Logic, Checking, and Proving

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
https://www.risc.jku.at

7]
N

Wolfgang Schreiner https://www.risc.jku.at 1/69
7\
The Language of Logic ¢ *
N4

Two kinds of syntactic phrases.
Term T denoting an object.
Variable x
Object constant ¢
Function application f(T1,..., T,) (may be written infix)
n-ary function constant f
Formula F denoting a truth value.
Atomic formula p(Ty,..., T,) (may be written infix)
n-ary predicate constant p.
Negation =F (“not F")
Conjunction F1 A F, (“F1 and F")
Disjunction F; V Fy (“Fy or F,")
Implication F; = F, (“if F1, then ")
Equivalence F; < F, (“if Fy, then F;, and vice versa")
Universal quantification Vx : F (“for all x, F")
Existential quantification 3x : F (“for some x, F")

Wolfgang Schreiner https://www.risc.jku.at 3/69

1. The Language of Logic
2. The RISC Algorithm Language
3. The Art of Proving

4. The RISC Theorem Proving Interface

Wolfgang Schreiner https://www.risc.jku.at

Syntactic Shortcuts

VX1, Xn: F
Vxy:...:Vx,: F
Ixqg, 0o xpt F
dxg o ... 3x, o F
VxeS: F
Vx:x €S = F (not: A)
dxeS:F

Ix:x e SAF (not: =)

Help to make formulas more readable.

Wolfgang Schreiner https://www.risc.jku.at

4/69

Examples

Terms and formulas may appear in various syntactic forms.
Terms:
exp(x)
a-b+1
a[i]- b

x242x+1
(y+1)2

Formulas:
a?+ b =c?
n|2n
VxeN: x>0
Vx € N:2|xV2|(x+1)
VxeN,yeN:ix<y=
JzeN:x+z=y

Terms and formulas may be nested arbitrarily deeply.

Wolfgang Schreiner https://www.risc.jku.at 5/69

Example

We assume the domain of natural numbers and the “classical”
interpretation of constants 1, 2, +, =, <.
1+1=2
True.
1+1=2VvV2+2=2
True.
1+1=2A2+2=2
False.
1+1=2=2=1+1
True.
1+41=1=2+4+2=2
True.
1+41=2=2+4+2=2
False.
1+41=12+4+2=2
True.

Wolfgang Schreiner https://www.risc.jku.at 7/69

The Meaning of Formulas

Atomic formula p(Ty,..., Tp)
True if the predicate denoted by p holds for the values of Ty,..., T,.
Negation =F
True if and only if F is false.
Conjunction F1 A Fp (“F1 and F")
True if and only if F; and F, are both true.
Disjunction F; V Fp (“F1 or F")
True if and only if at least one of F; or F; is true.
Implication F1 = F, (“if F1, then F,")
False if and only if F; is true and F; is false.
Equivalence F; < F, (“if F1, then Fy, and vice versa”)
True if and only if F; and F; are both true or both false.
Universal quantification Vx : F (“for all x, F")
True if and only if F is true for every possible value assignment of x.
Existential quantification 3x : F (“for some x, F")
True if and only if F is true for at least one value assignment of x.

Wolfgang Schreiner https://www.risc.jku.at 6/69
A
Example K *
W
x+1=14+x

True, for every assignment of a number a to variable x.
Vx:x+1=1+x

True (because for every assignment a to x, x +1 =1+ x is true).
x+1=2

If x is assigned “one”, the formula is true.

If x is assigned “two", the formula is false.

dx:ix+1=2

True (because x + 1 = 2 is true for assignment “one” to x).
Vx:x+1=2

False (because x + 1 = 2 is false for assignment “two" to x).
Vx:3dy:x<y

True (because for every assignment a to x, there exists the
assignment a + 1 to y which makes x < y true).

dy:Vx:x<y
False (because for every assignment a to y, there is the assignment

a+ 1 to x which makes x < y false).

Wolfgang Schreiner https://www.risc.jku.at 8/69

i . * Example ¢ *
Formula Equivalences E.{ P &.{
Formulas may be replaced by equivalent formulas. “All swans are white or black.”
——F] e~ F Vx : swan(x) = white(x) V black(x)
~(FiL A Fo) s —F1LV —F There exists a black swan.

Ix : swan(x) A black(x).
“A swan is white, unless it is black.”
—(F1 = F2) e~ FL AR Vx : swan(x) A —black(x) = white(x)
—Vx : F «w dx: =F Vx : swan(x) A —white(x) = black(x)

Vx : swan(x) = white(x) V black(x)

T3x : F e Vx 2 o “Not everything that is white or black is a swan.”
Fi= F e =y = —F —Vx : white(x) V black(x) = swan(x).
Fi= Fy om =F1 V Fy Ix : (white(x) V black(x)) A =swan(x).
Fi < Fp ens —Fy < —F “Black swans have at least one black parent”.
Vx : swan(x) A black(x) = Jy : swan(y) A black(y) A parent(y, x)

—(FLV Fp) e =F1 A—Fp

It is important to recognize the logical structure of an informal sentence

Familiarity with manipulation of formulas is important. in its various equivalent forms.

Wolfgang Schreiner https://www.risc.jku.at 9/69 Wolfgang Schreiner https://www.risc.jku.at 10/69
AN 7\
The Usage of Formulas . * Problem Specifications ¢ *
W N4
Precise formulation of statements describing object relationships. The specification of a computation problem:
Statement: Input: variables x; € S1,...,x, € S,
If x and y are natural numbers and y is not zero, then q is the Input c?ndlt.lon (“precondition”): formula /(x, ..., xn).
truncated quotient of x divided by y. Output: variables e LETRER Ym € Ty
- Ia: Output condition (“postcondition”): O(X1, ..., Xn, Y1s-« - ¥Ym)-
ormuia: F(x1,...,xn): only x1,...,x, are free in formula F.
x€ENAyeNAy #0= x is free in F, if not every occurrence of x is inside the scope of a
geNATreN:x=y-g+rAr<y quantifier (such as V or 3) that binds x.
Problem specification: An implementation of the specification:
Given natural numbers x and y such that y is not zero, compute A function (program) f : S; x ... x S, — Ty X ... x Tp, such that
the truncated quotient g of x divided by y. Vx1 € S1yevoyXn € St (X1, .0y Xn) =
Inputs: x, y let (y1,...,¥m) = f(x1,...,%,) in
Input condition: x e NAy e NAy #0 O(Xl""’x"’yl’.""y'”)' N
Output: g For all arguments that satisfy the input condition, f must compute
Output condition: g e NAIreN:x=y-qg+rAr<y results that satisfy the output condition.

Basis of all specification formalisms.
Wolfgang Schreiner https://www.risc.jku.at 11/69 Wolfgang Schreiner https://www.risc.jku.at 12/69

72"

N2

Example: A Problem Specification

Given an integer array a, a position p in a, and a length /, return the array
b derived from a by removing a[p],...,a[p +/ —1].
Input: a€ Z*, peN, leN
Input condition:
p+ [<length(a)
Output: b € Z*
Output condition:
let n = length(a) in
length(b) =n—1 A
(VieN:i<p= b[i]=alil) A
(VieN:p<i<n—I=bli]=a[i+1])
Mathematical theory:
T =Uien T T'=N; > T,N;:={neN:n<i}
length : T* — N, length(a) =such i e N:ae T’

Wolfgang Schreiner https://www.risc.jku.at 13/69
™\
A4
[]

1. The Language of Logic

2. The RISC Algorithm Language

3. The Art of Proving

4. The RISC Theorem Proving Interface

Wolfgang Schreiner https://www.risc.jku.at 15/69

Validating Problem Specifications

Do formal input condition /(x) and output condition O(x, y) really
capture our informal intentions?
Do concrete inputs/output satisfy/violate these conditions?
/(81), —ll(az), 0(31, bl), —|O(31,b2).
Is input condition satisfiable?
Ix @ I(x).
Is input condition not trivial?
Ix : =l(x).
Is output condition satisfiable for every input?
Vx : I(x) = 3y : O(x,y).
Is output condition for all (at least some) inputs not trivial?
Vx : I(x) = 3y : =0(x,y).
Ix : I(x) Ay : ~0(x,y).
Is for every legal input at most one output legal?
Vx : 1(x) = Yy1,y2 1 O(x,y1) A O(x,y2) = y1 = y».
Validate specification to increase our confidence in its meaning!

Wolfgang Schreiner https://www.risc.jku.at 14/69

7\
The RISC Algorithm Language (RISCAL) N

A system for formally specifying and checking algorithms.

Research Institute for Symbolic Computation (RISC), 2016-.
https://www.risc.jku.at/research /formal /software/RISCAL.

Implemented in Java with the Eclipse SWT library for the GUI.
Tested under Linux only; freely available as open source (GPL3).
A language for the defining mathematical theories and algorithms.
A static type system with only finite types (of parameterized sizes).
Predicates, explicitly (also recursively) and implicitly def.d functions.
Theorems (universally quantified predicates expected to be true).
Procedures (also recursively defined).
Pre- and post-conditions, invariants, termination measures.
A framework for evaluating/executing all definitions.
Model checking: predicates, functions, theorems, procedures,
annotations may be evaluated/executed for all possible inputs.
All paths of a non-deterministic execution may be elaborated.
The execution/evaluation may be visualized.

Validating algorithms by automatically verifying finite approximations.

Wolfgang Schreiner https://www.risc.jku.at 16/69

14\

The RISC Algorithm Language (RISCAL) 'E {'

RISCAL divide.txt &

RISC Algorithm Language (RISCAL)
Filo Edit SMT TP Help
File: /software/RISCAL/speclged.txt Analysis

P

Default Value: 0

©Silent Inputs: Per Mile: Branches: Depth
n: Trace | Tree Width:1500 Height: 800

Multi-Threaded Threads: 4 Distributed Servers:
Openation: B gedp(7,7)

val N: N;
type nat = N[N];

pred divides(minat,ninat) w 3pinat. m-p = n;
RISC Algorithn Language 4.3.0 (July 15, 2024)

fun ged(m:nat,n:nat) : nat https://www. 1isc. ku. at/xesearch/formal/software/RISCAL

1 requiresm® @ vn®o; (C) 2016-, Research Institute for Synbolic Computation (RISC)

This is free software distributed under the terms of the GNU GPL.

divides(result,n) A divides(result,n) A Execute "RISCAL -h" to see the available comnand line options

i -3rinat. divides(r,m) A divides(r,n) A ¥ > result;

Reading file /software/RISCAL/spec/gcd. txt

theoren gedo(m:nat) o mO - ged(m,0) = m; Using N=10
theoren gedl(m:nat,n:nat) ~ n# 0 v n ¢ 0 - ged(m,n) = ged(n,m); Type checking and translation completed
theoren gcd2(minat,n:nat) = 150 AN sm - ged(n,n) = ged(mmn,n);

20proc gedp(n:nat,n:nat): nat
)1 requires ms0 v nso;
22 ensures result = ged(n,n);
23(
24 var a:nat = m;
25 var binat = n;
26 While a > @ A'b >0 do
invariant a @ v b # 0;
tnvariant ged(a,b) = ged(old_a,0ld_b);
decreases aib;
if a>b then

else

}
return if a = @ then b else a;
Wolfgang Schreiner

i : ZAY
Typing Mathematical Symbols .E {0

ASCII String Unicode Character ASCII String Unicode Character

Int Z = #*
Nat N <= <
= = >= >
true T * .
false 1 times X
- - {3 0
/\ A intersect n
\/ Y union u
=> = Intersect N
<=> o Union U
forall \4 isin €
exists 3 subseteq -
sum > << (
product I >>)

Type the ASCII string and press <Ctrl>-# to get the Unicode character.

Wolfgang Schreiner

https://www.risc.jku.at 17/69

https://www.risc.jku.at 19/69

Using RISCAL '& {'

See also the (printed/online) “Tutorial and Reference Manual”.

Press button [2£] (or <Ctrl>-s) to save specification.
Automatically processes (parses and type-checks) specification.
Press button % to re-process specification.

Choose values for undefined constants in specification.

Natural number for val const: N.
Default Value: used if no other value is specified.
Other Values: specific values for individual constants.

Select Operation from menu and then press button &
Executes operation for chosen constant values and all possible inputs.
Option Silent: result of operation is not printed.
Option Nondeterminism: all execution paths are taken.
Option Multi-threaded: multiple threads execute different inputs.
Press buttton @ to abort execution.

During evaluation all annotations (pre/postconditions, etc.) are checked.

Wolfgang Schreiner https://www.risc.jku.at 18/69

.M.E.
W

Example: Quotient and Remainder

Given natural numbers n and m, we want to compute the quotient g and
remainder r of n divided by m.

// the type of natural numbers less than equal N
val N: N;
type Num = N[N];

// the precondition of the computation
pred pre(n:Num, m:Num) < m # 0;

// the postcondition, first formulation
pred postl(n:Num, m:Num, q:Num, r:Num) <
n=mq+rA
Vq0:Num, rO:Num.
n =mq0 + r0 = r < r0;

// the postcondition, second formulation
pred post2(n:Num, m:Num, q:Num, r:Num) <
n=mq+r Ar <m

We will investigate this specification.

Wolfgang Schreiner https://www.risc.jku.at 20/69

. . . D) D) °
Example: Quotient and Remainder v Example: Quotient and Remainder v
° °
// for all inputs that satisfy the precondition Choose e.g. value 5 for N.
// both formulations are equivalent: Swi . .
witch option Silent off:
// Vn:Num, m:Num, q:Num, r:Num.
// pre(n, m) = (posti(n, m, q, r) & post2(n, m, g, r)); Executing postEquiv(Z,Z,Z,7Z) with all 1296 inputs.
theorem postEquiv(n:Num, m:Num, q:Num, r:Num) Ignoring inadmissible inputs...
requires pre(n, m); Run 6 of deterministic function postEquiv(0,1,0,0):
& posti(n, m, g, r) < post2(n, m, g, r); Result (0 ms): true
Run 7 of deterministic function postEquiv(1,1,0,0):
// we will thus use the simpler formulation from now on Result (0 ms): true
pred post(n:Num, m:Num, q:Num, r:Num) < post2(n, m, q, T); cee
Run 1295 of deterministic function postEquiv(5,5,5,5):
: : e Result (0 ms): true
(:heCk eanvaIence for a” Values that satlsfy the precon(htlon' Execution completed for ALL inputs (6314 ms, 1080 checked, 216 inadmissible)
Switch option Silent on:
Executing postEquiv(Z,Z,Z,Z) with all 1296 inputs.
Execution completed for ALL inputs (244 ms, 1080 checked, 216 inadmissible).
If theorem is false for some input, an error message is displayed.
Wolfgang Schreiner https://www.risc.jku.at 21/69 Wolfgang Schreiner https://www.risc.jku.at 22/69
9 o
le: i d ind) * isualizi h I luati ‘M *
Example: Quotient and Remainder g Visualizing the Formula Evaluation W
] °
.. “ " Levell:pos;l(n.m.q.r) = ; x‘
Drop precondition from theorem. Select N = 1 and visualization option “Tree".
- : |
theorem postEquiv(n:Num, m:Num, q:Num, r:Num) <& Level 0: postEquiv(n:Num,m:Num,g:Num,:Num) - @ x | :

// requires pre(n, m);
posti(n, m, g, r) < post2(n, m, q, r);

Executing postEquiv(Z,Z,Z,Z) with all 1296 inputs.
Run O of deterministic function postEquiv(0,0,0,0):
ERROR in execution of postEquiv(0,0,0,0): evaluation of
postEquiv
at line 25 in file divide.txt:
theorem is not true
ERROR encountered in execution.

For n=0,m=0,qg =0, r =0, the modified theorem is not true.

Investigate the (pruned) evaluation tree to determine how the truth value
of a formula was derived (double click to zoom into/out of predicates).

Wolfgang Schreiner https://www.risc.jku.at 23/69 Wolfgang Schreiner https://www.risc.jku.at 24/69

I

Example: Quotient and Remainder 4

Switch option “Nondeterminism” on.

// 1. investigate whether the specified input/output combinations are as desired
fun quotremFun(n:Num, m:Num): Tuple[Num,Num]

requires pre(n, m);
= choose q:Num, r:Num with post(n, m, q, r);

Executing quotremFun(Z,Z) with all 36 inputs.

Ignoring inadmissible inputs...

Branch 0:6 of nondeterministic function quotremFun(0,1):
Result (0 ms): [0,0]

Branch 1:6 of nondeterministic function quotremFun(0,1):
No more results (8 ms).

Branch 0:35 of nondeterministic function quotremFun(5,5):

Result (0 ms): [1,0]

Branch 1:35 of nondeterministic function quotremFun(5,5):

No more results (14 ms).

Execution completed for ALL inputs (413 ms, 30 checked, 6 inadmissible).

First validation by inspecting the values determined by output condition
(nondeterminism may produce for some inputs multiple outputs).

Wolfgang Schreiner https://www.risc.jku.at 25/69
AN
Example: Quotient and Remainder '& {‘
[]

// 3. check whether for all inputs that satisfy the precondition
// there are some outputs that satisfy the postcondition
theorem someOutput(n:Num, m:Num)

requires pre(n, m);
< dq:Num, r:Num. post(n, m, q, r);

// 4. check that not every output satisfies the postcondition
theorem notEveryOutput (n:Num, m:Num)

requires pre(n, m);
< dq:Num, r:Num. —post(n, m, q, r);

Executing someOutput(Z,Z) with all 36 inputs.

Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible).
Executing notEveryOutput(Z,Z) with all 36 inputs.

Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible).

A very rough validation of the output condition.

Wolfgang Schreiner https://www.risc.jku.at 27/69

Example: Quotient and Remainder

// 2. check that some but not all inputs are allowed
theorem someInput() < Jn:Num, m:Num. pre(n, m);
theorem notEveryInput() < dn:Num, m:Num. —pre(n, m);

Executing someInput().

Execution completed (0 ms).
Executing notEveryInput().
Execution completed (0 ms).

A very rough validation of the input condition.

Wolfgang Schreiner https://www.risc.jku.at

Example: Quotient and Remainder

26/69

// 5. check that the output is uniquely defined
// (optional, need not generally be the case)
theorem uniqueOutput (n:Num, m:Num)

requires pre(n, m);
<~

Vq:Num, r:Num. post(n, m, q, r) =

Vq0:Num, rO:Num. post(n, m, 90, r0) =

q=q9q0 AN r =10;

Executing uniqueOutput(Z,Z) with all 36 inputs.

Execution completed for ALL inputs (18 ms, 30 checked, 6 inadmissible).

The output condition indeed determines the outputs uniquely.

Wolfgang Schreiner https://www.risc.jku.at

28/69

30/69

Example: Quotient and Remainder 'E {' Example: Quotient and Remainder ¢ 4
°
// 6. check whether the algorithm satisfies the specification Executing quotRemProc(Z,Z) with all 36 inputs.
proc quotRemProc(n:Num, m:Num): Tuple [Num,Num] Ignoring inadmissible inputs...
requires pre(n, m); Run 6 of deterministic function quotRemProc(0,1):
ensures let g=result.l, r=result.2 in post(n, m, q, r); Result (0 ms): [0,0]
{ Run 7 of deterministic function quotRemProc(1,1):
var q: Num = 0; Result (0 ms): [1,0]
var r: Num = n;
while r > m do Run 31 of deterministic function quotRemProc(1,5):
{ Result (1 ms): [0,1]
r = r-m; Run 32 of deterministic function quotRemProc(2,5):
q = qtl; Result (0 ms): [0,2]
¥ Run 33 of deterministic function quotRemProc(3,5):
return (q,r); Result (0 ms): [0,3]
} Run 34 of deterministic function quotRemProc(4,5):
Result (0 ms): [0,4]
Check whether the algorithm satisfies the specification. Run 35 of deterministic function quotRemProc(5,5):
Result (1 ms): [1,0]
Execution completed for ALL inputs (161 ms, 30 checked, 6 inadmissible).
A verification of the algorithm by checking all possible executions.
Wolfgang Schreiner https://www.risc.jku.at 29/69 Wolfgang Schreiner https://www.risc.jku.at
@,

Example: Quotient and Remainder % Example: Sorting an Array ¢

o
proc quotRemProc(n:Num, m:Num): Tuple[Num,Num]
requires pre(n, m); val N:N; val M:N;
ensures post(n, m, result.l, result.2); type elem = N[M]; type array = Array[N,elem]; type index = Z[-1,N];
{
var q: Num = 0; proc sort(a:array): array
var r: Num = n;
while r > m do // error! {
{ var b:array = a;
r = r-m; for var i:index := 1; i < N; i := i+l do
q = q+1; {
} var x:elem := b[il;
return (q,r); var j:index := i-1;
} while j > 0 A b[j]l > x do
{
Executing quotRemProc(Z,Z) with all 36 inputs. blj+1] = b[jl;
ERROR in execution of quotRemProc(1,1): evaluation of j = j-1;
ensures let q = result.l, r = result.2 in post(n, m, q, r); }
at line 65 in file divide.txt: b[j+1] = x;
postcondition is violated by result [0,1] }
ERROR encountered in execution. return b;
A falsification of an incorrect algorithm. ’
Wolfgang Schreiner https://www.risc.jku.at 31/69 Wolfgang Schreiner https://www.risc.jku.at

32/69

i ./ | Example: Sorti A N
Example: Sorting an Array N xample: Sorting an Array v
()]
. ‘" . 1
proc sort(a:array): array Select operation sort and press the button Show/Hide Tasks".
ensures Vkl : :|.ndex > k2 : 1ndex . RISC Algorithm Language (RISCAL) -
0 < k1 A k1 <k2 A k2 < N = resultl[kl] < result[k2]; ey - e
ensures Jp:Array[N,index]. s . i O R — e
i 211 soxing oxxos by th “insertion sorc” olgoriatm Bcsion: Olone I Pl Brnchss Deph - Very speceaion prconions
(Vk:index. 0 < k A k <N = 0 < plk] A plk] <N) A i Vilanion:Tice " Treo Wi 160 Height 0C ’ indevolelega?
.q .3 sval N:N; Parallelism: & Multi-Threaded Threads: 4 Distributed Servers: Isindex value legal?
(Vk1:index,k2:index. pcgoind ey S it
0 < ki Akl <NAOK<Ek2AK2<NAKkl#k2= plki] # plk2]) A e gl MMt reoren _sort_o_Postuniaue(asarey) - Vesultissray wiih (W ndes, lindecale sa?
(Vk:index. 0 < k A k < N = a[k] = result[plk]]); 7P e = LM 1 o dncluden <2 wod 4 FeALEIKEIIN A (i Ausayh dnden. (ke indes. (((6 £ 10 (K < 1)) iindocl lgal?
- : (@ < prkl) A (plk] < N)))) A (Vkl:index, k2:inde (OO0 < K1) A (K1 < i lue ?
et i 21 ") 4 G P
05 kiAKL<k2AKz<N o result(kl) s result(k2]; (Vi:index. (((0 s k) A (k < N)) + (a(k] = xesult(p(kl)))))) - Validate specificat
Usine N=4. | e sy e ety vt £ S o, e, 0 [Ve ttr
& L (3p:Array I, index . (Vi index. (((6 5 K) A Gk < M) = ({0 < pIKI) A Evecutespecifcation
i = SKLAKL<NADS A <N A . . . A (PIk] < N)))) A (VK1:index, k2:index. ((((((® s k1) A (k1 < N)) A (@ 5 C dition aly fiable?
Using M=3. ok, &L At TP TR st 3 e s | st
Computing the value of _tbound_O... 2 var biozay = 03 Executing Sort_o_postUnique(Aezey(Z1) with all 256 inpus. 1spostcendiion semetimes ot ris?
. X for var Liindex = 15 1< N; L= 101 do PAALEL ot with 4 e (otpt disbled , bl euriond!
Type checking and translation completed. var xieten = bs1; 1o Tnpts (11 hecked: © idnissibie, 1gnored: 25 ope " Vrlycomecness of et
. . . oL ks (170 hecked inaeetsible, o dynoed
Executing sort(Array[Z]) with all 256 inputs. 2 e il e 35 Arpmts (243 chmciod, © mamissibie; ® dgmred; 25 opemy Verlyerationand ecursion
& for A (278 56 red. © dn , 2 o Becurion compieces for WL Inpts (559 s, 256 chcren, ¢ indnissiole)
Execution complete or ALL inputs ms, 256 checked, inadmissible). 2 bE3e1) = i3
2 IESRE
:
blje) = x;
Also this algorithm can be automatically checked. D
Automatically generated formulas to validate procedure specifications.
Wolfgang Schreiner https://www.risc.jku.at 33/69 Wolfgang Schreiner https://www.risc.jku.at 34/69

| 7 | | /N
Example: Sorting an Array 4 Model Checking versus Proving '& {'

[
Right-click to print definition of a formula, double-click to check it. Two fundamental techniques for the verification of computer programs.
For every input, is postcondition true for only one output? . .
theorem _sort_O_PostUnique(a:array) < CheCk|ng Program Executions
V. : i Vki:i , k2:i
r?fé‘%é b wAlt}fki flkglffei (lfz l:’?f)’; — (result[ki] < result[k2]))) A Enumeration of all possible executions and evaluation of formulas

(3p:Array[N,index] .
(((Vk:index. (((0 < k) A (k <N)) = ((0 < plk]) A (plk] < NI A

(e.g. postconditions) on the resulting states.

<v§<1[:in]de;, k2:indox. (CCCCO < ED A 1<) A (0 < kD) A (62 <WM) A (1 # k2) = Fully automatic, no human interaction is required.
plki plk2 A
(Vk:iindex. (((0 < K) A (k < W) = (alk] = result[p[k]1))))). Only possible if there are only finitely many executions (and finitely
(V_result:array with let result = _result in ((Vk1l:index, k2:index. . . .
(O < kD) A (k1 <k2)) A (k2 < W) = (result[ki] < result[k2]))) A many values for the quar?tlfled variables in the formulas).
(Ip:hrray (N, index] . State space explosion: “finitely many” means “not too many".
(((Vk:index. (((0 < K) A (k < M) = ((0 < plk]) A (pIK] < M) A
(Vk1:index, k2:index. ((((((0 < k1) A (k1 < N)) A (0 < k2)) A (k2 < N)) A (k1 # k2)) = Proving Verification Conditions

(plk1] # pl[k21)))) A
(Vk: mdex. (<o i;? A G <) = (alk] = result(plk]1)))))). Logic formulas that are valid if and only if program is correct with
resu. = _resu. H . e .
respect to its specification.
E. ti - t_0_PostUni (A [Z]) with all 256 i ts.
PARALLEL sxocution with 4 threads (owtput disabled). Also possible if there are infinitely many excutions and infinitely many

85 inputs (56 checked, O inadmissible, O ignored, 29 open)... H :
144 inputs (116 checked, O inadmissible, O ignored, 28 open)... values for the qUantlfled Val’lables.

202 inputs (176 checked, O inadmissible, 0 ignored, 26 open)... Many conditions can be automatically proved (automated reasoners);
256 inputs (233 checked, O inadmissible, O ignored, 23 open)...

Execution completed for ALL inputs (8801 ms, 256 checked, O inadmissible). n general Interaction Wlth human IS reqmred (proof aSS|stants).

The output is indeed uniquely defined by the output condition. General verification requires the proving of logic formulas.

Wolfgang Schreiner https://www.risc.jku.at 35/69 Wolfgang Schreiner https://www.risc.jku.at 36/69

[) (]
e

1. The Language of Logic

2. The RISC Algorithm Language

3. The Art of Proving

4. The RISC Theorem Proving Interface

Wolfgang Schreiner https://www.risc.jku.at 37/69

AN

Proof Rules : *
N

A proof rules describes how a proof situation can be reduced to zero, one,
or more “subsituations”.
N R
Ki,.. . K,FG

Rule may or may not close the (sub)proof:

Zero subsituations: G has been proved, (sub)proof is closed.
One or more subsituations: G is proved, if all subgoals are proved.

Top-down rules: focus on G.
G is decomposed into simpler goals Gy, Gy, ...
Bottom-up rules: focus on K1, ..., K,.
. Kny Knyt.
In each proof situation, we aim at showing that the goal is “apparently”
true with respect to the given knowledge.

Knowledge is extended to Ki, ..

Wolfgang Schreiner https://www.risc.jku.at 39/69

Proofs

A proof is a structured argument that a formula is true.
A tree whose nodes represent proof situations (states).

N / N 7
N /

Each proof situation consists of knowledge and a goal.
o Ki,....K,F G
Knowledge Ki, ..., K,: formulas assumed to be true.
Goal G: formula to be proved relative to knowledge.
The root of the tree is the initial proof situation.

Ki,...,K,: axioms of mathematical background theories.

G: formula to be proved.

Wolfgang Schreiner https://www.risc.jku.at

Conjunction F A F

38/69

KFE G KFE G L KIANK KL Ko E G
KE G A G L LKiINKoEG
Goal G1 A Gp.

Create two subsituations with goals G; and G;.
We have to show G N\ Go.
We show Gi: ... (proof continues with goal Gi)
We show Gz: ... (proof continues with goal Gz)
Knowledge K1 A Ko.
Create one subsituation with K; and K; in knowledge.
We know K1 A K>. We thus also know Ki and K>.

(proof continues with current goal and additional
knowledge Ky and K3)

Wolfgang Schreiner https://www.risc.jku.at

40/69

Disjunction F, V F, K *
N
K,—G + G L KiEG LK EG
KE GV G .., KiVKaE G
Goal G1 V G,.

Create one subsituation where G, is proved under the assumption

that Gy does not hold (or vice versa):
We have to show Gy V Gy. We assume =Gy and show G,.
(proof continues with goal G, and additional knowledge
-Gy)

Knowledge Ki V K>.

Create two subsituations, one with K; and one with K5 in knowledge.

We know Ky V K. We thus proceed by case distinction:

Case Ki: ... (proof continues with current goal and additional
knowledge Ku).
Case Kz: ... (proof continues with current goal and additional

knowledge K>).

Wolfgang Schreiner https://www.risc.jku.at 41/69
AN
Equivalence F; & F, K *
.
KFG1:>G2 Kl—G2:>G1 |—(—|)K1 ...,(“)Kzl—G
KF G & G ...,K1<:>K2}_G
Goal Gl = G2

Create two subsituations with implications in both directions as goals:
We have to show G; & Gs.
We show Gy = Gz: ... (proof continues with goal Gy = G)
We show Gz = Gi: ... (proof continues with goal G2 = Gi)
Knowledge K1 & K>
Create two subsituations, one with goal (—)K; and one with
knowledge (—)K> .
We know K1 <& Ko.

We show (—)Ki: ... (proof continues with goal (—)K1)
We know (—)Ka: ... (proof continues with current goal and
additional knowledge (—)Kz)

Wolfgang Schreiner https://www.risc.jku.at 43/69

Implication F; = F,

K,GiF G L FKL Ko G
K|—61:>G2 ...,K1:>K2|—G
Goal G = Gy

Create one subsituation where G, is proved under the assumption
that G; holds:
We have to show Gy = G,. We assume Gy and show Go.
(proof continues with goal G, and additional knowledge G)
Knowledge K1 = K>
Create two subsituations, one with goal K; and one with
knowledge K.
We know K; = K.

We show Ki: ... (proof continues with goal K1)
We know K>: ... (proof continues with current goal and
additional knowledge K>).

Wolfgang Schreiner https://www.risc.jku.at 42/69

Universal Quantification Vx : F

K+ Glxo/x] L YxKOK[T /X[E G
KFvx. G (X0 newfor K, G) VX KFG
Goal Vx : G

Introduce new (arbitrarily named) constant xo and create one
subsituation with goal G[xg/x].

We have to show Vx : G. Take arbitrary xg.
We show G[xo/x]. (proof continues with goal G[xo/x])
Knowledge Vx : K
Choose term T to create one subsituation with formula K[T /x]
added to the knowledge.

We know Vx : K and thus also K[T /x].
(proof continues with current goal and additional
knowledge K[T /x])

Wolfgang Schreiner https://www.risc.jku.at 44/69

Existential Quantification dx : F . ° Example . °
N4 Nul"4
We show
Kt G[T/x] ..., Klx/x]F G
KF3x: G LAxKEG (0 new for K, G) (@) Bx :Vy: P(x,y)) = (Vy : 3x : P(x,y))
Goal dx: G We assume
Choose term T to create one subsituation with goal G[T/x]. (1) 3x: ¥y P(x,y)
We have to show 3x : G. It suffices to show G[T /x]. and show
(proof continues with goal G[T /x]) (b) Yy : 3x : P(x, y)
Knowledge Jx : K Take arbitrary yo. We show
Introduce new (arbitrarily named constant) xo and create one (c) 3x : P(x, y0)
subsituation with additional knowledge K[xo/x]. TR
We know 3x : K. Let xo be such that K[xo/x]. From (1) we know for some xo
(proof continues with current goal and additional (2) Yy : P(x0,y)
knowledge K[xo/x]) From (2) we know
(3) P(x0, yo0)
From (3), we know (c). QED.
Wolfgang Schreiner https://www.risc.jku.at 45/69 Wolfgang Schreiner https://www.risc.jku.at 46/69

Example " Example (Contd)

We show
(@) (3x: p(x)) A (Vx @ p(x) = Ty 1 q(x,¥)) = (3x, ¥ : a(x,¥))
We assume
(1) Bx: p(x)) A (Vx : p(x) = Ty : q(x,y))
and show
(b) 3x,y : q(x,y)
From (1), we know

(2) 3x : p(x)
(3) Vx: p(x) = 3y : q(x,)

From (2) we know for some xo

(4) p(x)

Wolfgang Schreiner https://www.risc.jku.at

i:-rém (3), we know
(5) p(x0) = Jy : q(x0,)
From (4) and (5), we know
(6) 3y : q(x0,y)
From (6), we know for some yo

(7) a(x0, o)
From (7), we know (b). QED.

47/69 Wolfgang Schreiner https://www.risc.jku.at

48/69

1. The Language of Logic

2. The RISC Algorithm Language

3. The Art of Proving

4. The RISC Theorem Proving Interface

Wolfgang Schreiner https://www.risc.jku.at

RISCTP as a Standalone Prover '& 4

49/69

> RISCTP -solver z3 -path /software/RISCTP/etc/z3 -web 9999 1
RISC Theorem Proving Interface 1.8.0 (July 15, 2024)
https://www.risc.jku.at/research/formal/software/RISCTP

(C) 2022-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL.
Execute "RISCTP -h" to see the available command line optioms.

RISCTP GUI can be browsed at http://localhost:9999/
Press <Enter> to terminate the server.

-solver z3: use SMT solver Z3 (default).
-path /software/...: path to executable of SMT solver.
-web 9999 1: show (full) GUI at http://localhost:9999/

The RISCTP GUI can be accessed by any web browser.

Wolfgang Schreiner https://www.risc.jku.at

51/69

The RISC Theorem Proving Interface .E {'

RISCTP: an interface to various theorem proving methods.

Research Institute for Symbolic Computation (RISC), 2022-.
https://www.risc.jku.at/research /formal /software /RISCTP

Proof Method SMT:

Translation to a proof problem in the SMT-LIB language.
Application of external provers/SMT solvers Z3, cvcb, Vampire.
Fast and effective for problems of moderate complexity.

Black box: no human-readable/understandable proofs.

Proof Method MESON:

First proof decomposition/simplification by logical/arithmetical rules.
Then application of “Model Elimination, Subgoal-Oriented”.
(Optional) support by external SMT solvers for larger efficiency.
Transparent: human-readable/understandable proofs.

Developed to provide RISCAL with theorem proving capabilities.

Wolfgang Schreiner https://www.risc.jku.at 50/69

The RISCTP GUI .E {'

[]
@ s x|+ ~ o x
& c @ O D localhost:2999 i © € 9 =
RISCTP [siowse..| Nofieselected M‘%
Prove| | With Type-Checking Theorems v Method: O SMT @ MESON Timeout (s): (60 © | MultThreaded: () Threads: 2_© .\ﬂ .
Expand: (] Adoms: @Ints (1 Int* & Maps & Data _Equalty: O Off ® Law OMed O High OMax SMT: @ Off O Min OMed OMax Display: O Problems ® Proofs OSearch Limit: @ Depth OSize |7 | B3 lteate (5ingle Goal W
Proof Status: None RISCTP

Prover Qutput

RISC Theorem Proving Interface
Input File https://ww. risc. jku.at/research/foxmal/software /RISCTP
fnpuLEle (€) 2022-, Research Institute for Symbolic Computation (RISC)
Proof Problem This is free software distributed under the terms of the GNU GPL
Execute "RISCTP -h" to see the available conmand line options

]
[Subproblems: Load a file with a RISCTP proof problem and press "Prove” to start the prover.

1 Clause Forms: Click in the left pane to inspect the proof status (even while the prover is still running).
] Proofs:

[-] Proof Search:

Wolfgang Schreiner https://www.risc.jku.at 52/69

Proof Method SMT

// problem file "fol2a.txt"
type T;
pred p(x:T,y:T);

theorem T < (Ix:T.Vy:T.p(x,y)) = (Vx:T.3Jy:T.p(y,x));

Button “Browse” fol2a.txt.

Option “Method: SMT", button “Prove” ~~ “Proof Status: Success”.

Link “Prover Output”.

=== SMT solving

SMT solver: Z3 version 4.13.0 - 64 bit
Proving theorem T...

SUCCESS: theorem was proved (11 ms).
=== SMT-LIB solver session

(set-logic ALL)

(set-option :produce-unsat-cores true)
(declare-sort T 0)

(declare-fun p (T T) Bool)

(push 1)

(assert (nmot (=> (exists ((x T)) (forall ((y T)) (p x y))) (forall ((x T)) (exists ((y T)) (p y x)))))

(check-sat)
(pop 1)
(exit)

SUCCESS termination (26 ms).

SUCCESS: theorem was proved (however, claim is not substantiated).

Wolfgang Schreiner

Proof Method MESON

https://www.risc.jku.at

53/69

.M.EO

W

¢ rscr x4

« CcC e O O locathost o ® ¢ H =

RISCTP owe.. s S

Prove | With Type-Checking Theorems v Method: O SMT @ MESON Timeout (st 60 Multi-Threaded: () Threads: 2 .Nl {'

Expand: () Axioms: & Int+ () Int* € Maps @ Data Equality: O Off @ Low O Med O High O Max SMT: ® Off O Min O Med OMax Display: O Problems @ Proofs O Search Limit: @ Depth O Size 2 Ekerate [Single Goal —g'
A1) VYT, plxsOy)

Proof Status: Failure

oAl {7121 9. ply
Prover Qutput oK1 3T ph)

Input File
Proof Problem
(] Problem simplification:

[T (rule [o-R | enL] on the goal)
E1T (rule [A-R | V-L | =L on the goal gives 2 subproblems)
[IT.1 (rule (=R | V-R | A-L] on the goal)
[IT.1 (rule [¥-R | 3] on the goal)
1T (rule (¥R | 3] on [1])
(1T.1 (open)
(112 (e (=R | V-R | A-L]on the goal)
(172 (open)

] Subproblems:
11
212
] Clause Forms:
111
212
(1Proofs:
1. [T (success)
(1T.0.2 (success)
(9 T2 teration 1) (success)
(1 pYAS)L.1) (success)
20112

] Proof Search:

Problem simplification yields two subproblems

Wolfgang Schreiner

https://www.risc.jku.at

of which one can be proved.
55/69

Proof Method SMT

// problem file "fol2.txt"

type T;

pred p(x:T,y:T);

// actually, implication only holds from left to right
theorem T & (Ix:T.Vy:T.p(x,y)) < (Vx:T.3y:T.p(y,x));

Button “Browse” fol2.txt ~ “Proof Status: Failure”.

=== SMT solving

SMT solver: Z3 version 4.13.0 - 64 bit
Proving theorem T...

FAILURE: theorem was not proved (13 ms).
theorem T < (3x:T. (Vy:T. p(x,y))) < (Vx:T. (Fy:T. p(y,x)));
sat

=== SMT-LIB solver session

(set-logic ALL)

(set-option :produce-unsat-cores true)
(declare-sort T 0)

(declare-fun p (T T) Bool)

(push 1)

(assert (not (= (exists ((x T)) (forall ((y T)) (p x y))) (forall ((x T)) (exists ((y T)) (p y x))))))

(check-sat)
(pop 1)
(exit)

FAILURE termination (31 ms).

FAILURE: theorem was not proved (however, no indication why this is so).

Wolfgang Schreiner https://www.risc.jku.at

Problem Simplification

54/69

.M.E.
W

[-] Problem Simplification:

goal:[T] (Ax:T. (Vy:T. p(x,y))) ¢ (Vx:T. (y:T. p(y,x))
[-1T (rule [»-R | «-L] on the goal)

[-1T (rule [A-R | v-L | =-L] on the goal gives 2 subproblems)
[[1T.1 (rule [=-R | v-R | A-L] on the goal)

goal:[T] ((3x:T. (Yy:T. p(x.y)) = (¥x:T. (3y:T. ply,x))) A (Vx:T. (3y:T. p(y,x) = (3x:T. (Vy:T. p(x.y)

[-] T.1 (rule [V-R | 3-L] on the goal)

[-]1T.1 (rule [V-R | 3-L1on [1]) goal:[T.1] (Ix:T. (Vy:T. p(x,y) = (Vx:T. (3y:T. p(y.x)))

[11.1 (open)

[1T.2 (rule [=-R | v-R | A-L] on the goal) TT1.1] 3T (Vy:T. pix,y)

[1T.2 (open) goal:[T.1.2] Vx:T. (3y:T. ply,x)

1[T.1.1] 3T (Vy:T. plxy)

goal:[T.1.2] Jy:T. p(y,x8)

1:[T.1.1] Vy:T. p(x80,y)

goali[T.1.2) 3y:T. p(y.x§)

goal:[T.2] (Vx:T. (3y:T. p(y,x))) = (IX:T. (Vy:T. p(x,y)))

1:[T.2.1] VX:T. (Jy:T. ply.x))

goal:[T.2.2] 3x:T. (Vy:T. p(x,y))

A step-by-step decomposition of the problem into simpler subproblems;

each consists of “knowledge” formulas and a “goal” formula.

Wolfgang Schreiner https://www.risc.jku.at

56,69

.M.&.

Clause Transformation 4
[]

Each formula in a proof (sub)problem is transformed into a set of clauses.
Clause Vx,.... (A1 A...ANA) = (B1 V...V Bp).
Closed formula with universally quantified variables x,
The quantifier prefix Vx, . .. is usually dropped.
Existential variables are replaced by Skolem constants/functions.
Positive literals (atomic formulas) A; and B;.
Clause be written as disjunction (=A; V...V =2A,V By V...V By).
Negative literals —A;, positive literals B;.
Clause is true if some A; is false or some B; is true.
For some values of the quantified variables.
Proof problem Ki,..., K, F G:
Have to prove validity (“truth”) of (K1 A... A K, = G).

Suffices to prove unsatisfiability (“falseness”) of (K1 A ... A Ky A 2G).
Suffices to transform each K; and =G into clauses {Cy, ..., C.} and
to prove the unsatisfiability of their conjunction (C; A ... A C).
Suffices to prove the validity of (Gt A ... A Cc—1) = —Ce.
Wolfgang Schreiner https://www.risc.jku.at 57/69

Proof Method MESON '& {‘

MESON: Model Elimination, Subgoal-Oriented (Loveland, 1968).
A (Prolog-like) “backchaining strategy” for proving.
Current goal: literal G (initially from the goal clause).
Current variable substitution o.
Pick clause (L1 V...V L; V...V Lp).
Goal Go can be unified with L;o by new substitution ¢”’.
Equivalent to (—mLy A ... A=Li_1 A=Liga Ao AL, = L),
New goals: (=Ly,...,=Lj—1,—Lit1,...,—L)).
New variable substitution oo’.
Goal G is replaced by negations of clause literals other than L;.
Assumptions: literals Aq,..., A,.
G may be also proved from the current set of assumptions.
If not, we add =G to the assumptions for the proof of the new goal.
During the proof search, the method must attempt every literal in every
clause that can be unified with the goal literal; furthermore, the proof
search must start from every clause arising from the theorem.
Wolfgang Schreiner

https://www.risc.jku.at 59/69

Clause Transformation s

[-] Subproblems: [-] Clause Forms:

1. T1 1.
2. 1.2 2.

1:[T.1.1] Vy:T. p(x80,y)

|—|

1

N

—

- 1[T.1.1]1Vy:T. T = p(x80,y)
goal:[T.1.2] 3y:T. p(y,x§) 2:[T.1.2] Vy:T. p(y,x8) = L

T[T.2.1] VX:T. (3y:T. p(y,x))

1[T.2.1] VXT. T = p(y§(x),x)
goali[T.2.2] Ix:T. (Vy:T. p(xy)) 2:[T.2.2] Vx:T. p(x,y§80(x)) = L

Subproblems:
Above line: knowledge formulas.
Below line: goal.
Clause Forms:
Above line: clauses from theory axioms (here none).
Below line: clauses from theorem (knowledge and negation of goal).
It suffices to prove the negation of the last clause from the other clauses.
https://www.risc.jku.at 58/69

ZAY
Proof Method MESON .ﬁ {'

Wolfgang Schreiner

[-] Proofs: Proof [T.1]

1. [-] T.1 (success) The following "negated goals" represent the negation of the theorem to be proved:

[-1T.1.2 (success) [T.1.1] Vy:T. T - p(x5§0,y)

[-] T.1.2 (iteration 1) (success) [T.1.2] ¥y:T. ply.,x§) - L
[-] py.x8) [T.1.1] (success) To prove the theorem, we apply the proof strategy MESON (model elimination, subgoal oriented)

2.[+]11.2 ure to derive from the negated goals a contradiction. For this,
- we prove some (not negated) goal from the "knowledge" represented by the other formulas.
We start the proof with the last goal; if this does not succeed, we also try the previous ones.

SUCCESS: the proof has been completed.

Goal: T.1.2

Formula: 3y:T. p(y,x§)

Our goal is to prove this formula.

SUCCESS: goal T.1.2 has been proved with the following substitution:

y - x50
y@1 - x§

Goal: T.1.2 (iteration 1) (proof depth: 0, proof size: 0)

Goal: p(y,x§)
Variables: y:T

To prove the goal, we determine variable values that satisfy each subgoal:

SUCCESS: goal T.1.2 (iteration 1) has been proved with the following substitution:

Wolfgang Schreiner https://www.risc.jku.at 60/69

7 W
Proof Method MESON '& {'

Goal: p(y.x8) [T.1.1] (proof depth: 0, proof size: 1)

Goal: p(y,x8)
Variables: y:T

To prove the goal, we assume its negation
[1] -p(y,x8)
and show a contradiction. For this, consider knowledge [T.1.1] with the following instance:
Vy@2:T. T - p(x80,y@2)
Assumption [1] matches the literal p(x80,y@2) on the right side of this clause by the following substitution:

y - x50
y@2 . x§

Therefore, applying this substitution and dropping the literal, we know:
Tl
Therefore we have a contradiction.

SUCCESS: goal p(y,x§) [T.1.1] has been proved with the following substitution:

y - x80
y@2 - x§

The problem is closed by substituting in the first clause variable y with

constant x§0 and in the second clause variable y with constant x§.

Wolfgang Schreiner https://www.risc.jku.at 61/69

Proof Method MESON: Failed Proofs .E {'

proof 121

The following “negated goals" represent the negation of the theoren to be proved:

2

2
=phyi

Limit: Depth D lterate: iteratively search for a proof up to depth D.
Display: Search: generate a proof tree also for a failed search.

We may also investigate failed proof attempts.

Wolfgang Schreiner https://www.risc.jku.at 63/69

A
Proof Method MESON with “SMT: Max” .E {'

We attempt the proof with the help of the external SMT solver first.

Proof problem: T.1

The problem has been closed by the SMT solver: the solver states by the output
unsat
the unsatisfiability of these clauses that arise from the negation of the theorem to be proved:

[T.1.1] Vy:T. p(x80,y)
[T.1.2] Vy:T. -p(y,x8)

In more detail, the solver states the unsatisfiability of these clause instances:

[T.1.1.1] p(x8@,x8)
[T.1.2.0] -~p(x80,x§)

Thus the theorem is valid.

SUCCESS: goal T.1 has been proved.

First we determine the clauses needed to close the proof problem, then we
determine the actual instances of the clauses needed.

Wolfgang Schreiner https://www.risc.jku.at 62/69
7\
Another Proof Problem ¢ *
N4

// problem file "folb.txt"
type T;
pred p(x:T);
pred q(x:T,y:T);
theorem Theorem <
(Ix:T. p(x)) A (Vx:T. p(x) = Fy:T. qx,y)) = (Fx:T,y:T. qlx,y));

=== SMT solving

SMT solver: Z3 version 4.13.0 - 64 bit

Proving theorem Theorem...

SUCCESS: theorem was proved (9 ms).

=== SMT-LIB solver session

(set-logic ALL)

(set-option :produce-unsat-cores true)

(declare-sort T 0)

(declare-fun p (T) Bool)

(declare-fun q (T T) Bool)

(push 1)

(assert (not (=> (and (exists ((x T)) (p x)) (forall ((x T))
(=> (p x) (exists ((y T)) (q x y))))) (exists ((x T)) (exists ((y T)) (q x y))))))

(check-sat)

(pop 1)

(exit)

SUCCESS termination (15 ms).

Proof succeeds with Method SMT.

Wolfgang Schreiner https://www.risc.jku.at 64/69

4
Another Proof Problem (Continued) M Another Proof Problem (Continued) 4

[-] Proofs:

o [m=cm I L e Proof (Theorem]
ce O O tocathos @ © ¢ =
2 focalnost © 1. [-] Theorem (success) The following "negated goals" represent the negation of the theorem to be proved:
Srowse. st . S
RISCTP Z \9 [-] Theorem.2 (success) [Theoren.1.1] T = p(x§)
Prove| | With Type-Checking Theorems v Method: O SMT @ MESON Timeout (s 60 MultThreaded: () Threads: 2 .\ﬂ {' I 3 ! [Theorem.1.2] Vx: (x) = q(x,y8(x))
Expanc: (1 Aoms: @Ints C)ines EMas G Data Equalky: O Off © Low O Med O High OMax SWT: @ Off OMin O Med OMax Display: O Problems © Proofs OSearch Uit © Depth OSize (7 & Bterate [1Single Goal> g [-] Theorem.2 (iteration 1) (success) (Theorem.2] Vx:T,y:T. q(x,y) - L
Theorem1.11pos)
Proof Status: Success e o e (0 Gy ey [-] a(x.y).[Theorem.1.2] (success) To prove the theorem, we apply the proof strategy MESON (model elimination, subgoal oriented)
to derive from the negated goals a contradiction. For this,
Prover Qutput
rover Ouipy goak{Theorem.2) 3Ty atxy) [-]1 p(x@3) [Theorem.1.1] (SUCCESS) | we prove some (not negated) goal from the "knowledge" represented by the other formulas.
. We start the proof with the last goal; if this does not succeed, we also try the previous ones.
Proof Problem

(1 Problem Simplification:

[Theorem (ule (=R | v-R | A-L)on the goal)
) Theorem (rule (=R | V-R | A-L]on{1])
) Theorem (rule v-R | 34} on 1))
() Theorem (open)

Goal: Theorem.2

Formula: 3x:T,y:T. q(x,y)
] Subproblems:

1. Theorem Our goal is to prove this formula.

) Clause Forms: SUCCESS: goal Theorem.2 has been proved with the following substitution

1. Tneorem
. Y e

1.1 Theorem (success) ror . xe

) Theorem.2 (success)
) Theorem.2 eration 1) (success)
) qlxy) [Theorem.1.2) (success) . - -
] pix@3) Theorem.1.1) success) Goal: Theorem.2 (iteration 1) (proof depth: 0, proof size: 0)
() Proof Search:
Goal: q(x,y)

Variables: x:T,y:T

To prove the goal, we determine variable values that satisfy each subgoal:

SUCCESS: goal Theorem.2 (iteration 1) has been proved with the following substitution

Proof succeeds with Method MESON.

Wolfgang Schreiner https://www.risc.jku.at 65/69 Wolfgang Schreiner https://www.risc.jku.at 66/69

M () [J . () (]
Another Proof Problem (Continued) \ Another Proof Problem (Continued) N\
(] L]

Goal: q(x,y) [Theorem.1.2] (proof depth: 0, proof size: 1) Goal: p(x@3) [Theorem.1.1] (proof depth: 1, proof size: 2)

Goal: q(x,y) Goal: p(x@3)

Variables: x:T,y:T Assumptions :

To prove the goal, we assume its negation [1] -~q(x@3,y5§(x@3))

Variables: x@3:T
[1] -q(x,y)

To prove the goal, we assume its negation
and show a contradiction. For this, consider knowledge [Theorem.1.2] with the following instance:
[2] -p(xe3)
Vx@3:T. p(x@3) - q(x@3,y§(x@3))

and show a contradiction. For this, consider knowledge [Theorem.1.1] with the following instance:

Assumption [1] matches the literal q(x@3,y§(x@3)) on the right side of this clause by the following substitution: T - p(x§)
X - x@3 Assumption [2] matches the literal p(x§) on the right side of this clause by the following substitution:
y - y8(x@3) X@3 - x§

Therefore, applying this substitution and dropping the literal, we know: Therefore, applying this substitution and dropping the literal, we know:
vx@3:T. p(x@3) - L Tt

Therefore we have a contradiction.
Therefore, to show a contradiction, we determine variable values that satisfy this subgoal:

SUCCESS: goal p(x@3) [Theorem.1.1] has been proved with the following substitutiol

p(x@3)

X . X§

"" y . yS(x8)

SUCCESS: goal q(x,y) [Theorem.1.2] has been proved with the following substitution: X@3 . x§
X - x§

Y - y80x8) Proof succeeds by instantiating in clause 2 variable x with constant x§ and

x@3 - x§))))
in clause 3 variables x and y with constants x§ and y§(x§), respectively.
Wolfgang Schreiner https://www.risc.jku.at 67/69 Wolfgang Schreiner https://www.risc.jku.at 68/69

Anoter Proof Problem (Continued) 'E {'

Set option “SMT: Max".

Proof problem: Theorem

The problem has been closed by the SMT solver: the solver states by the output
unsat
the unsatisfiability of these clauses that arise from the negation of the theorem to be proved:
[Theorem.1.1] p(x8)
[Theorem.1.2] ¥x:T. p(x) - q(x,y§(x))
[Theorem.2] Vx:T,y:T. -q(x,y)
Thus the theorem is valid.

SUCCESS: goal Theorem has been proved.

Here the actual clause instances could not be determined (a simple
strategy is applied that attempts only instantiations with variable-free
terms that appear in the proof problem).

Wolfgang Schreiner https://www.risc.jku.at 69/69

