

Name:
Matrikel-Nr.:

Computational Logic, WS 2025/2026,
Exercise sheet 9,
due date: **18 January 2026, 23:59 via Moodle**

Problem 39 (30 Points)

Let eq be a binary predicate such that $\forall x(eq(x, x))$ and $\forall x\forall y\forall z(eq(x, y) \wedge eq(y, z) \Rightarrow eq(x, z))$. Consider the following formulas:

- $\exists x \exists y \forall z(eq(x, z) \vee eq(y, z))$
- $\forall x \exists y \exists z(\neg eq(y, z) \wedge \neg eq(x, y) \wedge \neg eq(x, z))$

Using the tableau procedure with free variables and unification prove that the conjunction of the two formulas is unsatisfiable.

Problem 40 (20 Points)

Let x, y, z and t be variables; a and b constants. Consider the following set of clauses:

$$\{\neg P(f(x, y), z) \vee R(z), Q(x) \vee \neg R(a), P(t, a) \vee R(a), \neg Q(b)\}$$

- Prove by first-order resolution that this set is unsatisfiable.
- Translate this set of clauses into both a set of Horn clauses (using the concrete syntax of facts and rules) and into a Prolog program, if possible; otherwise, explain why such translations are not possible.

Problem 41 (20 Points)

Consider the following logic program:

$$r(g(X)) \leftarrow t(X, Y, f(X))$$

$$t(a, b, f(a)) \leftarrow$$

$$p(V, W) \leftarrow r(V)$$

with query $\leftarrow p(U, b)$.

What will happen when using SLD resolution?

Problem 42 (30 Points)

Formalize each group of sentences, then prove that the last one is a consequence of the others using resolution and paramodulation.

- Alice's friend has a ginger cat.
 - Bob is the only person who has a ginger cat.
 - Therefore, Bob is Alice's friend.
- Prof Adam only teaches math students.
 - Alice and Bob have the same teacher.
 - Prof Adam is Alice's teacher.
 - Therefore, Bob is a math student.