Learning as Abduction:

Trainable Natural Logic Theorem Prover for Natural Language Inference

Seminar by Liam Smithers

Every man is working

Everybody who is working has an expensive car

Every man owns a car

Entailment

Premise	Label	Hypothesis
A man inspects the uniform of a figure in some East Asian country.	contradiction	The man is sleeping.
An older and younger man smiling.	neutral	Two men are smiling and laughing at the cats playing on the floor.
A soccer game with multiple males playing.	entailment	Some men are playing a sport.

Time Flies Like an Arrow

Fruit Flies Like a Banana

His Bird Flew Outside

Article-Noun-Verb-Avationes Verb in Location

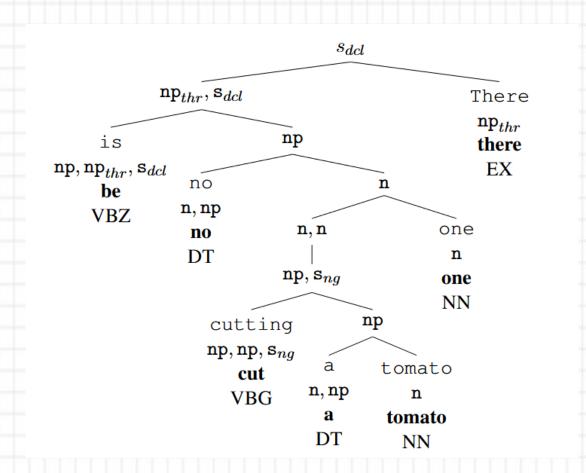
Outside were his Birds that are flying Location-Article-Noun-Verb

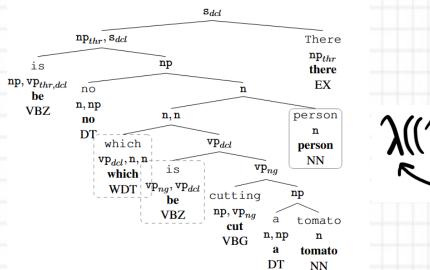
Noun does Verb in Location

flight : N Noun

Miami: NP

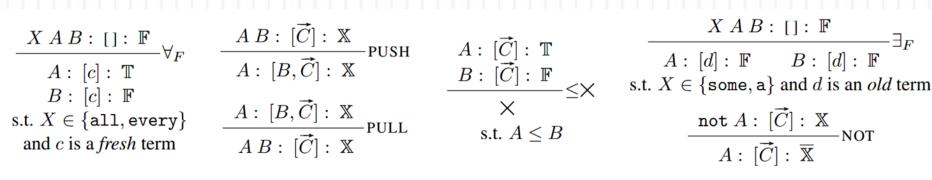
Noun Phrase


X/YYXXX Cancel: (SNP)/NP Huh?? $YXY \Rightarrow X$


"John" "loves" "Mary"

NP
$$\frac{(S \setminus NP)}{NP}$$
 NP $\frac{X}{Y} \Rightarrow X$

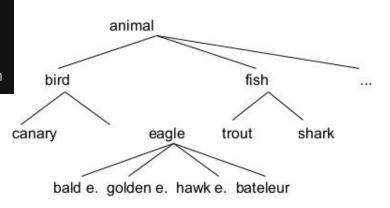
NP $\frac{(S \setminus NP)}{Y}$ $\frac{Y}{X} \Rightarrow X$


 $on_{np,pp}(ice_n)_{np} \longrightarrow on_{np,pp}(a_{n,np}ice_n)$ $\operatorname{run}_{\operatorname{np},s}(\operatorname{dogs}_{\operatorname{n}})_{\operatorname{np}} \longrightarrow \operatorname{run}_{\operatorname{np},s}(\operatorname{s}_{\operatorname{n,np}}\operatorname{dog}_{\operatorname{n}})$ $(\mathsf{Dow}^{\mathsf{PER}}_{\mathtt{n},\mathtt{n}}\mathsf{Jones}^{\mathsf{PER}}_{\mathtt{n}})_{\mathtt{np}}\longrightarrow \mathsf{Dow}_{\mathtt{-}}\mathsf{Jones}_{\mathtt{np}}$ $(\mathsf{two}_{\mathsf{n},\mathsf{n}}\,\mathsf{dogs}_{\mathsf{n}})_{\mathsf{np}}\longrightarrow \mathsf{two}_{\mathsf{n},\mathsf{np}}\,\mathsf{dogs}_{\mathsf{n}}$ $her_{(pp,n),np} car_{pp,n} \longrightarrow her_{n,np} car_n$ $\operatorname{who}_{\mathbf{w}}V(Q_{\mathbf{n},\mathbf{np}}N) \longrightarrow Q_{\mathbf{n},\mathbf{np}}(\operatorname{who}_{\mathbf{w}'}VN)$ $nobody \longrightarrow no_{n,np} person_n$

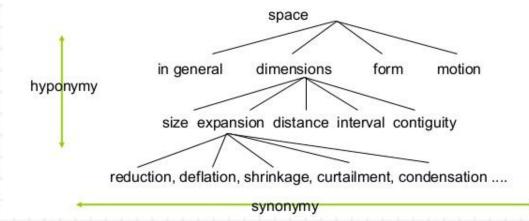
 $\begin{aligned} \mathbf{b} &(\mathbf{no}(\mathbf{w}(\mathbf{b}(\mathbf{c}(\mathbf{a}\ \mathbf{t})))\mathbf{p}))\mathbf{th} \\ &\mathbf{no}\left(\mathbf{w}(\mathbf{b}(\lambda x.\ \mathbf{a}\ \mathbf{t}(\lambda y.\ \mathbf{c}yx)))\mathbf{p}\right) \left(\lambda z.\ \mathbf{b}\ z\ \mathbf{th}\right) \\ &\mathbf{a}\ \mathbf{t}(\lambda x.\ \mathbf{no}\left(\mathbf{w}(\mathbf{b}(\mathbf{c}x))\mathbf{p}\right) \left(\lambda z.\ \mathbf{b}\ z\ \mathbf{th}\right) \end{aligned}$

Every penguin is working

Every bird who is working has an expensive car


Every penguin owns a car

ENTAILMENT



WordNet

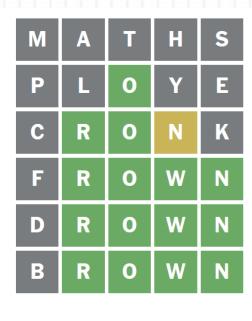
A Lexical Database for English

3/27

not all birds fly \rightarrow some bird does not fly

```
1: not all bird fly: []: \mathbb{T}
                2: some bird (not fly): []: \mathbb{F}
               3^{PUSH[1]}: not all bird: [fly]: \mathbb{T}
              4^{PUSH[3]}: not all: [bird, fly]: \mathbb{T}
                   5^{NOT[4]}: all: [bird, fly]: \mathbb{F}
                   6^{PULL[5]}: all bird: [fly]: \mathbb{F}
                  7^{\text{PULL}[6]}: all bird fly: []: \mathbb{F}
                         8^{orall_{F^{[7]}}}: \mathtt{bird}: [c]: \mathbb{T}
                          9^{orall_{F^{[7]}}}:\mathtt{fly}:\ [c]:\ \mathbb{F}
10^{\exists_F[2]}: \mathtt{bird}: [c]: \mathbb{F}
                                               11^{\exists_F[2]}: \mathtt{not}\ \mathtt{fly}: [c]: \mathbb{F}
      12<sup>≤×[8,10]</sup> : ×
                                                  13^{	ext{NOT[11]}}: 	ext{fly}: [c]: \mathbb{T}
                                                         14<sup>≤×[9,13]</sup> : ×
```

ID	Gold/LP	Problem (premise ? conclusion)
3670	E/N	It is raining on a walking man? A man is walking in the rain
219	E/N	There is no girl in white dancing? A girl in white is dancing
5248	N/E	Someone is playing with a toad? Someone is playing with a frog
8490	N/C	A man with a shirt is holding a football ? A man with no shirt is holding a football
7402	N/C	There is no man and child kayaking through gentle waters ? A man and a young boy are riding in a yellow kayak
1431	C/C	A man is playing a guitar ? A man is not playing a guitar
8913	N/C	A couple is not looking at a map? A couple is looking at a map


Measure+	Acc%	
System	1100 70	
Illinois-LH	84.57	
ECNU	83.64	
UNAL-NLP	83.05	
SemantiKLUE	82.32	
The Meaning Factory	81.59	
LangPro Hybrid-800	81.35	
UTexas	73.23	
Prob-FOL	76.52	
Nutcracker	78.40	
Baseline (majority)	56.69	

Information: John has a gun and was in the kitchen Victim was shot in kitchen

Hypothesis: John was the murderer

Answer: Correct

Hypothesis: Cronk
Answer: Incorrect

Information: R, O 2nd/3rd letter
N in the word
C, K not in word

C R O N K

Premise&Hypothesis

+ Rules =

☆ PRINCETON UNIVERSITY

Entailment

1: not all bird fly: []: \mathbb{T} 2: some bird (not fly): []: \mathbb{F}

X A B : [] A : [c] : B : [c] :A Lexical Database for English

s.t. $X \in \{\text{all}, \text{every}\}$ and c is a *fresh* term

```
1: not all bird fly: []: \mathbb{T}
                2: some bird (not fly): []: \mathbb{F}
               3^{PUSH[1]}: not all bird: [fly]: \mathbb{T}
              4<sup>PUSH[3]</sup>: not all: [bird, fly]: T
                  5^{NOT[4]}: all: [bird, fly]: \mathbb{F}
                  6^{PULL[5]}: all bird: [fly]: \mathbb{F}
                  7^{\text{PULL[6]}}: all bird fly: []: \mathbb{F}
                         8^{orall_{F^{[7]}}}: \mathtt{bird}: [c]: \mathbb{T}
                          9^{orall_{F^{[7]}}}: \mathtt{fly}: [c]: \mathbb{F}
[10]^{\exists_F[2]}: \mathtt{bird}: [c]: \mathbb{F}
                                               11^{\exists_F[2]}: \mathtt{not}\ \mathtt{fly}:\ [c]:\ \mathbb{F}
      12<sup>≤×[8,10]</sup> : ×
                                                 13^{	ext{NOT[11]}}: 	ext{fly}: [c]: \mathbb{T}
                                                        14<sup>≤×[9,13]</sup> : ×
```

Conclusion

Premise&Hypothesis

1: not all bird fly: []: \mathbb{T}

+ Entailment =

.

† PRINCETON UNIVERSITY

Rules

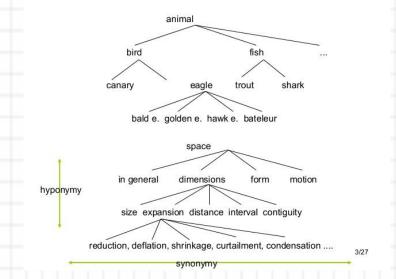
WordNet

A Lexical Database for English

 $rac{A\ B:\ [\]:\ \mathbb{F}}{A:\ [c]:\ \mathbb{T}} orall_F$

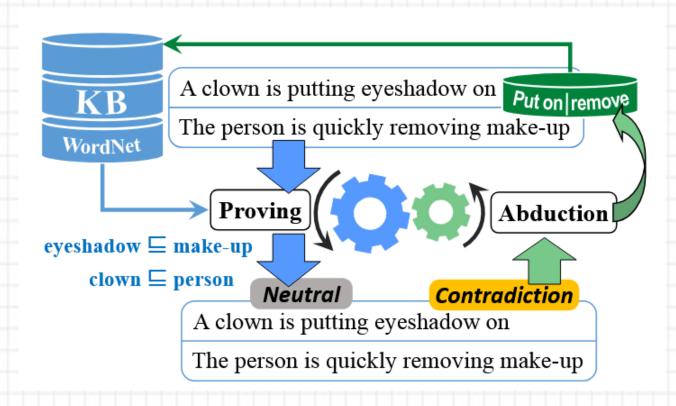
 $B:[c]:\mathbb{F}$ s.t. $X\in\{ ext{all}, ext{every}\}$ and c is a f resh term

```
X: [61,9] X > 1
         \mathbb{I}_{3^{NOT[II]}}: \mathbb{I}_{1}: [c]: \mathbb{T}
                                                                                                                                                                                                                                                                           X: [8,10] : X
\Pi_{\exists_F[5]}: \mathtt{not}\, \mathtt{IJ}_{\bullet}: [c]: \mathbb{F}
                                                                                                                                                                                                                                          \mathbb{I}0^{\mathbb{I}_{P^{[2]}}}: \mathtt{bird}: [c]: \mathbb{F}
                                                                                                                                  \mathbf{A}_{A^{E[\lambda]}}: \mathtt{t}\mathtt{J}\lambda: [c]: \mathbb{F}
                                                                                                                            \mathbb{R}^{\mathsf{A}_{F[7]}}:\mathsf{bird}:[c]:\mathbb{T}
                                                                                            T^{\text{PULL}[6]}: all bird fly: []: \mathbb{F}
                                                                                                  6^{\text{PULL}[5]}: \text{all bird}: [\text{Ily}]: \mathbb{F}
                                                                                                   A : [\text{bird}, \text{fly}] : Alt : [\text{bird}, \text{fly}] : Alt : Al
                                                                              4 PUSH[3] : not all : [bird, fly] : T
                                                                                 \mathbb{T}: [\chi L]: \text{brid} Lt all bird: [Lly]: \mathbb{T}
                                                                                     7: \mathtt{some} \ \mathtt{pirq} \ (\mathtt{not} \ \mathtt{IJ}) : [] : \mathbb{R}
                                                                                                  I : not all bird fly : [] : \mathbb{T}
```

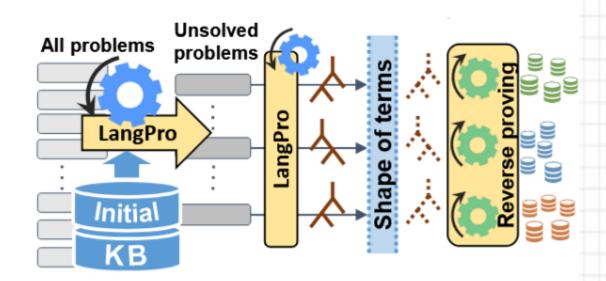

Н

2: some bird (not fly): []: \mathbb{F}

Conclusion


Inventory of Rules (The logic we can use to take relationships from the sentence)

Knowledge Base (The relationships we have hardcoded in before we begin the problem)


clean dirty

cradle _ hold


```
[1] a hedgehog (be (\lambda x. a \text{ boy } (\lambda y. \text{ by } y \text{ cradle } x))) : \mathbb{T}
                    [2] a (young person) (\lambda x. a (small animal) (\lambda y. hold y(x) : \mathbb{F}
                                                 [3] hedgehog : [h] : \mathbb{T}
                                         4 a boy (\lambda y. by y cradle h): \mathbb{T}
                                                     [5] boy : [b] : \mathbb{T}
                                                [6] by b cradle : [h] : \mathbb{T}
                                                           [6]
                                                  \boxed{7} cradle : [h,b]:\mathbb{T}
                                                              [2,b]
                                                                         [9] a (small animal) (\lambda y. \text{ hold } y.b) : \mathbb{F}
           [8] young person : [b] : \mathbb{F}
                                                                                                 [9,h]
                              [13] person : [b] : \mathbb{F} [10] small animal : [h] : \mathbb{F}
                                                                                                       11 hold : [h,b] : \mathbb{F}
[12] young :[b]:\mathbb{F}
                                    [5,13]
                                                                               [10]
                                                                                                              [7,11]
                                                    [14] small : [h] : \mathbb{F}
                                                                                  [15] animal : [h] : \mathbb{F}
 Open branch 1
                                           ×
                                                                                         [3,15]
                                                      Open branch 2
                                                                                                X
```

Open branch 2 2 3 4 5 6 7 9 b_1^2 : {hedgehog \sqsubseteq small animal} $b_2^2: \{\text{hedgehog} \sqsubseteq \text{small}\}$ $b_3^2: \{\text{hedgehog} \mid \text{by } b \text{ cradle}\}$ $b_4^2: \{ \text{by } b \text{ cradle } \sqsubseteq \text{small} \}$ $b_5^2 : \{ \text{by } b \text{ eradle } \sqsubseteq \text{ small animal} \}$

Filter 1 (Using comparable terms):

To avoid pseudo knowledge we want the types of words added to our KB to match or make sense

boy 🖵 young 💮 boy | hedgehog

Filter 1 (Using comparable terms):

To avoid pseudo knowledge we want the types of words added to our KB to match or make sense

Filter 2 (KB Consistent):

We want to avoid any inconsistencies with our established knowledge base.

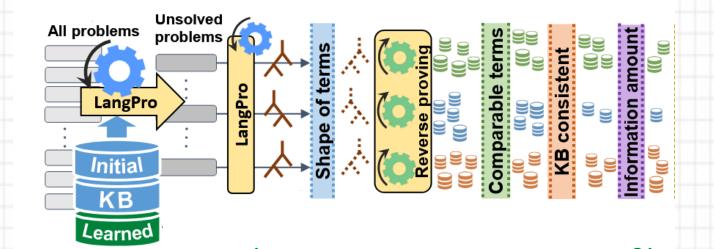
hedgehog | animal

Filter 1 (Using comparable terms):

To avoid pseudo knowledge we want the types of words added to our KB to match or make sense

boy | young | boy | hedgehog

Filter 2 (KB Consistent):


We want to avoid any inconsistencies with our established knowledge base.

hedgehog animal

Filter 3 (Information amount):

We will not store hyperspecific information. Limit it to 4 terms

(and big brown) dog

Tie Breaker 1 (Semantic consistency):

How much a gained piece of knowledge is relevant to other NLI problems.

Tie Breaker 1 (Semantic consistency):

How much a gained piece of knowledge is relevant to other NLI problems.

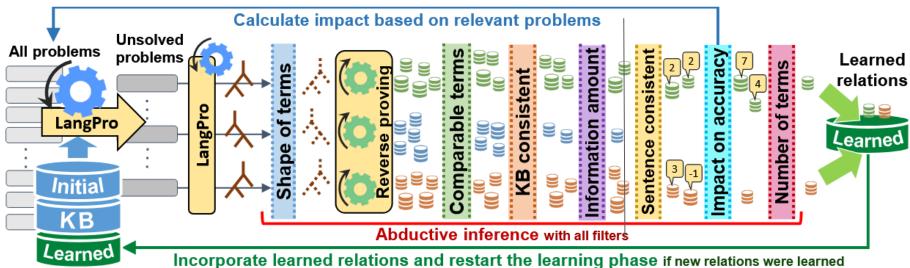
Tie Breaker 2 (Impact on Accuracy):

How many previous problems does it improve/unimprov

Tie Breaker 1 (Semantic consistency):

How much a gained piece of knowledge is relevant to other NLI problems.

Tie Breaker 2 (Impact on Accuracy):


How many previous problems does it improve/unimprove

Tie Breaker 3 (Amount of Knowledge gained):

How many lexical relations do we actually return

Train av. acc%	CPU time
89.02	2041
88.57	220
	av. acc% 89.02