formulas.
A state formula F is evaluated on state s of System S.

Every (classical) state formula f is such a state formula.
Let P denote a path formula (later).

Evaluated on a path (state sequence) p=po — p1 = p2 — .. ..
R(pi, pi+1) for every i; po need not be an initial state.

Then the following are state formulas:

A P (“in every path P"),

E P ("“in some path P").
Path quantifiers: A, E.

Semantics: S,s = F ("F holds in state s of system S").

S;sEf & skEf.
S,;sEAP & S pl P, for every path p of S with py = s.
S,sEEP & S pkE P, for some path p of S with py = s.
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Path Formulas

We have a class of formulas that are not evaluated over individual states.
A path formula P is evaluated on a path p of system S.
Let F and G denote state formulas.
Then the following are path formulas:
X F (“next time F"),
G F (“always F"),
F F (“eventually F"),
FU G ("F until G").
Temporal operators: X, G, F,U.
Semantics: S, p = P (“P holds in path p of system S").
SSpPEXF &S pEF.
SSpEGF :&VieN:S pEF.
SSpEFF :3ieN:S p =F.
5,p|:FU G Z@}HiENZS,p,":G/\VjEN,'ZS,pj':F.
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N,
W

Wolfgang Schreiner

Path Quantifiers and Temporal Operators

9
g g g
M,so=EF g M,so=AF g
g
g
g
M,so =EGg M,s0=EAG g

Edmund Clarke et al: “Model Checking”, 1999.
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Path Formulas .E |(.
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Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.
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Linear Time Logic (LTL) N
[ ]

We use temporal logic to specify a system property P.
Core question: S |= P (“P holds in system S").
System S = (I, R), temporal logic formula P.
Linear time logic:

SEP & r P, forevery run r of S.
Property P must be evaluated on every run r of S.
Given a computation tree with root sp, P is evaluated on every path
of that tree originating in sp.
If P holds for every path, P holds on S.

LTL formulas are evaluated on system runs.
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Formulas '& {'

No path quantifiers; all formulas are path formulas.
Every formula is evaluated on a path p.
Also every state formula f of classical logic (see below).
Let F and G denote formulas.
Then also the following are formulas:
X F (“next time F"), often written OF,
G F (“always F"), often written OF,
F F (“eventually F"), often written OF,
F UG (“F until G").
Semantics: p = P (“P holds in path p”).
p" = (pi; Pit1,---)-
pEf:epf.
pEXF = ptEF.
pEGF :=VieN:p |=F.
pEFF :=3ieN:p EF.
pEFUG &= 3JieN:p=GAVjEN;:p =F.
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Branching versus Linear Time Logic .ﬁ {'
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We use temporal logic to specify a system property P.
Core question: S |= P (“P holds in system S").
System S = (I, R), temporal logic formula P.
Branching time logic:
SEP & S, s E P, for every initial state sp of S.

Property P must be evaluated on every pair (S, sp) of system S and
initial state sp.

Given a computation tree with root sy, P is evaluated on that tree.
Linear time logic:

SEP = r= P, forevery run r of s.

Property P must be evaluated on every run r of S.

Given a computation tree with root sy, P is evaluated on every path
of that tree originating in sp.

If P holds for every path, P holds on S.
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Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.
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Branching versus Linear Time Logic '& {'
[ ]

Ay Ay

Fig. 2.4. Two automata, indistinguishable for PLTL

B. Berard et al: “Systems and Software Verification”, 2001.

Linear time logic: both systems have the same runs.
Thus every formula has same truth value in both systems.
Branching time logic: the systems have different computation trees.
Take formula AX(EX Q A EX =Q).
True for left system, false for right system.
The two variants of temporal logic have different expressive power.
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Branching versus Linear Time Logic

Is one temporal logic variant more expressive than the other one?

CTL formula: AG(EF F).
“In every run, it is at any time still possible that later F will hold".
Property cannot be expressed by any LTL logic formula.

LTL formula: ©OF (i.e. FG F).
“In every run, there is a moment from which on F holds forever.”.
Naive translation AFG F is not a CTL formula.

G F is a path formula, but F expects a state formula!

Translation AFAG F expresses a stronger property (see next page).
Property cannot be expressed by any CTL formula.

None of the two variants LT
is strictly more expressive

than the other one; no
variant can express every
system property.

it Sl st £ Theorem 4-4
L /\\\TrteoremA—w“~\
/ it \
Thoorom 41 (Theorem #2)_ T
\ _/ (Theorem 4-5)

Fig. 4-8. Expressiveness of CTL*, CTL+, CTL and LTL
Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.
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Branching versus Linear Time Logic 2
°
Proof that AFAG F (CTL) is different from ¢OF (LTL).
F F F F F F
VRN | A S A A |
F ~F F -~F F F F
PR N [ I R
F ~F F F F -~F F F
VRN N N L A A A |
F ~F F F F F F ~F F
S X NN N (R B I
~F F F ~
e N U
N
AFAG F <=> false <>[] F <=> true
In every run, there is a moment when In every run, there is a moment
it is guarantueed that from now on from which on F holds forever.
F holds forever.
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Linear Time Logic ) *
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Why using linear time logic (LTL) for system specifications?

LTL has many advantages:
LTL formulas are easier to understand.
Reasoning about computation paths, not computation trees.
No explicit path quantifiers used.
LTL can express most interesting system properties.
Invariance, guarantee, response, ... (see later).
LTL can express fairness constraints (see later).
CTL cannot do this.
But CTL can express that a state is reachable (which LTL cannot).
LTL has also some disadvantages:
LTL is strictly less expressive than other specification languages.
CTL* or p-calculus.
Asymptotic complexity of model checking is higher.
LTL: exponential in size of formula; CTL: linear in size of formula.
In practice the number of states dominates the checking time.
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Frequently Used LTL Patterns .E {' Examples EI(

In practice, most temporal formulas are instances of particular patterns. Mutual exclusion: O—(pc; = C A pcy, = C).
Alternatively: =<O(pe; = C A pe, = C).

Pattern Pronounced Name . . . .
—— Never both components are simultaneously in the critical region.

oF always F invariance . .
OF eventually F guarantee No starvation: Vi : O(pc; = W = Opc; = R).
aooF F holds infinitely often recurrence Always, if component / waits for a response, it eventually receives it.
COF eventual.ly F holds permanently  stability No deadlock: O-Vi : pc; = W.
O(F = ©G) always, if F holds, then response . ) .

eventually G holds Never all components are simultaneously in a wait state W.
O(F = (G U H)) always, if F holds, then precedence Precedence: Vi : O(pc; # C = (pc; # C U lock = i)).

G holds until H holds Always, if component i is out of the critical region, it stays out until it

receives the shared lock variable (which it eventually does).
Partial correctness: O(pc = L= C).

Always if the program reaches line L, the condition C holds.
Termination: Vi: &(pe; = T).

Every component eventually terminates.

Typically, there are at most two levels of nesting of temporal operators.
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If event a occurs, then b must occur before ¢ can occur (a run

a,(ob),c,.. . is illegal). Temporal operators obey a number of fairly intuitive rules.

Extraction laws:

First idea (wrong) OF & FAOOF
3= OF & FVOOF.
Every run d, ... becomes legal. FUG < GV (FAO(F U G)).
Next idea (correct) Negation laws:
o= ...) COF & ooF
First attempt (wrong) “OF & O=F.
O(a= (b Uq)) ~(FUG) & ((-G) U (=F A=G))V —<G.
Run a,b,=b,c, ... is illegal. Distributivity laws:
Second attempt (better) O(F A G) < (OF) A (OG).
0O(a = (—c U b)) O(FVG) & (OF)V(CG).

Run a, —c,—c, —c,. .. is illegal. (F/\ G)UH < (FUH)A(G U H).
Third attempt (correct) U(GVH) & (FUG)V(FUH).
0O(a = ((O—c) V (=c U b))) D<>(F VG) & (OOF)V (O0G6).

Specifier has to think in terms of allowed/prohibited sequences. CO(FAG) & (COF)A(CDOG).

Wolfgang Schreiner https://www.risc.jku.at 23/59 Wolfgang Schreiner https://www.risc.jku.at 24/59



Classes of System Properties .E {'

There exists two important classes of system properties.
Safety Properties:
A safety property is a property such that, if it is violated by a run, it
is already violated by some finite prefix of the run.
This finite prefix cannot be extended in any way to a complete run
satisfying the property.
Example: OF (with state property F).
The violating run F — F — =F — ... has the prefix F - F — =F
that cannot be extended in any way to a run satisfying OF.
Liveness Properties:
A liveness property is a property such that every finite prefix can be
extended to a complete run satisfying this property.
Only a complete run itself can violate that property.
Example: OF (with state property F).
Any finite prefix p can be extended to a run p — F — ... which
satisfies OF.
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System Properties

The real importance of the distinction is stated by the following theorem.
Theorem:

Every system property P is a conjunction S A L of some safety
property S and some liveness property L.

If Lis “true”, then P itself is a safety property.
If S is “true”, then P itself is a liveness property.
Consequence:
Assume we can decompose P into appropriate S and L.
For verifying M = P, it then suffices to verify:
Safety: M = S.
Liveness: M = L.

Different strategies for verifying safety and liveness properties.
For verification, it is important to decompose a system property in its
“safety part” and its “liveness part”.
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System Properties

Not every system property is itself a safety property or a liveness property.
Example: P < (DOA) A (©B) (with state properties A and B)
Conjunction of a safety property and a liveness property.
Take the run [A,=B] — [A,—=B] — [A,—B] — ... violating P.
Any prefix [A,=B] — ... — [A, —B] of this run can be extended to a

run [A,-B] — ... = [A,-B] = [A,B] — [A, B] — ... satisfying P.
Thus P is not a safety property.

Take the finite prefix [—A, B].

This prefix cannot be extended in any way to a run satisfying P.
Thus P is not a liveness property.

So is the distinction “safety” versus “liveness” really useful?.
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Verifying Safety X *

We only consider a special case of a safety property.
M = OF.
F is a state formula (a formula without temporal operator).
Verify that F is an invariant of system M.
M = (I, R).
I(s) = ...
R(s,s") & Ro(s,s’) V Ri(s,s') V...V Ry_1(s, s').
Induction Proof.
Vs : I(s) = F(s).
Proof that F holds in every initial state.
Vs,s' 1 F(s) A R(s,s’) = F(s).
Proof that each transition preserves F.
Reduces to a number of subproofs:
F(s) A Ro(s,s’) = F(s')

F(s) A Ro_i(s, s') = F(s)
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Example

var x ;=0

loop loop
po : wait x =0 I qo : wait x =1
p1:x=x+1 gi:x:=x-—1

State = {po, pr} X {qo, q1} X Z.

I(p,q,x) = p=pAqg=qoAx=0.
R({p,q,x), (P, q",x")) & Po(...)VP(...)V Qo(...)V Qu(...).

Po({p,q,x),(p'sq', X)) & p=pAx=0Ap =piAq =qAx =x
Pi({p,q,x),(p',q', X)) & p=pAp =pAq =qgAX =x+1.
Q((p,q,x), (P, q, X)) & qg=qgAx=1Ap =pAd =qAxX =x
@Q((p, g, x),(p,d, X)) e q=qAp =pAd =qpAXx =x—-1

Prove ([,R) EO(x =0V x =1).
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Prove (I,R) E0O(x =0V x =1).
Proof attempt fails.
Prove (I, R) = OG.
G &
(x=0vx=1)A
(p=pr=x=0)A
(g=q=x=1).
Proof works.
G = (x =0V x = 1) obvious.

See the proof presented in class.
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The induction strategy may not work for proving OF
Problem: F is not inductive.
F is too weak to prove the induction step.
F(s) AR(s,s") = F(s').
Solution: find stronger invariant /.
If I = F, then (O/) = (OF).
It thus suffices to prove O/.
Rationale: | may be inductive.
If yes, | is strong enough to prove the induction step.
1(s) A R(s,s") = I(s).
If not, find a stronger invariant /” and try again.
Invariant / represents additional knowledge for every proof.
Rather than proving OP, prove O(/ = P).
The behavior of a system is captured by its strongest invariant.
Wolfgang Schreiner https:/ /www.risc.jku.at 30/59
7Y
Verifying Liveness ¢ *
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var x :=0,y :=0
loop [ loop
x=x+1 y=y+1

State = N x N; Label = {P, Q}.
I(x,y) &x=0Ay=0.
R, {x,y),(x',y)) &
(I=PAX =x+1Ay' =y)V(I=QAX =xAy =y+1).

(I,R) £ Ox = 1.

[x:O,y:0]g[x:O,yzl]g[x:O,y:ﬂE)...
This run violates (as the only one) Ox = 1.
Thus the system as a whole does not satisfy Ox = 1.

For verifying liveness properties, “unfair” runs have to be ruled out.
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Enabling Condition .E {-

When is a particular transition enabled for execution?
Enabledgr(/,s) < 3t : R(/,s, t).
Labeled transition relation R, label /, state s.
Read: “Transition (with label) / is enabled in state s (w.r.t. R)".

Example (previous slide):
Enabledr(P, (x,y))

&3¢,y R(P, (x,y), (6, /)

< 3,y
(P=PAX =x+1Ay' =y)V
(P=QAX' =xANy' =y+1)

S 3,y  P=PAX =x+1Ay =y)V

BX,y  P=QAX =xAy =y+1)
& true V false
< true.

Transition P is always enabled.

Wolfgang Schreiner
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Example .ﬁ {'

[ ]
State = N x N; Label = {P, Q}.
I(x,y)  &x=0Ay=0.
R(1, (x, ), (<, y)) v
(I=PAX =x+1Ay' =y)V(I=QAX =xAy' =y+1).
(I,R) =EWFp = Ox=1.
[X:0,y:0]g[x:O,yzl]g[x:O,y:ﬂ3)....
This (only) violating run is not weakly fair to transition P.
P is always enabled.
P is never executed.
System satisfies specification if weak fairness is assumed.
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Weak Fairness .E Il.

Weak Fairness
A run s o, s LN S bois weakly fair to a transition /, if
if transition / is eventually permanently enabled in the run,
then transition / is executed infinitely often in the run.
(37 :Vj > i: Enabledg(l,s;)) = (Vi:3j>i:l=1).
The run in the previous example was not weakly fair to transition P.
LTL formulas may explicitly specify weak fairness constraints.
Let E; denote the enabling condition of transition /.
Let X; denote the predicate “transition / is executed”.
Define WF, :< (COE) = (OCX)).
If I is eventually enabled forever, it is executed infinitely often.
Prove (I,R) = (WF, = F).

Property F is only proved for runs that are weakly fair to /.

Alternatively, a model may also have weak fairness “built in”.
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Strong Fairness X *
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Strong Fairness

A run s LA s LN S B s strongly fair to a transition /, if

if / is infinitely often enabled in the run,

then / is also infinitely often executed the run.

(Vi:3j > i: Enabledg(l,s;)) = (Vi:3j>i:l=1).
If r is strongly fair to /, it is also weakly fair to / (but not vice versa).
LTL formulas may explicitly specify strong fairness constraints.

Let E; denote the enabling condition of transition /.
Let X; denote the predicate “transition / is executed”.
Define SF; :& (OCE) = (O00X)).

If | is enabled infinitely often, it is executed infinitely often.
Prove (I,R) = (SF; = F).

Property F is only proved for runs that are strongly fair to /.

A much stronger requirement to the fairness of a system.
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Example * *
W,
var x=0
loop
a. X .= —X

b: choose x :=0[] x:=1

State := {a, b} x Z; Label = {A, By, B1}.

I(p,x) & p=aAx=0.

R(I, {p, x),(p’,x")) &
(I=AAn(p=anp =bAX =—x))V
(I=BoA(p=bAp =anx'=0))V
(I=Bin(p=bAp =anx=1)).

(I,R) |= SFp, = Ox = 1.

[2,0] & [b,0] 2 [a,0] & [b,0] B [a,0] & ...

This (only) violating run is not strongly fair to By (but weakly fair).
B: is infinitely often enabled.
B is never executed.

System satisfies specification if strong fairness is assumed.
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Weak versus Strong Fairness .E Il.
[
In which situations is which notion of fairness appropriate?
Process just waits to be scheduled for execution.
Only CPU time is required.
Weak fairness suffices.
Process waits for resource that may be temporarily blocked.
Critical region protected by lock variable (mutex/semaphore).
Strong fairness is required.
Non-deterministic choices are repeatedly made in program.
Simultaneous listing on multiple communication channels.
Strong fairness is required.
Many other notions or fairness exist.
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AN
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var x,y
varv:=0,r:=0,a:=0

S: loop R: loop
0 : choose x € {0,1} [l O0:wait r=1
v,r:=x,1 y,a:=v,1
l:waita=1 1:waitr=0
r:=0 a:=0
2:waita=0

Transmit a sequence of bits through a wire.
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A (Simplified) Model of the Protocol 2
°
State :== PC1 x PCy x (N)®
I(p,q,x,y,v,r,a)p=q=1Av=r=a=0.
R((p;q;x,y,v,r,a),(p'sq',x",y' v/, r,d)) &
S1(...)VS2(...)VS3(...)VRI(...)VR2(...).
S1({p, g x, ¥, v, r,a), (p',q' X', y', v/, 1, d)) &
p=0Ap =1AV =X'Ar=1A
g =gAx' =xNy'=yna =a
S2(<p: ;%Y V, I, a>7 <pl7ql7xl7yl7 V/7rlva/>) =
p=1Ap =2Na=1Ar=0A
g =gAX =xANy' =yAv =vAd =a
S3({p, g, x, ¥, v, rya), (p', 4’ X,y v r @) e
p=2Ap =0Aa=0A
g =qANy' =yAV =vAr=rnAnad =a
R1(<p: 4% Y,V I, a>7 <pl7ql7xl7yl7 Vl7r/’a/>) =
gq=0Aqg' =1Ar=1Ay'=vAd =1A
pP=pAX =xAV =vAr=r
R2({p,q,x,y,v,r,a),(p’,q',x',y',v',r',a)) =
g=1Aqg =2Ar=0Aa =0A
p=pAX =xANy' =yAvV =vAr=r.
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A RISCAL Theory .E Z
°
type Bit = N[1]; type PC1 = N[2]; type PC2 = N[1];
pred S1(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
xO:Bit,yO:Bit,vO:Bit,rO:Bit,aO:Bit,pO:PCl,qO:PCQ) =
P=0ADPpo=1Av0=x0A1r0=1A// x0 arbitrary
q0 =g A y0o =y A a0 = a;
pred S2(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) &
p=1Ap0o=2Aa=1A1r0=0A
q0 =g A x0=x Ay0=y Av0=v A a0 = a;
pred S3(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) &
p=2Ap0=0Aa=0A
q0 =g Ax0=x Ay0o=y AvO=v Ar0O=1r A a0 = a;
pred R1(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) &
qgq=0Ag0=1ATr=1Ay0=vAad=1A
PO =p A x0=x Av0O=v A r0=r;
pred R2(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) &
q=1Aq0=0ATr=0A2a0=0A
PO =p A x0=xAy0=y Av0O=v Ar0=r;
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- - - . .
A Verification Task 4
°
(LR)YEO(g=1=y=x)
Invariant(p,...) = (g=1=y =x)
I(p,...) = Invariant(p,...)
R({p,-..),{P,...)) A Invariant(p,...) = Invariant(p’,...)
Invariant(p, q,x,y,v,r,a) &
(p=0=g=0Ar=0Aa=0)A
(p=1l=r=1Av=x)A
(p=2=r=0)A
(g=0=a=0)A
(g=1=(p=1Vvp=2)Aha=1Ay=x)
The invariant captures the essence of the protocol.
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]
pred Init(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) &
v=0Ar=0ANa=0Ap=0Aq=0;
pred Invariant(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) &
(p=0=>gq=0AT=0Aa=0)A
p=1=>r=1Av=x)A
p=2=1r=0 A
(@=0=a=0) A
@=1=(=1Vp=2)Aa=1Ay=x);
pred Property(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) &
q=1=y=x;
theorem VCO(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) &
Init(x,y,v,r,a,p,q) = Invariant(x,y,v,r,a,p,q);
theorem VC1(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) &
Invariant(x,y,v,r,a,p,q) A Si(x,y,v,r,a,p,q,x0,y0,v0,r0,a0,p0,q0) =
Invariant (x0,y0,v0,r0,a0,p0,q0);
theorem VC5(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) &
Invariant(x,y,v,r,a,p,q) A R2(x,y,v,r,a,p,q,x0,y0,v0,r0,20,p0,q0) =
Invariant (x0,y0,v0,r0,a0,p0,q0);
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Executing
Execution
Executing
Execution
Executing
Execution
Executing
Execution
Executing
Execution
Executing
Execution

VCo(Z,Z,L,2,2,7,Z) with all 192 inputs.

completed for ALL inputs (23 ms, 192 checked, O inadmissible).
vei(z,z2,2,2,2,2,2,2,2,2,2,2,7Z,Z) with all 36864 inputs.
completed for ALL inputs (123 ms, 36864 checked, O inadmissible).
vea(z,2,2,2,2,2,2,2,2,2,2,2,2Z,Z) with all 36864 inputs.
completed for ALL inputs (50 ms, 36864 checked, O inadmissible).
ve3(z,2,2,2,2,2,2,2,2,2,2,2,7Z,7Z) with all 36864 inputs.
completed for ALL inputs (94 ms, 36864 checked, O inadmissible).
vea(z,2,2,2,2,2,2,2,2,2,2,2,2Z,7Z) with all 36864 inputs.
completed for ALL inputs (50 ms, 36864 checked, O inadmissible).
ves(Z,2,2,2,2,2,2.,2,2,2,2,2,7Z,7) with all 36864 inputs.
completed for ALL inputs (65 ms, 36864 checked, O inadmissible).

More instructive: proof attempts with wrong or too weak invariants
(see demonstration).

Wolfgang Schreiner
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An Operational System Model in

i

RISCAL .E {'

// the types
type Bit = N[1]; type PC1 = N[2]; type PC2

// an operational description of the system
shared system Bits
{
// the system state
var x:Bit; var y:Bit;
var v:Bit = 0; var r:Bit
var p:PC1 = 0; var q:PC2

0; var a:Bit
0;

// the correctness property
invariant q = 1 = y = x;

// the system invariants that imply the

invariant p =0 == q=0 AT =0 A a = 0;
invariant p =1 => r =1 A v = x;
invariant p = 2 = r = 0;

invariant q = 0 = a = 0;

invariant g =1 = (p=1V p=2) Aa=

Wolfgang Schreiner
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= N[1];

correctness property

1 Ny=x;
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IS
W

// the non-deterministically chosen

init (x0:Bit, y0:Bit) { x := x0; y := y0; }

// the sender actions

action Si(any:Bit) with p = 0; { x := any; v := x; r := 1; p 1; }
action S2() withp=1Aa=1; {r:=0; p:=2; }

action S3() withp=2Aa=0; {p:=0; }

// the receiver actions

action R1() withq=0Ar=1; {y:=v; a:=1; q 1; }

action R2() withq=1 AT =0; {a:=0; q:=0; }

We can check that all reachable states of the system satisfy the
correctness property and the invariants; we can also generate from the

Wolfgang Schreiner
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initial state values

File Edit SMT TP Help
File: bits.txt
R

RISC Algorithm Language (RISCAL)

Analysis

©) 2024, Wolfgang Schreiner <Wolfgang.Schreinererisc.jku.at>
a1

11 the types
7type Bit = N[1]:
21

3¢
14 /7 the local variables
15 var x:Bit; var y:Bit;

nvariants that imply the correctness property
Lgq-orr-=0na=o;

S (p=ivp=21ra=1ay=x;

sen initial state values
AR

36 /7 the sender actions
37 action Sl(any:Bit) with p = @;

system model and invariants the verification conditions and check these. :

= Thenren Rite o

Tra

ion: Other Values:
Execution: @Silent Inputs:

Branches:  Depth:
ce Tree Width:150 Height: 80C
jsm:  Multi-Threaded Threads: 4

Per Mille:

Distributed Servers: =

_tbound_2...
Type checking and translation conpleted.
Executing system Bits.
15 systen states found with seaxch depth 7.

Vs d.
verify o is valid.
_0_cverify_1 is valid.

Theoren _Bits_¢_actionPre_2_cverify o is valid.

Theoren _Bits_e_actionPre 2 cverify_1 is valid.
Theorem _Bits_@_actionPre_2_cverify_2 is valid
Theoren _Bits_e_actionPre 2_cverify_3 is valid

verifu 4 3< valid

Artionpre

Both kinds of verification succeed.
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A Client/Server System

Client system C; = (IC;, RC;).
State := PC x Ny x Np.
Int := {R,‘, Si, C,'}.

IC;(pc, request, answer) <
pc = R A request = 0 A answer = 0.
RC;(l,{pc, request, answer),
(pc’, request’, answer’)) <
(I = Ri N pc = R A request =0 A
pc’ = S A request’ = 1 A answer’ = answer) V
(I=Si AN\pc =S A answer #0A

Client(ident):
param ident
begin
loop

R: sendRequest()
S: receiveAnswer ()

C: // critical region

sendRequest ()

pc’ = C A request’ = request A answer’ = 0) V
(I =G A pc= CArequest =0A endl?op
pc’ = R A request’ = 1 A answer’ = answer) V end Client
(I = REQ; A request # 0 A
pc’ = pc A request’ = 0 A answer’ = answer) V
(I =ANS; A
pc’ = pc A request’ = request A answer’ = 1).
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A Client/Server System (Contd’2) s
.
Server:
local given, waiting, sender
(I = F N sender # 0 A sender = given A waiting = 0 A\ beg%n .
given’ = 0 A sender’ = 0 A given := 0; waiting := 0
U(waiting, rbuffer, sbuffer)) Vv Loop .
D: sender := receiveRequest()

(I = A1 A sender # 0 A sbuffer(waiting) = 0 A
sender = given A waiting # 0 A
given' = waiting A waiting’ = 0 A
sbuffer’ (waiting) = 1 A sender’ =0 A
U(rbuffer) A
Vj € {1,2}\{waiting} : U;(sbuffer)) Vv

(1 = A2 A sender # 0 A sbuffer(sender) = 0 A
sender # given A given = 0 A
given’ = sender A\
sbuffer’ (sender) = 1 A sender’ =0 A
U(waiting, rbuffer) A
Vj € {1,2}\{sender} : U;(sbuffer)) v

Wolfgang Schreiner https://www.risc.jku.at

if sender = given then
if waiting = O then

F: given := 0
else
Al: given := waiting;
waiting := 0
sendAnswer (given)
endif
elsif given = O then
A2: given := sender
sendAnswer (given)
else
W: waiting := sender
endif
endloop

end Server
51/59

A Client/Server System (Contd)

.M.EO
W

Server system S = (IS, RS).
State := (N3)3 x ({1,2} — N»)2.
Int := {D1, D2, F, A1, A2, W}.

IS(given, waiting, sender, rbuffer, sbuffer) :<
given = waiting = sender = 0 A

rbuffer(1) = rbuffer(2) = sbuffer(1) = sbuffer(2) = 0.

RS(1, (given, waiting, sender, rbuffer, sbuffer),
(given’, waiting’, sender’, rbuffer’, sbuffer’)) :<
Jie{1,2}:
(1 = D; A sender = 0 A rbuffer(i) # 0 A
sender’ = i A rbuffer’(i) = 0 A
U(given, waiting, sbuffer) A
Vj € {1,2}\{i} : Uj(rbuffer)) v
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A Client/Server System (Contd’3)

Server:
local given, waiting, sender
begin

given := 0; waiting := 0
loop
D: sender := receiveRequest()

if sender = given then
if waiting = O then

F: given := 0
else
Al: given := waiting;
waiting := 0
sendAnswer (given)
endif
elsif given = O then
A2: given := sender
sendAnswer (given)
else
W: waiting := sender
endif
endloop

end Server
50/59

™,
W

(I = W A sender # 0 A sender # given A given # 0 A\
waiting’ := sender A sender’ = 0 A
U(given, rbuffer, sbuffer)) vV

3ie{1,2}:

(I = REQ; A rbuffer’ (i) = 1 A
U(given, waiting, sender, sbuffer) N\
Vj € {1,2}\{i} : Uj(rbuffer)) Vv

(I = ANS; A sbuffer(i) # 0 A
sbuffer' (i) = 0 A
U(given, waiting, sender, rbuffer) A
Vj € {1,2}\{i} : Uj(sbuffer)).
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Server:
local given, waiting, sender
begin
given := 0; waiting := 0
loop
D: sender := receiveRequest()

if sender = given then
if waiting = O then

F: given := 0
else
Al: given := waiting;
waiting := 0
sendAnswer (given)
endif
elsif given = O then
A2: given := sender
sendAnswer (given)
else
W: waiting := sender
endif
endloop

end Server
52/59



A Client/Server System (Contd’4) M

State := ({1,2} — PC) x ({1,2} — N2)? x (N3)? x ({1,2} — N»)?

I(pc, request, answer, given, waiting, sender, rbuffer, sbuffer) :<
Vi € {1,2} : IC(pc;, request;, answer;) A
IS (given, waiting, sender, rbuffer, sbuffer)

R({pc, request, answer, given, waiting, sender, rbuffer, sbuffer),

(pc’, request’, answer’, given’, waiting’, sender’, rbuffer’, sbuffer')) <
(37 € {1,2} : RCiocat({pc;, request;, answer;), {pc’, request;, answer;)) A

(given, waiting, sender, rbuffer, sbuffer) =

(given', waiting’, sender’, rbuffer’, sbuffer’)) v
(RS ocat({given, waiting, sender, rbuffer, sbuffer),
(given', waiting’, sender’, rbuffer’, sbuffer’)) A

Vi € {1,2} : {pc;, request;, answer;) = (pc’, request’, answer})) V

(3i € {1,2} : External(i, (request;, answer/, rbuffer, sbuffer),
(request’, answer’, rbuffer’, sbuffer’)) A
pc = pc’ A (sender, waiting, given) = (sender’, waiting’, given'))

Wolfgang Schreiner

The Verification Task (Contd) '& 4

(sender = 0 A (request(i) = 1V rbuffer(i) = 1) =
sbuffer(i) = 0 A answer(i) = 0) A
(sender = i =
(waiting # i) A
(sender = given A pc(i) = R =
request(i) = 0 A rbuffer(i) = 0) A
(pc(i) = S N i # given =
request(i) = 0 A rbuffer(i) = 0) A
(pc(i) =S Ni=given =
request(i) = 0V rbuffer(i) = 0)) A
(waiting =i =
given # i A\ pc; = S A request; = 0 A rbuffer(i) = 0 A
sbuffer; = 0 A answer(i) = 0) A
(sbuffer(i) =1 =
answer(i) = 0 A request(i) = 0 A rbuffer(i) = 0)

The invariant has been elaborated in the course of the verification.
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The Verification Task .E {-

J
(I, R) = 0=(pc1 = C A pey = C)
Invariant(pc, request, answer, sender, given, waiting, rbuffer, sbuffer) :&<
Vie{1,2}:

(pei) = R =
sbuffer(i) = 0 A answer(i) = 0 A
(i = given & request(i) = 1V rbuffer(i) = 1V sender = i) A
(request(i) = 0V rbuffer(i) = 0)) A

(peli) = S =
(sbuffer(i) =1V answer(i) =1 =

request(i) = O A rbuffer(i) = 0 A sender # i) A
(i # given =
request(i) = 0V rbuffer(i) = 0)) A

(pe(i) = C =
request(i) = O A rbuffer(i) = 0 A sender # i A
sbuffer(i) = 0 A answer (i) = 0) A

(pc(i) = C V sbuffer(i) = 1V answer(i) =1 =
given =i A\
Vj:j#i= pc(j) # C A sbuffer(j) = 0 A answer(j) = 0) A
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An Operational System Model in RISCAL '& {'

Generalized to N > 2 clients.

val N:N; // the number of clients

type Bit = N[1]; // messages are just signals

type Client = N[NI; // client ids 0..N-1, N: no client

type Buffer = Array[N,Bit]; // for each client a single message may be buffered
type PC = N[2]; val R = 0; val S = 1; val C = 2; // the client program counters

// the system with one server and N clients
shared system clientServer

var pc: Array[N,PC] Array[N,PC]I(R); // the state of the clients
var request: Buffer = Array[N,Bit](0);
var answer: Buffer = Array[N,Bit](0);

var given: Client = Nj
var waiting: Buffer = Array([N,Bit](0);
var sender: Client = N;
var rbuffer: Buffer = Array[N,Bit](0);
var sbuffer: Buffer = Array[N,Bit](0);

// the state of the server

// the correctness property
invariant —3Jil:Client,i2:Client with i1 # N A i2 # N A il < i2.
pclil]l = C A pcli2] = C;

Variable waiting has now to record a set of waiting clients.
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action R(i:Client) with i # N
{ pclil := S; request[i] := 1;
action S(i:Client) with i # N
{ pclil := C; answer[i] := 0;
action C(i:Client) with i # N A pc[il = C A request[i] = 0;
{ pclil := R; request[i] := 1;

pclil = R A request[i] = 0; // the client transitions

A
}
A pclil = S A answer[i] # 0;
}
A
}

action D(i:Client) with i # N A sender = N A rbuffer[i] # 0; // the server transitions
{ sender := i; rbuffer[i] := 0; }
action F() with sender # N A sender = given A
Vi:Client with i # N. waiting[i] = 0;
{ given := N; sender := N; }
action A1(i:Client) with i # N A
sender # N A sender = given A waitingl[i]l # 0 A
sbuffer[i] = 0;
{ given := i; waiting[i]l = 0; sbuffer[given] := 1; sender := N; }
action A2() with sender # N A sender # given A given = N A
sbuffer[sender] = 0;

{ given := sender; sbuffer[given] := 1; sender := N; }
action W() with sender # N A sender # given A given # N;
{ waiting[sender] := 1 ; sender := N; }

action REQ(i:Client) with i # N A request[i]l # O A rbuffer[i] = 0; // the communication subsystem
{ request[i] := 0; rbuffer[i] := 1; }

action ANS(i:Client) with i # N A sbuffer[i]l # O A answer[i] = 0;

{ sbuffer[i] := 0; answer[i] := 1; }

Wolfgang Schreiner
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RSC Aprthen Langenge RSCAL

We can (for say N = 4) check that the system execution satisfies the
invariants; we can also check the verification conditions generated from

the system invariants; finally we can prove the conditions for arbitrary N.
Wolfgang Schreiner
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// the correctness property
invariant —3il:Client,i2:Client with il # N A i2 # N A il < i2. pc[i1] = C A pcli2] = C;

// the system invariants that imply the correctness property
invariant Vi:Client with i # N A pc[i] = R.
sbuffer[i] = 0 A answer[i] = 0 A (request[i] = 0 V rbuffer[i] = 0) A
(i = given & request[i] = 1 V rbuffer[i] = 1 V sender = i);
invariant Vi:Client with i # N A pc[i] = S.
(sbuffer[i] = 1 V answer[i] = 1 = request[i] = 0 A rbuffer[i] = 0 A sender # i) A
(i # given = request[i] = 0 V rbuffer[i] = 0);
invariant Vi:Client with i # N A pc[i] = C.
request[i] = 0 A rbuffer[il = 0 A sender # i A sbuffer[i] = 0 A answer[i] = 0;
invariant Vi:Client with i # N A (pc[i]l = C V sbuffer[i] = 1 V answer[i] = 1).
given = i A Vj:Client with j # N A j # i. pc[jl # C A sbuffer[j] = 0 A answer[j] = 0;
invariant sender = N => Vi:Client with i # N A (request[i] = 1 V rbuffer[i] = 1).
sbuffer[i] = 0 A answer[i] = 0;
invariant Vi:Client with i # N A sender = i.
waiting[i] = 0;
invariant Vi:Client with i # N A sender = i A pc[i]l = R A sender = given.
request[i] = 0 A rbuffer[i] = 0;
invariant Vi:Client with i # N A sender = i A pc[i]l = S A sender # given.
request[i] = 0 A rbuffer[i] = 0;
invariant Vi:Client with i # N A sender = i A pc[il = S A sender = given.
request[i] = 0 V rbuffer[i] = 0;
invariant Vi:Client with i # N A waiting[i] = 1.
given # i A pclil =S A
request[i] = 0 A rbuffer[i] = 0 A sbuffer[i] = 0 A answer[i] = 0;
invariant Vi:Client with i # N A sbuffer[i] = 1.
answer[i] = 0 A request[i] = 0 A rbuffer[i] = 0;
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