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Setting

Proximity relation R on an alphabet L s.t. the proximity class
of any symbol € L is finite
A-cut € (0,1] and a T-norm A

Logic program P consisting of definite clauses

A+ By,...,B,, where A, By,..., B, are atoms
Semantics S = (D, I) with domain D and interpretation
function /
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Proximity relation R on an alphabet £ s.t. the proximity class
of any symbol € L is finite

A-cut € (0,1] and a T-norm A

Logic program P consisting of definite clauses
A<+ By,...,B,, where A, Byq,..., B, are atoms

Semantics S = (D, I) with domain D and interpretation
function /

I(f): D" — D

I(p) : D" — [0,1]
S(A) 1 [0,1]% = [0, 1]
S(+): [0,1]%> = [0,1]
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Proximity relation R on an alphabet £ s.t. the proximity class
of any symbol € L is finite

A-cut € (0,1] and a T-norm A

Logic program P consisting of definite clauses
A<+ By,...,B, where A By,..., B, are atoms

Semantics S = (D, I) with domain D and interpretation
function /

variables: [x]Z = o(X)

atoms: [p(t1,...,ta)]% = I(p)([t1]%, ..., [ta]%) € [0,1]
terms: [f(t1,...,t,)]% = I(F)([t1]%, ..., [ta]%) € D
conjunction of formulas: [F1 A F2]E = As([F1]%, [F2]%)
residual of formulas: [Fy < F]S =<5 ([F1]%, [F2]%)

all-quantor: [Vx.F]|Z = Vs{[[F]]g{Xﬁd} |de D}



Setting

» Proximity relation R on an alphabet £ s.t. the proximity class
of any symbol € L is finite
» A-cut € (0,1] and a T-norm A
» Logic program P consisting of definite clauses
A<+ Bi,...,B,, where A By, ..., B, are atoms
» Semantics S = (D, /) with domain D and interpretation
function /
Let By be the Herbrand base of our program.
Definition
A fuzzy set M € By % (0, 1] is a model of P if for every
(Aa) e M, [A]Z =a > A



Setting

» Proximity relation R on an alphabet £ s.t. the proximity class
of any symbol € L is finite

» A-cut € (0,1] and a T-norm A

» Logic program P consisting of definite clauses

A<+ By,...,B,, where A By, ..., B, are atoms
» Semantics S = (D, /) with domain D and interpretation
function /

We want to compute the least or minimal Herbrand model My (or
canonical model) of a logic program, i.e. where

2y P E M AM C My. If the model intersection property holds,
then My :={ Ny | PEM }. C, N and U (see below) are shall
be adequately defined on fuzzy sets.



Proximity and Programs

Given a logic program P, a proximity relation R with a T-norm A
and a A-cut: Which facts (i.e., elements in the Herbrand base) can
we deduce and with which truth degree?

;
Program —
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Given a logic program P, a proximity relation R with a T-norm A
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we deduce and with which truth degree?
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Intuitively, that is everything proximal to the program clauses.



Proximity and Programs

Given a logic program P, a proximity relation R with a T-norm A
and a A-cut: Which facts (i.e., elements in the Herbrand base) can
we deduce and with which truth degree?

? :
Program = Canonical Model
Intuitively, that is everything proximal to the program clauses.
Example

Let a~g7 b~pgc,gr~p9r, A=0.7, N\=x%xand P = {r(a)}
Then deducible are:

» r(a) with degree 1
» r(b) with degree 0.7
> g(a) with degree 0.9



Proximity and Programs

Given a logic program P, a proximity relation R with a T-norm A
and a A-cut: Which facts (i.e., elements in the Herbrand base) can
we deduce and with which truth degree?

? :
Program = Canonical Model
Intuitively, that is everything proximal to the program clauses.
Example

Let a~g7 b~pgc,gr~p9r, A=0.7, N\=x%xand P = {r(a)}
Not deducible are:

» q(b) because R(r(a),q(b)) =0.63 < 0.7 =X\
» r(c) because R(r(a),r(c)) =R(a,c) =0
> g(c) because R(r(a),q(c)) =0



Proximity and Programs

Given a logic program P, a proximity relation R with a T-norm A
and a A-cut: Which facts (i.e., elements in the Herbrand base) can
we deduce and with which truth degree?

;
Program = Canonical Model
Intuitively, that is everything proximal to the program clauses.
Example

Let a ~p7 b~pgc,qg~09r, A=0.55 A==xand P={r(b,b)}.
Then deducible are:

» r(c,c) with degree 0.64
» r(a, b) with degree 0.7

» r(a,c) with degree 0.56
» g(a, b) with degree 0.63



Proximity and Programs

Given a logic program P, a proximity relation R with a T-norm A
and a A-cut: Which facts (i.e., elements in the Herbrand base) can
we deduce and with which truth degree?

?
Program = Canonical Model
Intuitively, that is everything proximal to the program clauses.
Example

Let a ~p7 b~pgc,qg~09r, A=0.55 A==xand P={r(b,b)}.
Not deducible are:

» g(a,c) because R(r(b,b), q(a,c)) =0.504 < 0.55 = A
» r(a,a) because R(r(b, b),r(a,a)) =0.49 < 0.55 = A\



Proximity and Programs

Explicit notation:

r(a) : r(x) < x~a
g(x)«—qg~r,x~a

r(b, b) : r(xi,x2) < x1 ~ b,xp ~ b
q(x1,x2) =g~ r,x1 ~bxag~b

where a ~ b is interpreted as R(a, b).



Proximity and Programs

Explicit notation:

r(a): r(x) <~ x~a
g(x)<—qg~r,x~a

r(b, b) : r(xi,x2) <= x1 ~ b,xa ~ b
q(x1,x2) <= qr~r,xg ~ b,xo~ b

where a ~ b is interpreted as R(a, b).
We call this procedure linearization and approximation.
» lin(p(t1,...,tn) < B) =p(x1,...,Xn) <= X1 ~ t1,..., Xn ~
tn, B where the x; are fresh variables



Proximity and Programs

Explicit notation:

r(a) : r(x) <~ x~a
g(x)+—qg~r,x~a

r(b, b) : r(xi,x2) < x1 ~ b,xa ~ b
q(x1,x2) <= q~r,xi ~b,xp ~ b

where a ~ b is interpreted as R(a, b).
We call this procedure linearization and approximation.
> /in(p(tl,...,t,,) — B) = p(Xl,...,X,,) Xy~ X
tn, B where the x; are fresh variables
» Lin(P) = {lin(c) | c € P}



Proximity and Programs

Explicit notation:

r(a) : r(x) < x~a
g(x) < qg~r,x~a

r(b, b) : r(xi,x2) < x1 ~ b,xo ~ b
q(x1,x2) <~ q~r,xg ~ b,xp ~ b

where a ~ b is interpreted as R(a, b).
We call this procedure linearization and approximation.

> approx(p(tl,...,t,,) A B) = {q(tl7' . 'atn) —p~q, B}



Proximity and Programs

Explicit notation:

r(a) : r(x) < x~a
g(x) < qg~r,x~a
r(b, b) : r(xi,x2) <= x1 ~ b, xa ~ b
q(x1,x2) <= q~r,xg ~ b,xp ~ b
where a ~ b is interpreted as R(a, b).
We call this procedure linearization and approximation.
» approx(p(ti,...,tn) < B) ={q(t1,...,ty) < p~q,B}
> Approx(P) = U.cp approx(c)



Proximity and Programs

Explicit notation:

r(a) : r(x) < x~a
g(x) < qg~r,x~a

r(b, b) : r(xi,x2) < x1 ~ b,xo ~ b
q(x1,x2) <~ q~r,xg ~ b,xp ~ b

where a ~ b is interpreted as R(a, b).
We will need the ground instances of these clauses:

» ground(c) = {cf | dom(#) = var(c), vran(6) = 0}



Proximity and Programs

Explicit notation:

r(a) : r(x) < x~a
g(x) < qg~r,x~a

r(b, b) : r(xi,x2) <= x1 ~ b, xa ~ b
q(x1,x2) <= q~r,xx ~bxa~b

where a ~ b is interpreted as R(a, b).
We will need the ground instances of these clauses:

» ground(c) = {c6 | dom(0) = var(c), vran(6) = ()}
» Ground(P) = |J.cp ground(c)



Proximity and Programs

Explicit notation:

r(a): r(x) <~ x~a
g(x)<—q~r,x~a

r(b, b) : r(xi,x2) < x1 ~ b,xp ~ b
q(x1,x2) <= q~r,xi ~ b,xo~ b

where a ~ b is interpreted as R(a, b).
» Lin(P) ={lin(c) | c € P}
> Approx(P) = U.cp approx(c)
» Ground(P) = |J.cp ground(c)

Then we call Ground(Approx(Lin(P))) the extended program
nep)



Immediate consequence operator

Let H be a Herbrand interpretation and I1 an extended program.
Then the immediate consequence operator is defined as follows:

Tp(H) ={(A,a) | A+ B1,...,B, € M1(P),
a=P01N...N\Bp,

(Blaﬁl)a"'a(BnaBn) S Ha
VU H



Immediate consequence operator

Let H be a Herbrand interpretation and I1 an extended program.
Then the immediate consequence operator is defined as follows:

Te(H)={(A,0) | A« By',...,B, € N(P),
a=supi{Bi' A...ABn'},

(Bli7ﬁli)7 B (ani? Bnii) € H7
1<i<klUH



Immediate consequence operator

Let H be a Herbrand interpretation and Il an extended program.
Then the immediate consequence operator is defined as follows:

Tp(H)={(A,a) | A« B',...,B, € N(P),
a=sup{Bi' A...ABn'},
(Blivﬁli)7 .. ‘7(Bn,'iaﬁnii) € H7
1<i<kjUH

We instantiate the starting Herbrand interpretation Hy with

(U~ T RULY| I € L,R(LI) > ).



Immediate consequence operator

Let H be a Herbrand interpretation and Il an extended program.
Then the immediate consequence operator is defined as follows:

Tp(H)={(A,a) | A« B',...,B, € N(P),
o= sup,-{ﬁli VAN ﬁnii},
(Blivﬁli)v .. '7(Bn,'iaﬁn,‘i) € Hv
1<i<kjUH

The least fixpoint of Tp is the smallest H s.t. Tp(H) = H. It
should coincide with the least Herbrand model of P.



Immediate consequence operator: Example

Let again a ~g7 b ~p5 C,q ~o8 r, A = 0.4, A = min and

P ={r(a)}.



Immediate consequence operator: Example

Let again a ~g7 b ~p5 ¢C,q ~o08 r, A= 0.4, A = min and
P ={r(a)}. Then N(P) =
{(r(a)<_rNrvaNa)a(q(a)%quaaNa)a

(r(b) <= r~r,b~a),(q(b) < q~r,b~a),

(r(c) <= r~r,c~a),(q(c) - g~r,c~a)}



Immediate consequence operator: Example

Let again a ~g7 b ~p5 ¢C,q ~o8 r, A= 0.4, A = min and
P ={r(a)}. Then N(P) =

{(r(@) <= r~r,a~a),(q(a) < q~r,a~a),

(r(b) <= r~r,b~a),(q(b) < q~r,b~a),

(r(c) = r~r,c~a),(q(c) - g~r,c~a)}

Ho = {(a ~ b,0.7),(b ~ ¢,0.5),(r ~ q,0.8),
(a~a,l),(b~b1),(c~c,1),(r~r1),(g~aq,l)}.



Immediate consequence operator: Example

Let again a ~g7 b ~p5 C,q ~os r, A = 0.4, A = min and
P ={r(a)}. Then N(P) =

{(r(a) <= r~r,a~a),(q(a) - gr~r,an~a)

(r(b) <~ r~r,b~a),(q(b) < qg~r,b~ a),
(r(c)«<r~r,c~a)(g(c) < qg~r,c~a)}.

Hy = Tp(Ho) = Hy U{
(r(a), sup{1 A 1}),
(q(a), sup{0.8 A 1}),
(r(b),sup{1 A 0.7}),
%q(b),sup{OB N0.7})



Immediate consequence operator: Example

Let again a ~g7 b ~p5 C,q ~os r, A = 0.4, A = min and
P ={r(a)}. Then N(P) =

{(r(a) <= r~r,a~a),(q(a) - gr~r,an~a)

(r(b) <~ r~r,b~a),(q(b) < qg~r,b~ a),
(r(c)«<r~r,c~a)(g(c) < qg~r,c~a)}.

(Ho) = Ho U {

X
[
>



Immediate consequence operator: Example

Let again a ~g7 b ~p5 ¢C,q ~o8 r, A =0.4, A = min and
P ={r(a)}. Then N(P) =

{(r(@ <~ r~r,a~a),(q(a) < q~r,a~a),

(r(b) <~ r~r,b~a),(q(b) < qg~r,b~ a),
(r(c)«~r~r,c~a)(qg(c) < qg~r,c~a)}.

Hy = Tp(Hl) =HUD=H;
Thus, Hj is the least fixpoint of Tp.



Immediate consequence operator: Example revisited

Let now R' =R, but P = PU{p(y) < r(y)}.
» Lin(P") = Lin(P) U {p(x) < x ~y,r(y)}
» Approx(Lin(P")) = Approx(Lin(P)) U {p(x) < x ~ y,r(y)}
» Ground(Approx(Lin(P"))) = N(P") =
Ground(Approx(Lin(P))) U {(p(a) «+ a ~ a, r(a)),
(p(a) = a~ b, r(b)),(p(b) <= b~ a,r(a)),
(p(b) = b ~ b, r(b)), (p(b) <= b~ c,r(c)),
(p(c) <= ¢ ~ b, r(b)), (p(c) = ¢~ c,r(c))}



Immediate consequence operator: Example revisited

Let now R' =R, but P = PU{p(y) < r(y)}.
> Lin(P") = Lin(P)U{p(x) + x ~ y, r(y)}
> Approx(Lin(P")) = Approx(Lin(P)) U{p(x) <= x ~ y,r(y)}
» Ground(Approx(Lin(P"))) = N(P") =
Ground(Approx(Lin(P))) U {(p(a) <+ a ~ a, r(a)),

(p(a) <= a~ b, r(b)),(p(b) < b~ a,r(a)),
(p(b) <= b~ b, r(b)), (p(b) = b~ c,r(c)),

(p(c) < ¢ ~ b,r(b)). (p(c) < c ~ c. r(c))}
Hy = Ho U {(p ~ p. 1)} and



Immediate consequence operator: Example revisited

Let now R' =R, but P = PU{p(y) < r(y)}.
» Lin(P") = Lin(P)U{p(x) + x ~ y,r(y)}
» Approx(Lin(P")) = Approx(Lin(P)) U {p(x) <= x ~ y,r(y)}
» Ground(Approx(Lin(P"))) = N(P’) =
Ground(Approx(Lin(P))) U {(p(a) < a ~ a, r(a)),
(p(a) = a~ b, r(b)),(p(b) <= b~ a,r(a)),
(p(b) = b ~ b, (b)), (p(b) <= b~ c,r(c)),
(p(c) = ¢ ~ b, r(b)),(p(c) <= c ~c,r(c))}
Hy = Ho U {(p ~ p,1)} and
Hy = Hy U {(r(a), 1), (r(p),0.7),(q(a), 0.8), (q(b), 0.7)}.



Immediate consequence operator: Example revisited

Let now R’ =R, but P' = PU{p(y) < r(y)}.
» Lin(P") = Lin(P) U {p(x) + x ~ y,r(y)}
» Approx(Lin(P")) = Approx(Lin(P)) U {p(x) <= x ~ y,r(y)}
» Ground(Approx(Lin(P"))) = N(P") =
Ground(Approx(Lin(P))) U {(p(a) < a ~ a, r(a)),
(p(a) = a~ b, r(b)),(p(b) <= b~ a,r(a)),
(p(b) <= b~ b, r(b)), (p(b) <= b~ c,r(c)),
(p(c) <= ¢ ~ b, r(b)), (p(c) < ¢~ c,r(c))}
Hy = Tp(Hy) = Hy U{
(p(a),sup{1 A1,0.7 AO.7}),
(p(b),sup{0.7AN1,1 N0.7}),
%p(c),sup{O.S N0.7})



Immediate consequence operator: Example revisited

Let now R’ =R, but P' = PU{p(y) < r(y)}.
» Lin(P") = Lin(P) U {p(x) + x ~ y,r(y)}
» Approx(Lin(P")) = Approx(Lin(P)) U {p(x) <= x ~ y,r(y)}
» Ground(Approx(Lin(P"))) = N(P") =
Ground(Approx(Lin(P))) U {(p(a) < a ~ a, r(a)),
(p(a) = a~ b, r(b)),(p(b) <= b~ a,r(a)),
(p(b) <= b~ b, r(b)), (p(b) <= b~ c,r(c)),
(p(c) <= ¢ ~ b, r(b)), (p(c) < ¢~ c,r(c))}
Hy = Tp(Hy) = Hy U{
(a), 1),
(b),0.7),
0.5

(
(
(p(c),0.5)
}



Proving via SLD-resolution

Definition
Let A, A’ be atoms and @, G be conjunctions of atoms. Then

“ALG =80 (Q,6)0

is a weak SLD-resolution step, where
> C=A«QeP
> o = wmgu(A,A)
> 3=R(Ac,Alo) > A\



Proving via SLD-resolution

Definition
Let A, A’ be atoms and @, G be conjunctions of atoms. Then

— A, G :>W5LD<— (Q, G)o

is a weak SLD-resolution step, where
> C=A+«~QeP
> o = wmgu(A,A)
> 3=R(Acs,Alc) >\

Then we prove (p(c),0.5) via

< P(C) = p(y)r(y),y—b,0.5



Proving via SLD-resolution

Definition
Let A, A’ be atoms and @, G be conjunctions of atoms. Then

— A, G :ﬁ}g’LﬂDe (Q, G)o

is a weak SLD-resolution step, where
> C=A«QeP
> o = wmgu(AA)
> 3 =R(Acg,Ac) >\

Then we prove (p(c),0.5) via

— p(C) = p(y)<r(y),y—b,0.5
A r(b) = r(a),id,1



Proving via SLD-resolution

Definition
Let A, A’ be atoms and @, G be conjunctions of atoms. Then

— A, G :ﬁ}g’LﬂDe (Q, G)o

is a weak SLD-resolution step, where
> C=A«QeP
> o = wmgu(AA)
> 3 =R(Acg,Ac) >\

Then we prove (p(c),0.5) via
A p(C) == p(y)r(y),y—b,05

A r(b) = r(a),id,1
L]



Proving via SLD-resolution

Definition
Let A, A’ be atoms and @, G be conjunctions of atoms. Then

“ALG=030« (Q,6)

is a weak SLD-resolution step, where
> C=A«QeP
> o = wmgu(A,A)
> 3 =R(Ag,Ac) >\

We say that a pair (A, «) is provable from the program P, i.e.
Pr(Aa), iff «— A=\, L



Proving via SLD-resolution

Definition
Let A, A’ be atoms and @, G be conjunctions of atoms. Then

— A C=520 (Q,6)0

is a weak SLD-resolution step, where

> C=A+QeP

> o = wmgu(AA)

> 3 =TR(Acs,Ac) > A
We say that a pair (A, «) is provable from the program P, i.e.
PH(Aa) iff« A=\, L

{(A,a)|P F (A, )} should again coincide with the least Herbrand
model.



