
A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

A Saturation-Based Automated Theorem
Prover for RISCAL

Viktoria Langenreither

24.06.2025



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

Goals of this Thesis

• extension of RISCTP/RISCAL by a saturation-based
automated theorem prover for first-order logic with
equality
• the theoretical basis for such a prover and the support

for special theories (integer and arrays)
• implementation of the prover
• experiments and tests with the prover



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

Goals of this Presentation

• review of the design for our prover
• show the implementation work done so far
• short software demonstration



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

Strategy of our Prover

• variant of the superposition calculus with literal
selection (like the E Prover)
• given clause algorithm

• proof state represented by sets of processed and
unprocessed clauses

• at each traversal of main loop, a given clause c gets picked
• no unprocessed clauses left means the input set is

satisfiable
• if c is the empty clause, the unsatisfiability has been shown
• all possible generating inferences between c and processed

clauses get computed
• Discount loop

• passive clauses never participate in simplifications



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

Design of our Prover

1: while U 6= ∅ begin
2: c := select_best(U)
3: U := U \ {c}; simplify(c, P)
4: if not redundant(c, P) then
5: if c is the empty clause then
6: success; clause set is unsatisfiable
7: else T = ∅
8: for each p ∈ P do
9: simplify(p, (P \ {p}) ∪ {c})
10: done
11: T := T ∪ generate(c, P)
12: P := P ∪ {c}
13: for each p ∈ T do
14: p := cheap_simplify(p, P)
15: if not trivial(p, P) then
16: U := U ∪ {p}
17: fi
18: done
19: fi
20: fi
21: end
22: Failure: Initial U is satisfiable, P describes model



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

select_best(U)



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

select_best(U) — Clauseweight

• most common evaluation functions are based on
symbole counting
• return number of function symbols and variables

(possibly weighted in some way) of a clause
• preferring clauses with a small number of symbols

Why is this approach successful?
• small clauses are typically more general than larger

clauses
• smaller clauses usually have fewer potential inference

positions — processing smaller clauses is more efficient
• clauses with fewer literal are more likely to degenerate

into the empty clause by appropriate contracting
inferences



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

select_best(U) — FIFOweight

• first-in first-out strategy
• new clauses are processed in the same order in which

they are generated
• evaluation function simply returns the value of a

counter that is incremented for each new clause
• pure FIFO performs very badly

Remark
If we ignore contraction rules, this heuristic will always find
the shortest possible proofs (by inference depth), since it
enumerates clauses in order of increasing depth.



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

simplify

1 deletion of duplicated literals
s = t ∨ s = t ∨ R

s = t ∨ R
2 deletion of resolved literals

s 6= s ∨ R
R

3 syntactic tautology deletion
s = s ∨ R

s = t ∨ s 6= t ∨ R



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

simplify

1 semantic tautology deletion
s1 6= t1 ∨ . . . ∨ sn 6= tn ∨ s = t ∨ R

if σ(s1 = t1), . . . , σ(sn = tn) |= σ(s = t), where the substitution σ

maps all variables to distinct new constants.
2 destructive equality resolution

x 6= s ∨ R
σ(R)

if x ∈ V and σ = mgu(x , s).
3 clause subsumption

T R ∨ S
T

if σ(T ) = S for a substitution σ.



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

redundant

1 clause subsumption
2 semantic tautology deletion



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

generate

1
s 6= t ∨ R (Equality resolution)

σ(R)

where σ = mgu(s, t) and σ(s 6= t) is eligible for resolution.

2
s = t ∨ S u 6= v ∨ R (Superposition into negative literals)
σ(u[p ← t ] 6= v ∨ S ∨ R)

where σ = mgu(u|p , s), σ(s) ≥ σ(t), σ(u) ≥ σ(v), σ(s 6= t) is eligible
for paramodulation, σ(u 6= v) is eligible for resolution and u|p /∈ V .

3
s = t ∨ S u = v ∨ R (Superposition into positive literals)
σ(u[p ← t ] = v ∨ S ∨ R)

where σ = mgu(u|p , s), σ(s) ≥ σ(t), σ(u) ≥ σ(v), σ(s 6= t) is eligible
for paramodulation, σ(u 6= v) is eligible for resolution and u|p /∈ V .

4
s = t ∨ u = v ∨ R (Equality factoring)

σ(t 6= v ∨ u = v ∨ R)

where σ = mgu(s, u), σ(s) ≥ σ(t) and σ(s 6= t) is eligible for
paramodulation.



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

Software-Demo



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

Further Work

What we have done so far:
• State of the art
• Throughout theoretical representation of the concepts

needed for the prover
• Collecting strategies to make those concepts

reasonably efficient
• Design of the prover

What we are doing now:
• Implementation of the prover
• Test the prover



A Saturation-
Based

Automated
Theorem
Prover for
RISCAL

Viktoria
Langenreither

Our Prover -
Short
Reminder

Implementation

Software-
Demo

Further Work

References

• Stefan Schulz. “E - a brainiac theorem prover”. In: vol. 15. AI
Communication, 2002, pp. 111–126. doi: 10.5555/1218615.1218621.

• Alexandre Riazanov and Andrei Voronkov. Limited resource strategyy
in resolution theorem proving. Journal of Symbolic Computation.
Oxford Road, Manchester M13 9PL, UK: Department of Computer
Science, University of Manchester, 2003, pp. 101–115. doi: 10.
1016/S0747-7171(03)00040-3.

• Stephan Schulz. “Learning Search Control Knowledge for Equational
Theorem Proving”. In: KI 2001: Advances in Artificial Intelligence.
Ed. by Franz Baader, Gerhard Brewka, and Thomas Eiter. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 320–334. isbn:
978-3-540-45422-9. doi: 10.1007/3-540-45422-5_23.

• Laura Kovacs and Andrei Voronkov. “First-Order Theorem Proving
and VAMPIRE”. In: Computer Aided Verification. Springer, Berlin,
Heidelberg, 2013, pp. 1–35. doi: 10.1007/ 978-3-642-39799-8_1


	Our Prover - Short Reminder
	Implementation
	Software-Demo
	Further Work

