

Name:
Matrikel-Nr.:

Computational Logic, WS 2025/2026,
Exercise sheet 10,
due date: **25 January 2026, 23:59 via Moodle**

Problem 43 (20 Points)

Let R be the term rewriting system: $R := \{a \rightarrow b, a \rightarrow c, b \rightarrow a, b \rightarrow d\}$

- a) Why is R locally confluent, but not confluent? Justify your answer.
- b) Add one rewrite rule that would make R confluent.
- c) Remove one rewrite rule from the initial R such that it becomes confluent.
- d) Is R terminating? Justify your answer.

Problem 44 (20 Points)

Let R be the term rewriting system: $R := \{f(f(x)) \rightarrow g(x), g(g(x)) \rightarrow f(x)\}$.

- a) Is R terminating? Justify your answer.
- b) Is R confluent? If not, use the Knuth-Bendix Completion Algorithm to make it confluent.

Hint: Please note that the completion shall not destroy termination.

Problem 45 (20 Points)

Consider the Bubblesort algorithm which takes a list containing n integers and returns as an output a sorted list. As a postcondition consider the following:

$$\forall i < n (x_i \leq x_{i+1})$$

For the case $n = 3$, provide the SMT-LIB encoding which proves that the final state satisfies the postcondition (give the output of running Z3 with this encoding).

Problem 46 (20 Points)

Using Fourier-Motzkin Elimination prove that the given system of inequalities has (respectively does not have) solutions (explicitly give some solution, if there is any):

- a) $x + y - 2z \geq 2, -x - 3y + z \geq 0, y + z \geq 1$
- b) $x + y + 2z \geq 1, -x + y + z \geq 2, x - y + z \geq 1, -y - 3z \geq 0$

Problem 47 (20 Points)

Using congruence closure prove that the formula $F : \Leftrightarrow f(f(a)) = f(a) \wedge a + f(a) \neq f(f(a)) + a$ is unsatisfiable.