Verifying Java Programs with KeY

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
https://www.risc.jku.at

Wolfgang Schreiner https://www.risc.jku.at

1/20

Dy

The KeY Tool

http://www.key-project.org

- KeY: environment for verification of JavaCard programs.
 - Subset of Java for smartcard applications and embedded systems.
 - Universities of Karlsruhe, Koblenz, Chalmers, 1998–
 - Beckert et al: "Deductive Software Verification The KeY Book: From Theory to Practice", Springer, 2016.
 - "Chapter 16: Formal Verification with KeY: A Tutorial"
- Specification language: JML.
 - Original: OCL (Object Constraint Language), part of UML standard.
- Logical framework: Dynamic Logic (DL).
 - Successor/generalization of Hoare Logic.
 - Integrated prover with interfaces to external decision procedures.
 - Z3, CVC4, CVC5.

Now only JML is supported as a specification language.

Verifying Java Programs

- Extended static checking of Java programs:
 - Even if no error is reported, a program may violate its specification.
 - Unsound calculus for verifying while loops.
 - Even correct programs may trigger error reports:
 - Incomplete calculus for verifying while loops.
 - Incomplete calculus in automatic decision procedure (Simplify).
- Verification of Java programs:
 - Sound verification calculus.
 - Not unfolding of loops, but loop reasoning based on invariants.
 - Loop invariants must be typically provided by user.
 - Automatic generation of verification conditions.
 - From JML-annotated Java program, proof obligations are derived.
 - Human-guided proofs of these conditions (using a proof assistant).
 - Simple conditions automatically proved by automatic procedure.

We will now deal with an integrated environment for this purpose.

Wolfgang Schreiner https://www.risc.jku.at

2/20

Dynamic Logic

Further development of Hoare Logic to a modal logic.

- Hoare logic: two separate kinds of statements.
 - Formulas *P*, *Q* constraining program states.
 - Hoare triples $\{P\}C\{Q\}$ constraining state transitions.
- Dynamic logic: single kind of statement.

Predicate logic formulas extended by two kinds of modalities.

- $[C]Q (\Leftrightarrow \neg \langle C \rangle \neg Q)$
 - Every state that can be reached by the execution of *C* satisfies *Q*.
 - The statement is trivially true, if *C* does not terminate.
- - There exists some state that can be reached by the execution of C and that satisfies Q.
 - The statement is only true, if *C* terminates.

States and state transitions can be described by DL formulas.

Wolfgang Schreiner https://www.risc.jku.at 3/20 Wolfgang Schreiner https://www.risc.jku.at 4/20

Dynamic Logic versus Hoare Logic

Hoare triple $\{P\}C\{Q\}$ can be expressed as a DL formula.

- Partial correctness interpretation: $P \Rightarrow [C]Q$
 - If *P* holds in the current state and the execution of *C* reaches another state, then *Q* holds in that state.
 - **Equivalent** to the partial correctness interpretation of $\{P\}C\{Q\}$.
- Total correctness interpretation: $P \Rightarrow \langle C \rangle Q$
 - If *P* holds in the current state, then there exists another state that can be reached by the execution of *C* in which *Q* holds.
 - If C is deterministic, there exists at most one such state; then equivalent to the total correctness interpretation of $\{P\}C\{Q\}$.

For deterministic programs, the interpretations coincide.

Advantages of Dynamic Logic

Modal formulas can also occur in the context of quantifiers.

- Hoare Logic: $\{x = a\}$ y:=x*x $\{x = a \land y = a^2\}$
 - Use of free mathematical variable *a* to denote the "old" value of *x*.
- Dynamic logic: $\forall a : x = a \Rightarrow [y := x * x] \ x = a \land y = a^2$
 - Quantifiers can be used to restrict the scopes of mathematical variables across state transitions.

Set of DL formulas is closed under the usual logical operations.

Wolfgang Schreiner

https://www.risc.jku.at

5/20

Wolfgang Schreiner

https://www.risc.jku.at

6/20

A Calculus for Dynamic Logic

■ A core language of commands (non-deterministic):

X := T ... assignment $C_1; C_2$... sequential composition $C_1 \cup C_2$... non-deterministic choice C^* ... iteration (zero or more times)

F? ...test (blocks if F is false)

■ A high-level language of commands (deterministic):

skip=true?abort=false?X := T $C_1; C_2$ if F then C_1 else C_2 = $(F?; C_1) \cup ((\neg F)?; C_2)$ if F then C= $(F?; C) \cup (\neg F)?$ while F do C= $(F?; C)^*; (\neg F)?$

A calculus is defined for dynamic logic with the core command language.

A Calculus for Dynamic Logic

- Basic rules:
 - Rules for predicate logic extended by general rules for modalities.
- Command-related rules:

$$\blacksquare \frac{\Gamma \vdash F[T/X]}{\Gamma \vdash [X := T]F}$$

$$\frac{\Gamma \vdash [C_1][C_2]F}{\Gamma \vdash [C_1:C_2]F}$$

$$\frac{\Gamma \vdash [C_1]F \quad \Gamma \vdash [C_2]F}{\Gamma \vdash [C_1 \cup C_2]F}$$

$$\frac{\Gamma \vdash F \Rightarrow [C]F}{\Gamma \vdash F \Rightarrow [C^*]F}$$

$$\frac{\Gamma \vdash F \Rightarrow G}{\Gamma \vdash [F?]G}$$

From these, Hoare-like rules for the high-level language can be derived.

Wolfgang Schreiner https://www.risc.jku.at 7/20 Wolfgang Schreiner https://www.risc.jku.at 8/20

Objects and Updates

Calculus has to deal with the pointer semantics of Java objects.

- Aliasing: two variables o, o' may refer to the same object.
 - Field assignment o.a := T may also affect the value of o'.a.
- Update formulas: $\{o.a \leftarrow T\}F$
 - Truth value of F in state after the assignment o.a := T.
- Field assignment rule:

$$\frac{\Gamma \vdash \{o.a \leftarrow T\}F}{\Gamma \vdash [o.a := T]F}$$

Field access rule:

$$\frac{\Gamma, o = o' \vdash F(T) \quad \Gamma, o \neq o' \vdash F(o'.a)}{\Gamma \vdash \{o.a \leftarrow T\}F(o'.a)}$$

- Case distinction depending on whether o and o' refer to same object.
- Only applied as last resort (after all other rules of the calculus).

Considerable complication of verifications.

Wolfgang Schreiner https://www.risc.jku.at 9/20

A Simple Example

Wolfgang Schreiner

11/20

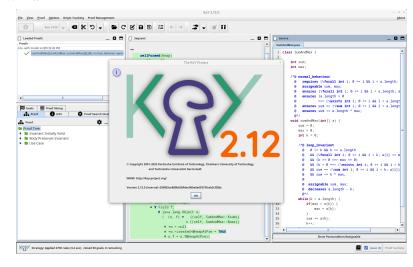
 $File/Load\ Example/Getting\ Started/Sum\ and\ Max$

```
class SumAndMax {
                                              /*@ loop_invariant
                                                0 0 <= k && k <= a.length
  int sum; int max;
  /*@ requires (\forall int i;
                                                @ && (\forall int i:
    0 0 <= i && i < a.length; 0 <= a[i]); 0</pre>
                                                       0 <= i && i < k; a[i] <= max)</pre>
   @ assignable sum, max;
                                                0 &  (k == 0 ==> max == 0)
                                                @ && (k > 0 ==> (\exists int i:
    @ ensures (\forall int i:
        0 <= i && i < a.length; a[i] <= max); @</pre>
                                                        0 <= i && i < k; max == a[i]))</pre>
    @ ensures (a.length > 0 ==>
                                                0 && sum == (\sum int i;
        (\exists int i;
                                                        0 <= i && i< k; a[i])</pre>
          0 <= i && i < a.length;</pre>
                                                @ && sum <= k * max:
          max == a[i]));
                                                @ assignable sum, max;
    @ ensures sum == (\sum int i:
                                                @ decreases a.length - k;
        0 <= i && i < a.length; a[i]);</pre>
   @ ensures sum <= a.length * max;</pre>
                                              while (k < a.length) {</pre>
                                                if (max < a[k]) max = a[k];
  void sumAndMax(int[] a) {
                                                sum += a[k];
    sum = 0;
                                                k++;
    max = 0;
                                              } } }
    int k = 0;
```

https://www.risc.jku.at

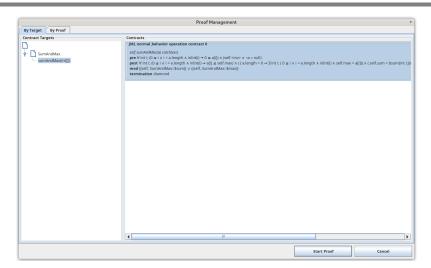
The KeY Prover

> KeY &



Wolfgang Schreiner https://www.risc.jku.at 10/20

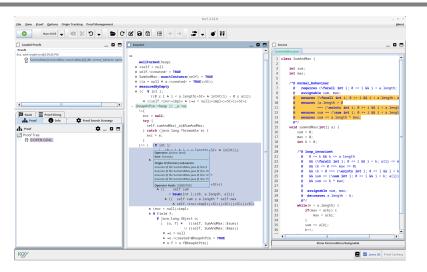
A Simple Example (Contd)



Generate the proof obligations and choose one for verification.

Wolfgang Schreiner https://www.risc.jku.at 12/20

A Simple Example (Contd'2)



The proof obligation in Dynamic Logic.

Wolfgang Schreiner https://www.risc.jku.at 13/20

15/20

A Simple Example (Contd'3)

Wolfgang Schreiner


```
wellFormed(heap)
  & (( \forall int i;
          ((0 <= i & i < a.length) & inInt(i) -> 0 <= a[i])
      & ((self_25.<inv> & (!a = null)))))
-> {heapAtPre_0:=heap || _a:=a}
        exc_25=null;try {
          self_25.sumAndMax(_a)@SumAndMax;
        } catch (java.lang.Throwable e) { exc_25=e; }
      }\> ( (\forall int i;
                ( (0 <= i & i < a.length) & inInt(i) -> a[i] <= self_25.max)
           & (( ( a.length > 0
                  -> \exists int i:
                        (( (0 <= i & i < a.length) & inInt(i) & self_25.max = a[i])))
               & (( self_25.sum = javaCastInt(bsum{int i;}(0, a.length, a[i]))
                           self_25.sum <= javaMulInt(a.length, self_25.max)
                       & self_25.<inv>)))))))
           & (exc_25 = null)
           & \forall Field f;
               \forall java.lang.Object o;
                                    {(self_25, SumAndMax::$sum)}
                               \cup {(self_25, SumAndMax::$max)}
                  | !o = null
                  & !o.<created>@heapAtPre_0 = TRUE
                  | o.f = o.f@heapAtPre 0))
```

Press button "Start/stop automated proof search" (green arrow).

https://www.risc.jku.at

Proof Obligation

Two lists of formulas separated by a horizontal line.

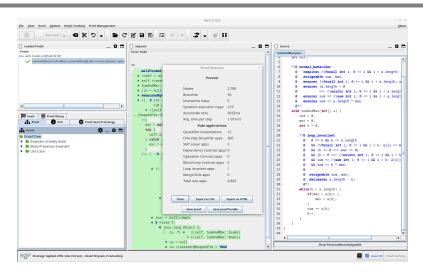
 A_n B_m

- Interpretation: $(A_1 \wedge \ldots \wedge A_n) \Rightarrow (B_1 \vee \ldots \vee B_m)$.
 - Proof is completed if some A_i is false or some B_i is true.
- All formulas are unnegated:
 - $(A_1 \land \neg A_2) \Rightarrow (B_1 \lor B_2) \rightsquigarrow A_1 \Rightarrow (B_1 \lor B_2 \lor A_2)$
 - $(A_1 \land A_2) \Rightarrow (B_1 \lor \neg B_2) \rightsquigarrow (A_1 \land A_2 \land B_2) \Rightarrow B_1$

A formula below the line may represent a "negated assumption"; a formula above the line may represent a "negated goal":

Wolfgang Schreiner https://www.risc.jku.at 14/20

A Simple Example (Contd'4)



The proof runs through automatically.

Wolfgang Schreiner https://www.risc.jku.at 16/20

Linear Search


```
/*@ requires a != null;
     @ assignable \nothing;
          (\result == -1 &&
            (\forall int j; 0 <= j && j < a.length; a[j] != x)) ||
         (0 <= \result && \result < a.length && a[\result] == x &&
     @
            (\forall int j; 0 <= j && j < \result; a[j] != x));
   public static int search(int[] a, int x) {
     int n = a.length; int i = 0; int r = -1;
     /*@ loop_invariant
          a != null && n == a.length && 0 <= i && i <= n &&
           (\forall int j; 0 <= j && j < i; a[j] != x) &&
           (r == -1 \mid | (r == i \&\& i < n \&\& a[r] == x)):
       \mathbb{Q} decreases r == -1 ? n-i : 0:
       @ assignable r, i; // required by KeY, not legal JML
       @*/
     while (r == -1 \&\& i < n) {
       if (a[i] == x) r = i: else i = i+1:
     }
     return r;
Wolfgang Schreiner
                                   https://www.risc.jku.at
```

17/20

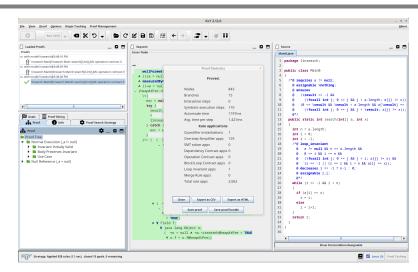
17/20

Proof Structure

- Multiple conditions (Taclet option "javaLoopTreatment::teaching"):
 - Invariant Initially Valid.
 - Body Preserves Invariant.
 - Use Case (on loop exit, invariant implies postcondition).
- If proof fails, elaborate which part causes trouble and potentially correct program, specification, loop annotations.

For a successful proof, in general multiple iterations of automatic proof search (button "Start") and invocation of separate SMT solvers required (button "Run CVC5").

Linear Search (Contd)



Also this verification is completed automatically.

Wolfgang Schreiner https://www.risc.jku.at

Summary

18/20

- Various academic approaches to verifying Java(Card) programs.
 - Jack: http://www-sop.inria.fr/everest/soft/Jack/jack.html
 - VeriFast: https://github.com/verifast/
 - Various tools for byte code verification.
- Do not yet scale to verification of full Java applications.
 - General language/program model is too complex.
 - Simplifying assumptions about program may be made.
 - Possibly only special properties may be verified.
- Nevertheless very helpful for reasoning on Java in the small.
 - Much beyond Hoare calculus on programs in toy languages.
 - Probably all examples in this course can be solved automatically by the use of the KeY prover and its integrated SMT solvers.
- Enforce clearer understanding of language features.
 - Perhaps constructs with complex reasoning are not a good idea...

In a not too distant future, customers might demand that some critical code is shipped with formal certificates (correctness proofs). . .

Wolfgang Schreiner https://www.risc.jku.at 19/20 Wolfgang Schreiner https://www.risc.jku.at 20/20