Logic, Checking, and Proving
Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
https://www.risc.jku.at

2\,
N2

Wolfgang Schreiner https://www.risc.jku.at 1/69

1. The Language of Logic

2. The RISC Algorithm Language

3. The Art of Proving

4. The RISC Theorem Proving Interface

Wolfgang Schreiner https://www.risc.jku.at 2/69

The Language of Logic .E {'

Two kinds of syntactic phrases.
Term T denoting an object.
Variable x
Object constant ¢
Function application f(T1,..., T,) (may be written infix)
n-ary function constant f
Formula F denoting a truth value.
Atomic formula p(T1,..., T,) (may be written infix)
n-ary predicate constant p.
Negation =F (“not F")
Conjunction F; A F2 ("F1 and F")
Disjunction F1 V F, (“F1 or ")
Implication F; = F, ("if F1, then F,")
Equivalence F; < F, (“if F1, then Fp, and vice versa”)
Universal quantification Vx : F (“for all x, F")
Existential quantification 3x : F (“for some x, F")

Wolfgang Schreiner https://www.risc.jku.at 3/69

Syntactic Shortcuts

A
N

VX1, ..oy Xn o F
Vxy oo VX, o F
dxp, ..., xp 0 F
dx; ... 3dx, o F
VxeS:F
Vx:x €S = F (not: N)
dxeS:F

Ix:x € SAF (not: =)

Help to make formulas more readable.

Wolfgang Schreiner https://www.risc.jku.at

4/69

7™\
Examples 1

Terms and formulas may appear in various syntactic forms.
Terms:

exp(

-b

[]

x242x+1
(y+1)?

Formulas:
a? + b? = ¢?
n|2n
VxeN: x>0
Vx € N:2|xV2|(x+1)
VxeN,yeN:x<y=
JzeN:x+z=y

Terms and formulas may be nested arbitrarily deeply.

)
+
b

Wolfgang Schreiner https://www.risc.jku.at 5/69

The Meaning of Formulas E{.

Atomic formula p(T1,..., Ts)
True if the predicate denoted by p holds for the values of Ty,..., T,.
Negation =F
True if and only if F is false.
Conjunction F1 A Fp (“F1 and F,")
True if and only if F; and F» are both true.
Disjunction F1 V Fp (“F1 or ")
True if and only if at least one of F; or F is true.
Implication F; = F, (“if F1, then F,")
False if and only if Fy is true and F; is false.
Equivalence F; < F, (“if F1, then Fp, and vice versa”)
True if and only if F; and F, are both true or both false.
Universal quantification Vx : F (“for all x, F")
True if and only if F is true for every possible value assignment of x.
Existential quantification 3x : F (“for some x, F")
True if and only if F is true for at least one value assignment of x.

Wolfgang Schreiner https://www.risc.jku.at 6/69

Example N

We assume the domain of natural numbers and the “classical”
interpretation of constants 1, 2, +, =, <.
1+41=2
True.
1+41=2v2+4+2=2
True.
1+41=2A24+2=2
False.
1+41=2=2=1+1
True.
1+41=1=2+4+2=2
True.
1+41=2=2+4+2=2
False.
1+41=124+2=2
True.
Wolfgang Schreiner https://www.risc.jku.at 7/69

Example v

x+1=1+4x

True, for every assignment of a number a to variable x.
Vx:x+1=1+4+x

True (because for every assignment a to x, x +1 =14 x is true).
x+1=2

If x is assigned “one”, the formula is true.

If x is assigned “two”, the formula is false.

Ix:ix+1=2

True (because x 4+ 1 = 2 is true for assignment “one” to x).
Vx:ix4+1=2

False (because x + 1 = 2 is false for assignment “two" to x).
Vx:dy :x<y

True (because for every assignment a to x, there exists the
assignment a+ 1 to y which makes x < y true).

dy:Vx:x<y
False (because for every assignment a to y, there is the assignment

a+ 1 to x which makes x < y false).
Wolfgang Schreiner https://www.risc.jku.at 8/69

: 7™\
Formula Equivalences v

Formulas may be replaced by equivalent formulas.
e By
“(FL A Fp) e~ =F VR,
—(FLV Fp) e~ =F1 A —F;
—(FL= F) e~ Fi AR
—Vx : F e~ dx i aF
—dx : F e Vx: oF
F1 = F2 e =Fy = —F
Fi= Few-aFVEFE
F1 & Fy e —F & —F

Familiarity with manipulation of formulas is important.

Wolfgang Schreiner https://www.risc.jku.at 9/69

Example .E {'

“All swans are white or black.”
Vx : swan(x) = white(x) V black(x)
“There exists a black swan.”
Ix : swan(x) A black(x).
“A swan is white, unless it is black.”
Vx : swan(x) A —black(x) = white(x)
Vx : swan(x) A —white(x) = black(x)
Vx : swan(x) = white(x) V black(x)
“Not everything that is white or black is a swan.”
—Vx : white(x) V black(x) = swan(x).
Ix : (white(x) V black(x)) A —swan(x).
“Black swans have at least one black parent”.
Vx : swan(x) A black(x) = 3y : swan(y) A black(y) A parent(y, x)
It is important to recognize the logical structure of an informal sentence
in its various equivalent forms.

Wolfgang Schreiner https://www.risc.jku.at 10/69

o\,
The Usage of Formulas E(

Precise formulation of statements describing object relationships.
Statement:
If x and y are natural numbers and y is not zero, then q is the
truncated quotient of x divided by y.
Formula:
xeNAyeNAy#0=>
geNATFJreN:x=y-gq+rAr<y
Problem specification:
Given natural numbers x and y such that y is not zero, compute
the truncated quotient g of x divided by y.
Inputs: x,y
Input condition: x e NAy e NAy #0
Output: g
Output condition: ge NAFreN:x=y-g+rAr<y

Wolfgang Schreiner https: //www.risc.jku.at 11/69

Problem Specifications .E a

The specification of a computation problem:
Input: variables x; € 51,...,x, € S,
Input condition (“precondition”): formula /(xi, ..., x,).
Output: variables y; € T1,...,ym € T,
Output condition (“postcondition”): O(x1,. .., Xn, Y1, -+ Ym)-

F(x1,...,xn): only x1,..., X, are free in formula F.
x is free in F, if not every occurrence of x is inside the scope of a
quantifier (such as V or 3) that binds x.

An implementation of the specification:
A function (program) f : Sy X ... x S, — Ty X ... X Tp, such that
Vx1 € S1,.. %0 € St (X1, ..y xn) =
let (y1,...,¥m) = f(x1,...,%,) in
O(X1y oy Xns Y1y v s ¥Ym)
For all arguments that satisfy the input condition, f must compute
results that satisfy the output condition.

Basis of all specification formalisms.

Wolfgang Schreiner https://www.risc.jku.at 12/69

T o7\
Example: A Problem Specification .E {'

Given an integer array a, a position p in a, and a length /, return the array
b derived from a by removing alp],...,a[p+ / —1].
Input: a€ Z*, peN, I €N
Input condition:
p+ 1 <length(a)
Qutput: b e Z*
Output condition:
let n = length(a) in
length(b) =n—1 A
(VieN:i<p= b[i] =a[i]) A
(VieN:p<i<n—I=b[i]=a[i+1])
Mathematical theory:
T =Ujen T, T :=N; > T,N;:={neN: n<.i}
length : T* — N, length(a) =suchie N:ae T’

Wolfgang Schreiner https://www.risc.jku.at 13/69

AN

Validating Problem Specifications E{.

Do formal input condition /(x) and output condition O(x,y) really
capture our informal intentions?
Do concrete inputs/output satisfy/violate these conditions?
/(31), —|I(32), O(al,bl), —|O(31,b2).
Is input condition satisfiable?
Ix : I(x).
Is input condition not trivial?
Ix : =l(x).
Is output condition satisfiable for every input?
Vx : I(x) = 3y : O(x,y).
Is output condition for all (at least some) inputs not trivial?
Vx : I(x) = 3y : ~0(x, y).
Ix : I(x) Ay : =0(x,y).
Is for every legal input at most one output legal?
Vx : I(x) = Yy1,y2: O(x,y1) A O(x, y2) = y1 = yo.
Validate specification to increase our confidence in its meaning!
Wolfgang Schreiner https://www.risc.jku.at 14/69

A
N

1. The Language of Logic

2. The RISC Algorithm Language

3. The Art of Proving

4. The RISC Theorem Proving Interface

Wolfgang Schreiner https://www.risc.jku.at 15/69

: 7\
The RISC Algorithm Language (RISCAL) .E e

A system for formally specifying and checking algorithms.
Research Institute for Symbolic Computation (RISC), 2016-.
https://www.risc.jku.at/research /formal /software/RISCAL.
Implemented in Java with the Eclipse SWT library for the GUI.
Tested under Linux only; freely available as open source (GPL3).
A language for the defining mathematical theories and algorithms.
A static type system with only finite types (of parameterized sizes).
Predicates, explicitly (also recursively) and implicitly def.d functions.
Theorems (universally quantified predicates expected to be true).
Procedures (also recursively defined).
Pre- and post-conditions, invariants, termination measures.
A framework for evaluating/executing all definitions.
Model checking: predicates, functions, theorems, procedures,
annotations may be evaluated/executed for all possible inputs.
All paths of a non-deterministic execution may be elaborated.
The execution/evaluation may be visualized.

Validating algorithms by automatically verifying finite approximations.
Wolfgang Schreiner https://www.risc.jku.at 16/69

: o7\
The RISC Algorithm Language (RISCAL) .E 3

RISCAL divide.txt &

RISC Algorithm Language (RISCAL) - eox
File Edit SMT TP Help
File: [software/RISCAL speclgcd.txt Analysis
BYT °%0 ven &
1 Translation: Default Value: 0 Other Values:
211 Computing the greatest coman divizor by the Euclidesn Algoritm e Teles Ly YT b o
4 Visualization: “Trace ~ Tree Width: 1500 ~Height: 800

Parallelism: | Multi-Threaded Threads:4 | Distributed Servers: [

n
Stype nat = NN;

Operation: @ gcap(z,2) ~

Zpred divides(m:nat,n:nat) - pinat. m-p

5 RISC Algorithm Language 4.3.0 (July 15, 2024)

10fun ged(m:nat,ninat): nat https://www. TisC.Jku.at/xesearch/ fornal/sof tware/RISCAL

11 requizes m =0 v n = 0; (C) 2016-, Reseaxch Institute for Synbolic Computation (RISC)
12= choose Tesult:nat with This is free software distributed under the terms of the GNU GPL
13 divides(xesult,m) A divides(result,n) A Execute "RISCAL -h" to see the available conmand line options
14 -3rinat. divides(r,m) A divides(r,n) A T > result;

Reading file /software/RISCAL/spec/gcd. txt
theoxen gedo(minat) « me0 - ged(m,0) = m; Using N=10.

17theoren gedl(m:nat,ninat) ~ m* @ v n* 0 - ged(m,n) = ged(n,m); Type checking and translation completed.
12 theoren ged2(minat,ninat) - 1<nAn<m - ged(m,n) = ged(min,n);

15

oproc gedp(m:nat,ninat): nat
21 xequires me0 v ns0;
22 ensures result = ged(m,n);

¢
24 var a:nat
var binat = n;
while a > 0 A b > 0 do
invariant a # 0 v b # 0;
invariant ged(a,b) = ged(old_a,old_b);
decreases a+h;

if a > b then

a = a%b;
else

)
return if a = @ then b else a;

Wolfgang Schreiner https://www.risc.jku.at 17/69

Using RISCAL &

See also the (printed/online) “Tutorial and Reference Manual”.

Press button [&] (or <Ctrl>-s) to save specification.
Automatically processes (parses and type-checks) specification.
Press button ¥ to re-process specification.

Choose values for undefined constants in specification.

Natural number for val const: N.
Default Value: used if no other value is specified.
Other Values: specific values for individual constants.

Select Operation from menu and then press button B,
Executes operation for chosen constant values and all possible inputs.
Option Silent: result of operation is not printed.
Option Nondeterminism: all execution paths are taken.
Option Multi-threaded: multiple threads execute different inputs.
Press buttton @ to abort execution.

During evaluation all annotations (pre/postconditions, etc.) are checked.

Wolfgang Schreiner https://www.risc.jku.at 18/69

i : Y
Typing Mathematical Symbols .E 7/

ASCII String Unicode Character ASCII String Unicode Character
Int Z ~= #*
Nat N <= <
1= = >= >
true T * .
false 1 times X
- - {3 0
/\ A intersect N
\/ \Y, union u
=> = Intersect N
<=> & Union U
forall \4 isin €
exists 3 subseteq -
sum > << {
product 11 >>)

Type the ASCII string and press <Ctrl>-# to get the Unicode character.

Wolfgang Schreiner https://www.risc.jku.at 19/69

Example: Quotient and Remainder

&,
W

Given natural numbers n and m, we want to compute the quotient g and

remainder r of n divided by m.

// the type of natural numbers less than equal N
val N: N;
type Num = N[N];

// the precondition of the computation
pred pre(n:Num, m:Num) < m # 0;

// the postcondition, first formulation
pred posti(n:Num, m:Num, q:Num, r:Num) <
n=mq+rA
VqO0:Num, rO:Num.
n=mq0 + r0 = r < r0;

// the postcondition, second formulation

pred post2(n:Num, m:Num, q:Num, r:Num) &
n=mq+r Ar<m;

We will investigate this specification.

Wolfgang Schreiner https://www.risc.jku.at

20/69

I

Example: Quotient and Remainder v

// for all inputs that satisfy the precondition
// both formulations are equivalent:
// ¥n:Num, m:Num, q:Num, r:Num.
// pre(n, m) = (posti(n, m, q, r) < post2(n, m, q, r));
theorem postEquiv(n:Num, m:Num, q:Num, r:Num)
requires pre(n, m);
& posti(n, m, q, r) & post2(n, m, q, r);

// we will thus use the simpler formulation from now on
pred post(n:Num, m:Num, q:Num, r:Num) < post2(n, m, g, T);

Check equivalence for all values that satisfy the precondition.

Wolfgang Schreiner https://www.risc.jku.at 21/69

: . N
Example: Quotient and Remainder v

Choose e.g. value 5 for N.
Switch option Silent off:
Executing postEquiv(Z,Z,Z,Z) with all 1296 inputs.
Ignoring inadmissible inputs...
Run 6 of deterministic function postEquiv(0,1,0,0):
Result (0 ms): true
Run 7 of deterministic function postEquiv(1,1,0,0):
Result (0 ms): true

Run 1295 of deterministic function postEquiv(5,5,5,5):
Result (0 ms): true
Execution completed for ALL inputs (6314 ms, 1080 checked, 216 inadmissible).

Switch option Silent on:

Executing postEquiv(Z,Z,Z,7Z) with all 1296 inputs.
Execution completed for ALL inputs (244 ms, 1080 checked, 216 inadmissible).

If theorem is false for some input, an error message is displayed.

Wolfgang Schreiner https://www.risc.jku.at 22/69

. . 7\
Example: Quotient and Remainder v

Drop precondition from theorem.

theorem postEquiv(n:Num, m:Num, q:Num, r:Num) &
// requires pre(n, m);
posti(n, m, q, r) & post2(n, m, q, r);

Executing postEquiv(Z,Z,Z,7Z) with all 1296 inputs.
Run O of deterministic function postEquiv(0,0,0,0):
ERROR in execution of postEquiv(0,0,0,0): evaluation of
postEquiv
at line 25 in file divide.txt:
theorem is not true
ERROR encountered in execution.

For n=0,m=0,qg=0,r =0, the modified theorem is not true.

Wolfgang Schreiner https://www.risc.jku.at 23/69

I

Visualizing the Formula Evaluation 1

Level 1: postl(n, m, q, r) - o x

Select N = 1 and visualization option “Tree".

Level 0: postEquiv(n:Num,m:Num,q:Num,-Num) — 8 x

Investigate the (pruned) evaluation tree to determine how the truth value
of a formula was derived (double click to zoom into/out of predicates).

Wolfgang Schreiner https://www.risc.jku.at 24/69

A

Example: Quotient and Remainder '& {’

Switch option “Nondeterminism” on.

// 1. investigate whether the specified input/output combinations are as desired
fun quotremFun(n:Num, m:Num): Tuple [Num,Num]

requires pre(n, m);
= choose q:Num, r:Num with post(n, m, q, r);

Executing quotremFun(Z,Z) with all 36 inputs.

Ignoring inadmissible inputs...

Branch 0:6 of nondeterministic function quotremFun(0,1):
Result (0 ms): [0,0]

Branch 1:6 of nondeterministic function quotremFun(0,1):
No more results (8 ms).

Branch 0:35 of nondeterministic function quotremFun(5,5):

Result (0 ms): [1,0]

Branch 1:35 of nondeterministic function quotremFun(5,5):

No more results (14 ms).

Execution completed for ALL inputs (413 ms, 30 checked, 6 inadmissible).

First validation by inspecting the values determined by output condition

(nondeterminism may produce for some inputs multiple outputs).
Wolfgang Schreiner https://www.risc.jku.at 25/69

A

Example: Quotient and Remainder v

// 2. check that some but not all inputs are allowed
theorem someInput() < Fn:Num, m:Num. pre(n, m);
theorem notEveryInput() < In:Num, m:Num. —pre(n, m);

Executing someInput().
Execution completed (0O ms).

Executing notEveryInput().
Execution completed (0 ms).

A very rough validation of the input condition.

Wolfgang Schreiner https://www.risc.jku.at 26/69

I

Example: Quotient and Remainder v

// 3. check whether for all inputs that satisfy the precondition
// there are some outputs that satisfy the postcondition
theorem someOutput (n:Num, m:Num)

requires pre(n, m);
< dq:Num, r:Num. post(n, m, q, r);

// 4. check that not every output satisfies the postcondition
theorem notEveryOutput (n:Num, m:Num)

requires pre(n, m);
< Jq:Num, r:Num. —post(n, m, q, T);

Executing someOutput(Z,Z) with all 36 inputs.
Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible).

Executing notEveryOutput(Z,Z) with all 36 inputs.
Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible).

A very rough validation of the output condition.

Wolfgang Schreiner https://www.risc.jku.at 27/69

. . 7\
Example: Quotient and Remainder v

// 5. check that the output is uniquely defined
// (optional, need not generally be the case)
theorem uniqueOutput (n:Num, m:Num)

requires pre(n, m);
=

Vq:Num, r:Num. post(n, m, q, r) =

Vq0:Num, rO:Num. post(n, m, q0, r0) =

q =90 AN r = r0;

Executing uniqueOutput(Z,Z) with all 36 inputs.
Execution completed for ALL inputs (18 ms, 30 checked, 6 inadmissible).

The output condition indeed determines the outputs uniquely.

Wolfgang Schreiner https://www.risc.jku.at 28/69

A

Example: Quotient and Remainder v

// 6. check whether the algorithm satisfies the specification
proc quotRemProc(n:Num, m:Num): Tuple [Num,Num]

requires pre(n, m);

ensures let g=result.l, r=result.2 in post(n, m, q, r);

var q: Num = O;
var r: Num = n;
while r > m do

{
r = r-m;
q = qtl;
}
return (q,r);
}

Check whether the algorithm satisfies the specification.

Wolfgang Schreiner https://www.risc.jku.at 29/69

: . N
Example: Quotient and Remainder v

Executing quotRemProc(Z,Z) with all 36 inputs.
Ignoring inadmissible inputs...

Run 6 of deterministic function quotRemProc(0,1):
Result (0 ms): [0,0]

Run 7 of deterministic function quotRemProc(1,1):
Result (0 ms): [1,0]

Run 31 of deterministic function quotRemProc(1,5):
Result (1 ms): [0,1]

Run 32 of deterministic function quotRemProc(2,5):
Result (0 ms): [0,2]

Run 33 of deterministic function quotRemProc(3,5):
Result (0 ms): [0,3]

Run 34 of deterministic function quotRemProc(4,5):
Result (0 ms): [0,4]

Run 35 of deterministic function quotRemProc(5,5):
Result (1 ms): [1,0]

Execution completed for ALL inputs (161 ms, 30 checked, 6 inadmissible).

A verification of the algorithm by checking all possible executions.

Wolfgang Schreiner https://www.risc.jku.at 30/69

Example: Quotient and Remainder W

proc quotRemProc(n:Num, m:Num): Tuple [Num,Num]
requires pre(n, m);
ensures post(n, m, result.l, result.2);

{
var q: Num = O;
var r: Num = n;
while r > m do // error!
{
r = r-m;
q = qtl;
}
return (q,r);
}

Executing quotRemProc(Z,Z) with all 36 inputs.
ERROR in execution of quotRemProc(1,1): evaluation of
ensures let q = result.1l, r = result.2 in post(n, m, q, r);
at line 65 in file divide.txt:
postcondition is violated by result [0,1]
ERROR encountered in execution.

A falsification of an incorrect algorithm.
Wolfgang Schreiner https://www.risc.jku.at 31/69

A

Example: Sorting an Array .E {'
°
val N:N; val M:Nj;
type elem = N[M]; type array = Array[N,elem]; type index = Z[-1,N];
proc sort(a:array): array
{
var b:array = a;
for var i:index := 1; i < N; i := i+1 do
{
var x:elem := bl[il;
var j:index := i-1;
while j > 0 A b[jl > x do
{
bl[j+1] := bljl;
j = 3j-1;
}
b[j+1] = x;
}
return b;
}
Wolfgang Schreiner https://www.risc.jku.at 32/69

_ 8"
Example: Sorting an Array .E {.

proc sort(a:array): array

ensures Vk1:index,k2:index.
0 < ki1 Akl < k2 A k2 <N = result[kl] < result[k2];

ensures Jdp:Array([N,index].
(Vk:index. 0 < k Ak <N = 0 < plk]l A plk]l <N) A
(Vk1:index,k2:index.

0 <kl AkKL<NAO<Ek2AK2<NAKkL #k2= plki] # plk2]) A

(Vk:index. 0 < k A k < N = al[k] = result[plk]]);

Using N=4.

Using M=3.

Computing the value of _tbound_O...

Type checking and translation completed.

Executing sort(Array[Z]) with all 256 inputs.

Execution completed for ALL inputs (278 ms, 256 checked, O inadmissible).

Also this algorithm can be automatically checked.

Wolfgang Schreiner https://www.risc.jku.at 33/69

Example: Sorting an Array

Select operation sort and press the button

File Edit SMT TP Help
File: sort.bt

EEs

z,'/ Sorting arxays by the "insertion sort” algorithm

Sval NiN;
el i

Aryne elen = \(M);
Stype array = Array(N,elen];
10%ype dndex = 24N 1/ alao dncludes 1 =

Loproc sort(asarmay): arzay
15 ensures ¥K1: index,k2:index.

1 0=k AK<kAK2<N o Tesultk] Tesult(il;
15 ensures 3p:Array[N,index]

16 (vkiindex. 0 <k Ak <N - 0 < plkl A plkl < N) A
17 (¥KLiindex, K dndex.

2 m vax 1 tnden Lem i do

Y v xislem = 611

25 var jiindex

2 wm]ejzmAh[]] > x do
27

[
2 b3+1] = b[j1;
i=

)
bljel = x;

return b;

18 @S KLAKL <NAOSK AK2<NAKL =k » pIkl] # p(k2]) A
19 (vkiindex. 0 5 k A k < N - alk] = resultlplkl]);

20

21 var biarzay = a;

RISC Algorithm Language (RISCAL)

Analysis
ss0(ven s

Translation: @Nondeterminism Default Value: 0 Other Values: =
Execution: @Silent Inputs: PerMille: Branches: Depth;
Visualization: 1Trace "ITree Width: 150 Height: 80C

Parallelism: @Multi-Threaded Threads:4 | Distributed Servers: =

Operation: |8 sore(array(2]) -

theoren _sort_0_Postunique(aiarray) « Vresult:array with (Vki:index,
K2iindex. ((((0 5 k1) A (KL < Kk2)) A (K2 < W) = (result[kl] =
Tesult(kz]))) A (3p:Arzay[N,index]. (((vk:index. (((0 k) A (k < W) =
(0 < pIKI) A (pIK] < N)))) A (¥KL:index, k2:index. ((((((0 < K1) A (KL <
M) A (05 k2)) A (K2 < M) A (KL= K2)) - (plki] = p(k21)))) A
(sindex. (0210 8 (< W)~ (a0 - remdtlpliI)))))
(Y_tesult:array with let result = _result in ((vkl:index, k2:index. ((((0
< K1) A (KL< K2)) A (K2 < N)) - (result(kl] < result(k2]))) o
(3p:Axzoy N, index]. (((Vk:index, (((05 k) A (k < M) ~ (2 < prk) A
(pKI < N)))) & (VKL:index, k2:index. ((((((0 5 K1) A (K1 < N)) A (0 5
K2)) A (k2 < W) A (KL # K2)) ~ (pIKI] # pIK2])))) A (Yk:index. (((0 =
K) A (K < N)) = (alk] = Tesultip[k11))))). (result = _result));
Executing _sort_o_PostUnique(Arzay[Z]) with all 256 inputs

PARALLEL execution with 4 threads (output disabled).

85 inputs (56 checked, 0 inadmissible, © ignored, 29 open)

144 inputs (116 checked, 0 inadmissible, 0 ignored, 28 open)

202 Smputs (176 checked, © inadisible, 0 ignased, 25 open)

256 inputs (233 checked, 0 inadnissible, 0 ignored, 23 open).

Erecution comleted fox ALL Inputs (a501 ns, 2% checkea, 8 inadnissible).

“Show/Hide Tasks"

sks
sort(Array(Z])

AExecute operation

Verify specification preconditions
Isindex value legal?
Isindex value legal?
Isindex value legal?
Is index value legal?
Isindex value legal?
Isindex value legal?
Isindex value legal?
Isindex value legal?
Isindex value legal?
Validate speciication
No precondition
Execute specification
Is postcondition always satisfiable?
Is postcondition always not trivial?
Is postcondition sometimes not trivial?
Is result uniquely determined?
Verify implementation preconditions
Verlfy correctness of result
Verify iteration and recursion

Automatically generated formulas to validate procedure specifications.

Wolfgang Schreiner

https://www.risc.jku.at

34/69

Example: Sorting an Array N4

Right-click to print definition of a formula, double-click to check it.

For every input, is postcondition true for only one output?
theorem _sort_0_PostUnique(a:array) <
Vresult:array with (Vk1l:index, k2:index.
((((0 < k1) A (k1 < k2)) A (k2 < N)) = (result[kl] < result[k2]))) A
(Jp:Array[N,index] .
(((Vk:index. (((0 < k) A (k < N)) = ((0 < plk]) A (plk]l < M) A
(Vk1:index, k2:index. ((((((0 < k1) A (k1 < N)) A (0 < k2)) A (k2 < N)) A (k1 # k2)) =
(plk1] # plk21)))) A
(Vk:index. (((0 < k) A (k < N)) = (alk] = result[plk]]))))).
(V_result:array with let result = _result in ((Vk1l:index, k2:index.
(0 < k1) A (k1 < k2)) A (k2 < N)) = (result[ki] < result[k2]))) A
(3p:Array[N,index].
(((Vk:index. (((0 < k) A (k < N)) = ((0 < plk]) A (plk]l < M) A
(Vk1:index, k2:index. ((((((0 < k1) A (k1 < N)) A (0 < k2)) A (k2 < N)) A (k1 # k2)) =
(plk1] # plk21)))) A
(Vk:index. (((0 < k) A (k < N)) = (alk] = result[plkl])))))).
(result = _result));

Executing _sort_O_PostUnique(Array[Z]) with all 256 inputs.

PARALLEL execution with 4 threads (output disabled).

85 inputs (56 checked, O inadmissible, O ignored, 29 open)...

144 inputs (116 checked, O inadmissible, O ignored, 28 open)...

202 inputs (176 checked, O inadmissible, O ignored, 26 open)...

256 inputs (233 checked, O inadmissible, O ignored, 23 open)...

Execution completed for ALL inputs (8801 ms, 256 checked, O inadmissible).

The output is indeed uniquely defined by the output condition.

Wolfgang Schreiner https://www.risc.jku.at 35/69

: : AN
Model Checking versus Proving .E {'

Two fundamental techniques for the verification of computer programs.

Checking Program Executions
Enumeration of all possible executions and evaluation of formulas
(e.g. postconditions) on the resulting states.
Fully automatic, no human interaction is required.
Only possible if there are only finitely many executions (and finitely
many values for the quantified variables in the formulas).
State space explosion: “finitely many” means “not too many".
Proving Verification Conditions
Logic formulas that are valid if and only if program is correct with
respect to its specification.
Also possible if there are infinitely many excutions and infinitely many
values for the quantified variables.
Many conditions can be automatically proved (automated reasoners);
in general interaction with human is required (proof assistants).

General verification requires the proving of logic formulas.
Wolfgang Schreiner https://www.risc.jku.at 36/69

1. The Language of Logic

2. The RISC Algorithm Language

3. The Art of Proving

4. The RISC Theorem Proving Interface

Wolfgang Schreiner https://www.risc.jku.at 37/69

7Y
Proofs .E <

A proof is a structured argument that a formula is true.
A tree whose nodes represent proof situations (states).

N / N /
N /

Each proof situation consists of knowledge and a goal.
e Ki,....,. K, -G
Knowledge Kj, ..., K,: formulas assumed to be true.
Goal G: formula to be proved relative to knowledge.
The root of the tree is the initial proof situation.

Ki, ..., K,: axioms of mathematical background theories.
G: formula to be proved.

Wolfgang Schreiner https://www.risc.jku.at 38/69

7Y
Proof Rules .E {'

A proof rules describes how a proof situation can be reduced to zero, one,
or more “subsituations”.
N R
Ki,... K, F G

Rule may or may not close the (sub)proof:

Zero subsituations: G has been proved, (sub)proof is closed.
One or more subsituations: G is proved, if all subgoals are proved.

Top-down rules: focus on G.
G is decomposed into simpler goals Gy, Go, . ..
Bottom-up rules: focus on K1, ..., K,.
Knowledge is extended to Ki, ..., K,, Kni1.
In each proof situation, we aim at showing that the goal is “apparently”
true with respect to the given knowledge.

Wolfgang Schreiner https://www.risc.jku.at 39/69

A

Conjunction F A F K ¢
e
KFG Kbk G o KiA Ko, K Ko - G
KE G A G L KIANKEG
Goal Gi A Go.

Create two subsituations with goals G; and G;.
We have to show Gi A Go.

We show Gi: ... (proof continues with goal Gy)
We show G;: ... (proof continues with goal G,)

Knowledge K A K.
Create one subsituation with K7 and K> in knowledge.

We know K1 A K. We thus also know K1 and K.
(proof continues with current goal and additional
knowledge K1 and K3)

Wolfgang Schreiner https://www.risc.jku.at 40/69

Disjunction F, V F, .E {'

K,—G F G L KiEG L KEG
KE GV G Lo KiVKhaEG
Goal Gy V Go.

Create one subsituation where G; is proved under the assumption

that G; does not hold (or vice versa):
We have to show Gy V Go. We assume —Gy and show Go.
(proof continues with goal Gy and additional knowledge
-Gy)

Knowledge Ki V K.

Create two subsituations, one with K; and one with K> in knowledge.

We know K1 V K. We thus proceed by case distinction:

Case Ki: ... (proof continues with current goal and additional
knowledge Ki).
Case Kz: ... (proof continues with current goal and additional

knowledge K>).

Wolfgang Schreiner https://www.risc.jku.at 41/69

A

Implication F, = F, K ¢
e
K,G F G L FK Kk G
K|_61:>G2 ...,K1:>K2|_G
Goal Glé G2

Create one subsituation where G, is proved under the assumption
that Gj holds:
We have to show Gy = G,. We assume Gy and show G,.
(proof continues with goal G, and additional knowledge G)
Knowledge K1 = K>
Create two subsituations, one with goal K; and one with
knowledge K.
We know K; = Ko.

We show Ki: ... (proof continues with goal K1)
We know Ko: ... (proof continues with current goal and
additional knowledge K>).

Wolfgang Schreiner https: //www.risc.jku.at 42/69

I

Equivalence F{ & F,
e
KFG1:G2 KFG2:>G1 ...F(—\)Kl ...,(ﬁ)KzFG
K|—G1<Z>Gz ..,,K1<:>K2}—G
Goal G1 & G

Create two subsituations with implications in both directions as goals:
We have to show G < Gy.
We show Gi = Ga: ... (proof continues with goal G1 = G2)
We show G> = G;: ... (proof continues with goal Gz = Gi)
Knowledge K1 < K>
Create two subsituations, one with goal (=)K; and one with
knowledge (—)K> .
We know K1 & Ks.

We show (—)Ki: ... (proof continues with goal (—)K1)
We know (—=)Kz: ... (proof continues with current goal and
additional knowledge (—)Kz)

Wolfgang Schreiner https://www.risc.jku.at 43/69

- - e - ME
Universal Quantification Vx : F N4

Kt G[xo/x]
KEVx:G

LXK K[T/X]E G

(X0 new for K, G) L Vx KFG

Goal Vx : G

Introduce new (arbitrarily named) constant xo and create one
subsituation with goal G[xo/x].
We have to show Vx : G. Take arbitrary x.
We show G[xo/x]. (proof continues with goal G[xo/x])
Knowledge Vx : K
Choose term T to create one subsituation with formula K[T /x]
added to the knowledge.

We know V¥x : K and thus also K[T /x].
(proof continues with current goal and additional
knowledge K[T /x])

Wolfgang Schreiner https: //www.risc.jku.at 44/69

7\

: . . . |)
Existential Quantification dx : F E.{
K G[T/x] . Klxo/x]F G
KF3x:6 ...,HX?KI—G (x0 new for K, G)

Goal Ix: G

Choose term T to create one subsituation with goal G[T /x].
We have to show 3x : G. It suffices to show G[T /x].
(proof continues with goal G[T /x])
Knowledge 3x : K

Introduce new (arbitrarily named constant) xp and create one
subsituation with additional knowledge K[xo/x].
We know 3x : K. Let xo be such that K[xo/x].
(proof continues with current goal and additional
knowledge K[xo/x])

Wolfgang Schreiner https://www.risc.jku.at 45/69

L) (]
Example &.{
We show
(@) (3x:Vy: P(x,y)) = (Vy : Ix : P(x,y))
We assume
(1) Ix : Yy : P(x,y)
and show
(b) Vy : Ix : P(x,y)
Take arbitrary yo. We show
(c) Ix : P(x,¥0)
From (1) we know for some xo
(2) Vy : P(x0,y)
From (2) we know
(3) P(x0, y0)
From (3), we know (c). QED.
Wolfgang Schreiner https: / /www.risc.jku.at 46/69

Example

A
N

We show

(a) Bx: p(x)) A (Vx: p(x) = Ty 1 q(x,y)) = (Fx,y : q(x,y))

We assume

(1) (Bx : p(x)) A (% p(x) = Ty : 4(x,y))
and show

(b) 3%,y : lx.y)
From (1), we know

(2) 3x: p(x)
(3) Vx: p(x) = Iy 1 q(x,y)

From (2) we know for some xg

(4) p(x0)

Wolfgang Schreiner https://www.risc.jku.at

47/69

A

Example (Contd) * *
e
From (3), we know
(5) p(x0) = 3y : q(x0,¥)
From (4) and (5), we know
(6) 3y : q(x0,¥)
From (6), we know for some yo
(7) a(x0, yo)
From (7), we know (b). QED.
Wolfgang Schreiner https://www.risc.jku.at 48/69

A
N

1. The Language of Logic

2. The RISC Algorithm Language

3. The Art of Proving

4. The RISC Theorem Proving Interface

Wolfgang Schreiner https://www.risc.jku.at 49/69

o\,
The RISC Theorem Proving Interface E(

RISCTP: an interface to various theorem proving methods.

Research Institute for Symbolic Computation (RISC), 2022-.
https://www.risc.jku.at/research /formal /software/RISCTP

Proof Method SMT:

Translation to a proof problem in the SMT-LIB language.
Application of external provers/SMT solvers Z3, cvc5, Vampire.
Fast and effective for problems of moderate complexity.

Black box: no human-readable/understandable proofs.

Proof Method MESON:

First proof decomposition/simplification by logical/arithmetical rules.
Then application of “Model Elimination, Subgoal-Oriented".
(Optional) support by external SMT solvers for larger efficiency.
Transparent: human-readable/understandable proofs.

Developed to provide RISCAL with theorem proving capabilities.

Wolfgang Schreiner https://www.risc.jku.at 50/69

S
RISCTP as a Standalone Prover 'E{

> RISCTP -solver z3 -path /software/RISCTP/etc/z3 -web 9999 1
RISC Theorem Proving Interface 1.8.0 (July 15, 2024)
https://wuw.risc.jku.at/research/formal/software/RISCTP

(C) 2022-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL.
Execute "RISCTP -h" to see the available command line optionms.

RISCTP GUI can be browsed at http://localhost:9999/
Press <Enter> to terminate the server.

-solver z3: use SMT solver Z3 (default).
-path /software/...: path to executable of SMT solver.
-web 9999 1: show (full) GUI at http://localhost:9999/

The RISCTP GUI can be accessed by any web browser.

Wolfgang Schreiner https://www.risc.jku.at 51/69

The RISCTP GUI) ¢

e Rsce x4 ~ -8 ox

« >0 O D loclhostosss B €8

RISCTP srowse .| ofieseteces ™\

[Prove. | With Type-Checking Theorems Method: O SMT @ MESON Timeout (s 60 | Multi-Threaded: C1Threads: 2 © .\

LN

Expand: (] Axioms: EInt+ (] Int* €3 Meps E3Deta Equality: O Off @ Law O Med O High O Max | SMIT: © Off O Min O Med OMax Display: O Problems @ Proofs O Search Limit: @ Depth OSize |7 |Elterate (ISingle Goal—g

Proof status: None RISCTP
Prover Output
RISC Theoren Proving Interface

https:/ /. Tisc. Jku.at/research/ formal/software/RISCTP

(C) 2022-, Reseaxch Institute for Symbolic Computation (RISC)
Proof Problem This is free software distributed under the terms of the GNU GPL
Execute "RISCTP -h" to see the available command line options

Input File

-] Problem si
(] Subproblems: Load a file with a RISCTP proof problem and press "Prove” to start the prover.

1 Clause F Click in the left pane to inspect the proof status (even while the prover i still unning).
- Clause Forms:

{1 Proofs:

[] Proof Search:

Wolfgang Schreiner https://www.risc.jku.at 52/69

Proof Method SMT '& {’

// problem file "fol2a.txt"

type T;

pred p(x:T,y:T);

theorem T & (Ix:T.Vy:T.p(x,y)) = (Vx:T.Jy:T.p(y,x));

Button “Browse” fol2a.txt.
Option “Method: SMT", button “Prove” ~» “Proof Status: Success”.
Link “Prover Output”.

=== SMT solving

SMT solver: Z3 version 4.13.0 - 64 bit
Proving theorem T...

SUCCESS: theorem was proved (11 ms).
=== SMT-LIB solver session

(set-logic ALL)

(set-option :produce-unsat-cores true)
(declare-sort T 0)

(declare-fun p (T T) Bool)

(push 1)

(assert (not (=> (exists ((x T)) (forall ((y T)) (p x y))) (forall ((x T)) (exists ((y T)) (p y x)))))
(check-sat)

(pop 1)

(exit)

SUCCESS termination (26 ms).

SUCCESS: theorem was proved (however, claim is not substantiated).
Wolfgang Schreiner https://www.risc.jku.at 53/69

Proof Method SMT '& {’

// problem file "fol2.txt"

type T;

pred p(x:T,y:T);

// actually, implication only holds from left to right
theorem T & (Ix:T.Vy:T.p(x,y)) & (Vx:T.3Jy:T.p(y,x));

Button “Browse” fol2.txt ~» “Proof Status: Failure”.

=== SMT solving

SMT solver: Z3 version 4.13.0 - 64 bit

Proving theorem T...

FAILURE: theorem was not proved (13 ms).

theorem T < (3Ix:T. (Vy:T. p(x,y))) & (Vx:T. (3y:T. p(y,x)));
sat

=== SMT-LIB solver session

(set-logic ALL)

(set-option :produce-unsat-cores true)

(declare-sort T 0)

(declare-fun p (T T) Bool)

(push 1)

(assert (not (= (exists ((x T)) (forall ((y T)) (p x y))) (forall ((x T)) (exists ((y T)) (p y x))))))
(check-sat)

(pop 1)

(exit)

FAILURE termination (31 ms).

FAILURE: theorem was not proved (however, no indication why this is so).
Wolfgang Schreiner https://www.risc.jku.at 54/69

Proof Method MESON '& {'

e Rsc x4 v - e x

« c e O D tocathostoso o © ¢ =

RISCTP (sowe.. foon 7\
Prove | |With Type-Checking Theorems v Method: O SMT @ MESON Timeout(s;: 60 © MultiThreaded: () Threads: 2 © .Nl {'
Expand: (] Axioms: & Int+ [Int* & Maps E2Data Equality: O Off @ Low O Med O High OMax SMT: @ Off O Min O Med O Max Display: O Problems @ Proofs O Search Limit: @ Depth OSize 2 © Elterate [JSingle Goal—g'

A1) VT poSoy
Proof Status: Failure RN

0al1.1.2) 3. ply:
Prover Output Goal{1.1.2) 3T, plyxs)

Input File
Proof Problem
[Problem Simplification:

(17 (ule (R | L] on the goal)
(1T (rule [A-R | V-L | =-L] on the goal gves 2 subproblems)
(1T (rule (=R | V-R | A-L) on the goal)
(11 rule [V-R | 3] on the goal)
[IT1 (rule [V-R | 3-Ljon (1)
(111 (open)
(172 rule (=R | V-R | A-L]on the goal)
(112 open)

[Subproblems:
11
212
[Clause Forms:
111
212
[Proofs:
1.9 T (success)
1T.0.2 (success)
) LL2 fteration 1) (success)
[P X8LTL] (success)
212

[Proof Search:

Problem simplification yields two subproblems of which one can be proved.
Wolfgang Schreiner https://www.risc.jku.at 55/69

Problem Simplification W

[-] Problem Simplification:

goal:[T] 3x:T. (Vy:T. p(x.y))) « (Vx:T. (3y:T. p(y.X)))
[-] T (rule [&-R | -L] on the goal)

[-1T (rule [A-R | v-L | =-L] on the goal gives 2 subproblems)
[-1T.1 (rule [=-R | v-R | A-L] on the goal)
[-[1T.1 (rule [V-R | 3-L] on the goal)

goal:(T] ((3x:T. (Vy:T. p(x.y)) = (Vx:T. (Jy:T. ply.x)) A (VX:T. (3y:T. ply,x))) = (3x:T. (Vy:T. p(x,y)))

[-1TA (rule [V-R | 3-L]on [1]) goal:[T.1] (3x:T. (Vy:T. p(x.y))) = (Vx:T. (3y:T. p(y,x)))
[1T.1 (open)
[1T.2 (rule [=-R | v-R | A-L] on the goal) 1T 3XT. (9T plxy)
[1T.2 (open) goal:T.1.2] Vx:T. (3y:T. p(y.x))

1T.1.1] 3T, (Vy:T. p(xy)

goal:[T.1.2] 3y:T. p(y,x8)

T{T.1.1] Vy:T. p(x80,y)

goal:[T.1.2] 3y:T. p(y.x8)

goal:[T.2] (Vx:T. Gy:T. p(y.x)) = 3x:T. (Vy:T. p(x,y))

1:[T.2.1] VXT. (3y:T. ply.x))

goal:[T.2.2] 3x:T. (Vy:T. p(x.y))

A step-by-step decomposition of the problem into simpler subproblems;
each consists of “knowledge” formulas and a “goal” formula.
Wolfgang Schreiner https://www.risc.jku.at 56/69

A\,

Clause Transformation E {

Each formula in a proof (sub)problem is transformed into a set of clauses.
Clause Vx,.... (A1 A...NA;) = (B1 V...V Bp).
Closed formula with universally quantified variables x,
The quantifier prefix Vx, ... is usually dropped.
Existential variables are replaced by Skolem constants/functions.
Positive literals (atomic formulas) A; and B;.
Clause be written as disjunction (=A; V...V -A,V B1 V...V By).
Negative literals —A;, positive literals B;.
Clause is true if some A; is false or some B; is true.
For some values of the quantified variables.
Proof problem Ki,..., K, G:
Have to prove validity (“truth”) of (K1 A ... A K, = G).
Suffices to prove unsatisfiability (“falseness”) of (K1 A ... A Ky A =G).

Suffices to transform each K; and —G into clauses {Cy, ..., C.} and
to prove the unsatisfiability of their conjunction (C; A ... A Co).

Suffices to prove the validity of (Ci A ... A Cc—1) = —Ce.

Wolfgang Schreiner https://www.risc.jku.at 57/69

Clause Transformation '& {’
[]
[-] Subproblems: [-] Clause Forms:
1. T.1 1.1.1
2.T2 2.72

1:[T.1.1] Vy:T. p(x80,
w L[T1A]VY:T. T = p(x80,y)

goal:[T.1.2] Ay:T. p(y.x8) 2:[T.1.2] Vy:T. p(y,x8) = L

1:[T.2.1] Vx:T. (Qy:T. p(y,x))

T[T.211VXT. T = ply8(x),x)
goal:[T.2.2] Ix:T. (Vy:T. p(x,y)) 2:[T.2.2] Yx:T. p(x,y80(x)) = L

Subproblems:
Above line: knowledge formulas.
Below line: goal.

Clause Forms:
Above line: clauses from theory axioms (here none).
Below line: clauses from theorem (knowledge and negation of goal).

It suffices to prove the negation of the last clause from the other clauses.
Wolfgang Schreiner https: //www.risc.jku.at 58,/69

Z8°
Proof Method MESON .E {'

MESON: Model Elimination, Subgoal-Oriented (Loveland, 1968).
A (Prolog-like) “backchaining strategy” for proving.
Current goal: literal G (initially from the goal clause).
Current variable substitution o.
Pick clause (Ly V...V L; V...V Lp).
Goal Go can be unified with L;o by new substitution o’.
Equivalent to (—|L1 Ao N=Lig A=Lipa Ao AL = L,)
New goals: (=Ly,...,=Li_1,=Liv1,...,=L)).
New variable substitution oo’.
Goal G is replaced by negations of clause literals other than L;.
Assumptions: literals Ay, ..., A,.
G may be also proved from the current set of assumptions.
If not, we add =G to the assumptions for the proof of the new goal.
During the proof search, the method must attempt every literal in every
clause that can be unified with the goal literal; furthermore, the proof
search must start from every clause arising from the theorem.
Wolfgang Schreiner https: //www.risc.jku.at 59/69

Proof Method MESON '& {’

[
[-] Proofs: Proof [T.1]
1. [1T.1 (success) The following "negated goals" Tepresent the negation of the theorem to be proved:
[[1T.1.2 (success) [T.1.1] vy:T. T = p(x50,y)
[-] T.1.2 (iteration 1) (success) [T.1.2] vy:T. ply,x8) - L
[-] p(y.x8) [T.1.1] (success) To prove the theorem, we apply the proof strategy MESON (model elimination, subgoal oriented)
2.[+]1 1.2 (failure) to derive from the negated goals a contradiction. For this,

we prove some (not negated) goal from the "knowledge" represented by the other formulas.
We start the proof with the last goal; if this does not succeed, we also try the previous ones.

Goal: T.1.2

Formula: 3y:T. ply,x§)

our goal is to prove this formula.

SUCCESS: goal T.1.2 has been proved with the following substitution:

y - x50
ye1 . x§

Goal: T.1.2 (iteration 1) (proof depth: 0, proof size: 0)

Goal: p(y,x§)
Variables: y:T

To prove the goal, we determine variable values that satisfy each subgoal:

ply,x8)

SUCCESS: goal T.1.2 (iteration 1) has been proved with the following substitution:

Wolfgang Schreiner https://www.risc.jku.at 60/69

Proof Method MESON '& {’

Goal: p(y,x5) [T.1.1] (proof depth: 0, proof size: 1)

Goal: p(y,x8)
Variables: y:T

To prove the goal, we assume its negation
[1] -p(y.x8)
and show a contradiction. For this, consider knowledge [T.1.1] with the following instance:
vy@2:T. T - p(x50,y@2)
Assumption [1] matches the literal p(x80,y@2) on the right side of this clause by the following substitution:

y - x80
y@2 - x§

Therefore, applying this substitution and dropping the literal, we know:
Tl
Therefore we have a contradiction.

SUCCESS: goal p(y,x8) [T.1.1] has been proved with the following substitution:

y - x80
y@2 - x§

The problem is closed by substituting in the first clause variable y with

constant x§0 and in the second clause variable y with constant x§.
Wolfgang Schreiner https://www.risc.jku.at 61/69

AN
Proof Method MESON with “SMT: Max” .E v

We attempt the proof with the help of the external SMT solver first.

Proof problem: T.1

The problem has been closed by the SMT solver: the solver states by the output
unsat
the unsatisfiability of these clauses that arise from the negation of the theorem to be proved:

[T.1.1] Vy:T. p(x80,y)
[T.1.2] Vy:T. -p(y,x§)

In more detail, the solver states the unsatisfiability of these clause instances:

[T.1.1.1] p(x80,x8§)
[T.1.2.0] -p(x80,x8)

Thus the theorem is valid.

SUCCESS: goal T.1 has been proved.

First we determine the clauses needed to close the proof problem, then we

determine the actual instances of the clauses needed.
Wolfgang Schreiner https://www.risc.jku.at 62/69

Limit: Depth D lterate: iteratively search for a proof up to depth D.
Display: Search: generate a proof tree also for a failed search.

We may also investigate failed proof attempts.
Wolfgang Schreiner https://www.risc.jku.at 63/69

Another Proof Problem .E{

// problem file "folb.txt"
type T;
pred p(x:T);
pred q(x:T,y:T);
theorem Theorem &
(3x:T. p(x)) A (Vx:T. p(x) = Jy:T. qlx,y)) = Gx:T,y:T. qlx,y));

=== SMT solving

SMT solver: Z3 version 4.13.0 - 64 bit

Proving theorem Theorem...

SUCCESS: theorem was proved (9 ms).

=== SMT-LIB solver session

(set-logic ALL)

(set-option :produce-unsat-cores true)

(declare-sort T 0)

(declare-fun p (T) Bool)

(declare-fun g (T T) Bool)

(push 1)

(assert (not (=> (and (exists ((x T)) (p x)) (forall ((x T))
(=> (p x) (exists ((y T)) (q x ¥))))) (exists ((x T)) (exists ((y T)) (q x y)IN))

(check-sat)

(pop 1)

(exit)

SUCCESS termination (15 ms).

Proof succeeds with Method SMT.

Wolfgang Schreiner https://www.risc.jku.at 64/69

Another Proof Problem (Continued)

N,
N7

o s |+
« c e O D locathost
RISCTP (trowse.. tisox

rove] (With Type.Chcking Theorsms

Expand: (] Axioms: & Ints [Jint* € Maps E2Data Equaliy: O Off ® Low O Med O High OMax SMT: @ Off

Proof Status: Success

Prover Qutput

Input Fle
Proof Problem

[Problem simplification:

{1 Theorem (open)

] Subproblem:
1. Theorem

[Clause Forms:

1. Theorem
[1Proofs:

1.1 Theorem (success)
[Theors

em.2 (success)
) Theorem.2 (teration 1) (success)
)9l Theorem,1.2) (success)

1 pix@3) [Theorem.1.1] (success)

1) Theorem (rule {=-R | V-R | A-L] on the goal)
) Theorem (rule (=R | v-R | a-L}on (1))
[Theorem (rule [¥-R | 3] on (1))

)

Method: O SMT @ MESON Timeout (s 60

o = © !- Qu ;
£
N

Multi Threaded: (] Threads: 2

OMin OMed OMax Display: O Problems ® Proofs O Search Lmit: @ Depth OSize 7 = B lterate [ISingle.

TTheorem.1.1) pixs)
2(Theorem.1.2) Vx. (p(x) = (3y:T. qixy))

goal(Theorem.2) 3« Ty q(xy)

Proof succeeds with Method MESON.

Wolfgang Schreiner

https://www.risc.jku.at 65/69

_ o7\
Another Proof Problem (Continued) v

[-] Proofs:

Proof [Theorem]
1. [_] Theorem (SUCCeSS) The following "negated goals" represent the negation of the theorem to be proved
[-] Theorem.2 (success) [Theorem.1.1] T = p(x§)
) ; [Theorem.1.2] ¥x:T. p(x) - q(x,y§(x))
[-] Theorem.2 (iteration 1) (success) [Theorem.2] ¥x:T,y:T. q(x,y) = L

[-] g(x.y) [Theorem.1.2] (success) To prove the theorem, we apply the proof strategy MESON (model elimination, subgoal oriented)
to derive from the negated goals a contradiction. For this,
[-] p(x@3) [Theorem.1.1] (success)

we prove some (not negated) goal from the "knowledge" represented by the other formulas.
Ve start the proof with the last goal; if this does not succeed, we also try the previous ones.

SUCCESS: the proof has been completed.

Goal: Theorem.2

Formula: 3x:T,y:T. q(x,y)

our goal is to prove this formula.

SUCCESS: goal Theorem.2 has been proved with the following substitution

X - X5
y - y5(x8)
X@2 - x§

Goal: Theorem.2 (iteration 1) (proof depth: 0, proof size: 0)

Goal: q(x.y)
Variables: x:T,y:T

To prove the goal, we determine variable values that satisfy each subgoal:

SUCCESS: goal Theorem.2 (iteration 1) has been proved with the following substitution:

Wolfgang Schreiner https://www.risc.jku.at 66/69

Another Proof Problem (Continued)

Goal: q(x,y) [Theorem.1.2] (proof depth: 0, proof size: 1)

Goal: q(x,y)
Variables: x:T,y:T

To prove the goal, we assume its negation
[1] ~q(x,y)
and show a contradiction. For this, consider knowledge [Theorem.1.2] with the following instance:

Vx@3:T. p(x@3) - q(x@3,y8§(x@3))

x - x@3
y - y§(x@3)

Therefore, applying this substitution and dropping the literal, we know:
Vx@3:T. p(x@3) - L

Therefore, to show a contradiction, we determine variable values that satisfy this subgoal:

p(xe3)

SUCCESS: goal q(x,y) [Theorem.1.2] has been proved with the following substitution:

x - x§
Y - y8(x8)
x@3 - x§

Assumption [1] matches the literal q(x@3,y8(x@3)) on the right side of this clause by the following substitution

Wolfgang Schreiner https://www.risc.jku.at

67/69

Another Proof Problem (Continued)

Goal: p(x@3) [Theorem.1.1] (proof depth: 1, proof size: 2)

Goal: p(x@3)

Assumptions:

[1] -q(x@3,y5(xa3))

Variables: x@3:T

To prove the goal, we assume its negation

[2] -p(x@3)

and show a contradiction. For this, consider knowledge [Theorem.1.1] with the following instance:

T o p(x§)

Assumption [2] matches the literal p(x§) on the right side of this clause by the following substitution:

x@3 - x§

Therefore, applying this substitution and dropping the literal, we know:

T s L

Therefore we have a contradiction.

X - x§
y - Y5(x8)
x@3 - x§

Proof succeeds by instantiating in clause 2 variable x with constant x§ and
in clause 3 variables x and y with constants x§ and y§(x§), respectively.

Wolfgang Schreiner

https://www.risc.jku.at

68/69

Y

Anoter Proof Problem (Continued) %

Set option “SMT: Max".

Proof problem: Theorem

The problem has been closed by the SMT solver: the solver states by the output
unsat
the unsatisfiability of these clauses that arise from the negation of the theorem to be proved:
[Theorem.1.1] p(x8§)
[Theorem.1.2] Vx:T. p(x) - q(x,y8(x))
[Theorem.2] ¥x:T,y:T. -q(x,y)
Thus the theorem is valid.

SUCCESS: goal Theorem has been proved.

Here the actual clause instances could not be determined (a simple
strategy is applied that attempts only instantiations with variable-free
terms that appear in the proof problem).

Wolfgang Schreiner https://www.risc.jku.at 69/69

	The Language of Logic
	The RISC Algorithm Language
	The Art of Proving
	The RISC Theorem Proving Interface

