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Setting

▶ Proximity relation R on an alphabet L s.t. the proximity class
of any symbol ∈ L is finite

▶ λ-cut ∈ (0, 1] and a T-norm ∧
▶ Logic program P consisting of definite clauses

A← B1, . . . ,Bn, where A,B1, . . . ,Bn are atoms

▶ Semantics S = ⟨D, I ⟩ with domain D and interpretation
function I
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▶ λ-cut ∈ (0, 1] and a T-norm ∧
▶ Logic program P consisting of definite clauses

A← B1, . . . ,Bn, where A,B1, . . . ,Bn are atoms

▶ Semantics S = ⟨D, I ⟩ with domain D and interpretation
function I

▶ I (f ) : Dn → D

▶ I (p) : Dn → [0, 1]

▶ S(∧) : [0, 1]2 → [0, 1]

▶ S(←) : [0, 1]2 → [0, 1]



Setting

▶ Proximity relation R on an alphabet L s.t. the proximity class
of any symbol ∈ L is finite

▶ λ-cut ∈ (0, 1] and a T-norm ∧
▶ Logic program P consisting of definite clauses

A← B1, . . . ,Bn, where A,B1, . . . ,Bn are atoms

▶ Semantics S = ⟨D, I ⟩ with domain D and interpretation
function I

▶ variables: JxKσS = σ(X )

▶ atoms: Jp(t1, . . . , tn)KσS = I (p)(Jt1KσS , . . . , JtnK
σ
S) ∈ [0, 1]

▶ terms: Jf (t1, . . . , tn)KσS = I (f )(Jt1KσS , . . . , JtnK
σ
S) ∈ D

▶ conjunction of formulas: JF1 ∧ F2KσS = ∧S(JF1KσS , JF2KσS)
▶ residual of formulas: JF1 ← F2KσS =←S (JF1KσS , JF2K

σ
S)

▶ all-quantor: J∀x .F KσS = ∀S{JF Kσ{x→d}
S | d ∈ D}



Setting

▶ Proximity relation R on an alphabet L s.t. the proximity class
of any symbol ∈ L is finite

▶ λ-cut ∈ (0, 1] and a T-norm ∧
▶ Logic program P consisting of definite clauses

A← B1, . . . ,Bn, where A,B1, . . . ,Bn are atoms

▶ Semantics S = ⟨D, I ⟩ with domain D and interpretation
function I

Let BH be the Herbrand base of our program.

Definition
A fuzzy set M ∈ BH × (0, 1] is a model of P if for every
(A, α) ∈ M, JAKσS = α ≥ λ.



Setting

▶ Proximity relation R on an alphabet L s.t. the proximity class
of any symbol ∈ L is finite

▶ λ-cut ∈ (0, 1] and a T-norm ∧
▶ Logic program P consisting of definite clauses

A← B1, . . . ,Bn, where A,B1, . . . ,Bn are atoms

▶ Semantics S = ⟨D, I ⟩ with domain D and interpretation
function I

We want to compute the least or minimal Herbrand model MH (or
canonical model) of a logic program, i.e. where
̸∃M P |= M ∧M ⊊ MH . If the model intersection property holds,
then MH := {

⋂
M | P |= M }. ⊂, ∩ and ∪ (see below) are shall

be adequately defined on fuzzy sets.



Proximity and Programs

Given a logic program P, a proximity relation R with a T-norm ∧
and a λ-cut: Which facts (i.e., elements in the Herbrand base) can
we deduce and with which truth degree?

Program
?

=⇒

Canonical Model
Intuitively, that is everything proximal to the program clauses.

Example

Let a ∼0.7 b ∼0.8 c , q ∼0.9 r , λ =, ∧ = ∗ and P = {}.
deducible are:
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Proximity and Programs

Given a logic program P, a proximity relation R with a T-norm ∧
and a λ-cut: Which facts (i.e., elements in the Herbrand base) can
we deduce and with which truth degree?

Program
?

=⇒ Canonical Model
Intuitively, that is everything proximal to the program clauses.

Example

Let a ∼0.7 b ∼0.8 c , q ∼0.9 r , λ = 0.7, ∧ = ∗ and P = {r(a)}.
Then deducible are:

▶ r(a) with degree 1

▶ r(b) with degree 0.7

▶ q(a) with degree 0.9



Proximity and Programs

Given a logic program P, a proximity relation R with a T-norm ∧
and a λ-cut: Which facts (i.e., elements in the Herbrand base) can
we deduce and with which truth degree?

Program
?

=⇒ Canonical Model
Intuitively, that is everything proximal to the program clauses.

Example

Let a ∼0.7 b ∼0.8 c , q ∼0.9 r , λ = 0.7, ∧ = ∗ and P = {r(a)}.
Not deducible are:

▶ q(b) because R(r(a), q(b)) = 0.63 < 0.7 = λ

▶ r(c) because R(r(a), r(c)) = R(a, c) = 0

▶ q(c) because R(r(a), q(c)) = 0



Proximity and Programs

Given a logic program P, a proximity relation R with a T-norm ∧
and a λ-cut: Which facts (i.e., elements in the Herbrand base) can
we deduce and with which truth degree?

Program
?

=⇒ Canonical Model
Intuitively, that is everything proximal to the program clauses.

Example

Let a ∼0.7 b ∼0.8 c , q ∼0.9 r , λ = 0.55, ∧ = ∗ and P = {r(b, b)}.
Then deducible are:

▶ r(c , c) with degree 0.64

▶ r(a, b) with degree 0.7

▶ r(a, c) with degree 0.56

▶ q(a, b) with degree 0.63



Proximity and Programs

Given a logic program P, a proximity relation R with a T-norm ∧
and a λ-cut: Which facts (i.e., elements in the Herbrand base) can
we deduce and with which truth degree?

Program
?

=⇒ Canonical Model
Intuitively, that is everything proximal to the program clauses.

Example

Let a ∼0.7 b ∼0.8 c , q ∼0.9 r , λ = 0.55, ∧ = ∗ and P = {r(b, b)}.
Not deducible are:

▶ q(a, c) because R(r(b, b), q(a, c)) = 0.504 < 0.55 = λ

▶ r(a, a) because R(r(b, b), r(a, a)) = 0.49 < 0.55 = λ



Proximity and Programs

Explicit notation:

r(a) : r(x)← x ∼ a

q(x)← q ∼ r , x ∼ a

r(b, b) : r(x1, x2)← x1 ∼ b, x2 ∼ b

q(x1, x2)← q ∼ r , x1 ∼ b, x2 ∼ b

where a ∼ b is interpreted as R(a, b).
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q(x1, x2)← q ∼ r , x1 ∼ b, x2 ∼ b

where a ∼ b is interpreted as R(a, b).
We call this procedure linearization and approximation.

▶ lin(p(t1, . . . , tn)← B) = p(x1, . . . , xn)← x1 ∼ t1, . . . , xn ∼
tn,B where the xi are fresh variables
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We call this procedure linearization and approximation.

▶ lin(p(t1, . . . , tn)← B) = p(x1, . . . , xn)← x1 ∼ t1, . . . , xn ∼
tn,B where the xi are fresh variables

▶ Lin(P) = {lin(c) | c ∈ P}
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Explicit notation:

r(a) : r(x)← x ∼ a

q(x)← q ∼ r , x ∼ a

r(b, b) : r(x1, x2)← x1 ∼ b, x2 ∼ b

q(x1, x2)← q ∼ r , x1 ∼ b, x2 ∼ b

where a ∼ b is interpreted as R(a, b).
We call this procedure linearization and approximation.

▶ approx(p(t1, . . . , tn)← B) = {q(t1, . . . , tn)← p ∼ q,B}
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Explicit notation:

r(a) : r(x)← x ∼ a

q(x)← q ∼ r , x ∼ a

r(b, b) : r(x1, x2)← x1 ∼ b, x2 ∼ b

q(x1, x2)← q ∼ r , x1 ∼ b, x2 ∼ b

where a ∼ b is interpreted as R(a, b).
We call this procedure linearization and approximation.

▶ approx(p(t1, . . . , tn)← B) = {q(t1, . . . , tn)← p ∼ q,B}
▶ Approx(P) =

⋃
c∈P approx(c)
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where a ∼ b is interpreted as R(a, b).
We will need the ground instances of these clauses:

▶ ground(c) = {cθ | dom(θ) = var(c), vran(θ) = ∅}
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Explicit notation:

r(a) : r(x)← x ∼ a

q(x)← q ∼ r , x ∼ a

r(b, b) : r(x1, x2)← x1 ∼ b, x2 ∼ b

q(x1, x2)← q ∼ r , x1 ∼ b, x2 ∼ b

where a ∼ b is interpreted as R(a, b).
We will need the ground instances of these clauses:

▶ ground(c) = {cθ | dom(θ) = var(c), vran(θ) = ∅}
▶ Ground(P) =

⋃
c∈P ground(c)



Proximity and Programs

Explicit notation:

r(a) : r(x)← x ∼ a

q(x)← q ∼ r , x ∼ a

r(b, b) : r(x1, x2)← x1 ∼ b, x2 ∼ b

q(x1, x2)← q ∼ r , x1 ∼ b, x2 ∼ b

where a ∼ b is interpreted as R(a, b).
▶ Lin(P) = {lin(c) | c ∈ P}
▶ Approx(P) =

⋃
c∈P approx(c)

▶ Ground(P) =
⋃

c∈P ground(c)

Then we call Ground(Approx(Lin(P))) the extended program
Π(P)



Immediate consequence operator

Let H be a Herbrand interpretation and Π an extended program.
Then the immediate consequence operator is defined as follows:

TP(H) = {(A, α) | A← B1, . . . ,Bn ∈ Π(P),

α = β1 ∧ . . . ∧ βn,

(B1, β1), . . . , (Bn, βn) ∈ H,

} ∪ H
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Immediate consequence operator

Let H be a Herbrand interpretation and Π an extended program.
Then the immediate consequence operator is defined as follows:

TP(H) = {(A, α) | A← B1
i , . . . ,Bni

i ∈ Π(P),

α = supi{β1i ∧ . . . ∧ βni
i},

(B1
i , β1

i ), . . . , (Bni
i , βni

i ) ∈ H,

1 ≤ i ≤ k} ∪ H

We instantiate the starting Herbrand interpretation H0 with

{(l ∼ l ′,R(l , l ′) | l , l ′ ∈ L,R(l , l ′) ≥ λ}.



Immediate consequence operator

Let H be a Herbrand interpretation and Π an extended program.
Then the immediate consequence operator is defined as follows:

TP(H) = {(A, α) | A← B1
i , . . . ,Bni

i ∈ Π(P),

α = supi{β1i ∧ . . . ∧ βni
i},

(B1
i , β1

i ), . . . , (Bni
i , βni

i ) ∈ H,

1 ≤ i ≤ k} ∪ H

The least fixpoint of TP is the smallest H s.t. TP(H) = H. It
should coincide with the least Herbrand model of P.



Immediate consequence operator: Example

Let again a ∼0.7 b ∼0.5 c , q ∼0.8 r , λ = 0.4, ∧ = min and
P = {r(a)}.
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Let again a ∼0.7 b ∼0.5 c , q ∼0.8 r , λ = 0.4, ∧ = min and
P = {r(a)}. Then Π(P) =
{(r(a)← r ∼ r , a ∼ a), (q(a)← q ∼ r , a ∼ a),
(r(b)← r ∼ r , b ∼ a), (q(b)← q ∼ r , b ∼ a),
(r(c)← r ∼ r , c ∼ a), (q(c)← q ∼ r , c ∼ a)}.



Immediate consequence operator: Example

Let again a ∼0.7 b ∼0.5 c , q ∼0.8 r , λ = 0.4, ∧ = min and
P = {r(a)}. Then Π(P) =
{(r(a)← r ∼ r , a ∼ a), (q(a)← q ∼ r , a ∼ a),
(r(b)← r ∼ r , b ∼ a), (q(b)← q ∼ r , b ∼ a),
(r(c)← r ∼ r , c ∼ a), (q(c)← q ∼ r , c ∼ a)}.

H0 = {(a ∼ b, 0.7), (b ∼ c , 0.5), (r ∼ q, 0.8),
(a ∼ a, 1), (b ∼ b, 1), (c ∼ c , 1), (r ∼ r , 1), (q ∼ q, 1)}.



Immediate consequence operator: Example

Let again a ∼0.7 b ∼0.5 c , q ∼0.8 r , λ = 0.4, ∧ = min and
P = {r(a)}. Then Π(P) =
{(r(a)← r ∼ r , a ∼ a), (q(a)← q ∼ r , a ∼ a),
(r(b)← r ∼ r , b ∼ a), (q(b)← q ∼ r , b ∼ a),
(r(c)← r ∼ r , c ∼ a), (q(c)← q ∼ r , c ∼ a)}.

H1 = TP(H0) = H0 ∪ {
(r(a), sup{1 ∧ 1}),
(q(a), sup{0.8 ∧ 1}),
(r(b), sup{1 ∧ 0.7}),
(q(b), sup{0.8 ∧ 0.7})
}



Immediate consequence operator: Example

Let again a ∼0.7 b ∼0.5 c , q ∼0.8 r , λ = 0.4, ∧ = min and
P = {r(a)}. Then Π(P) =
{(r(a)← r ∼ r , a ∼ a), (q(a)← q ∼ r , a ∼ a),
(r(b)← r ∼ r , b ∼ a), (q(b)← q ∼ r , b ∼ a),
(r(c)← r ∼ r , c ∼ a), (q(c)← q ∼ r , c ∼ a)}.

H1 = TP(H0) = H0 ∪ {
(r(a), 1),
(q(a), 0.8),
(r(b), 0.7),
(q(b), 0.7)
}



Immediate consequence operator: Example

Let again a ∼0.7 b ∼0.5 c , q ∼0.8 r , λ = 0.4, ∧ = min and
P = {r(a)}. Then Π(P) =
{(r(a)← r ∼ r , a ∼ a), (q(a)← q ∼ r , a ∼ a),
(r(b)← r ∼ r , b ∼ a), (q(b)← q ∼ r , b ∼ a),
(r(c)← r ∼ r , c ∼ a), (q(c)← q ∼ r , c ∼ a)}.

H2 = TP(H1) = H1 ∪ ∅ = H1

Thus, H1 is the least fixpoint of TP .



Immediate consequence operator: Example revisited

Let now R′ = R, but P ′ = P ∪ {p(y)← r(y)}.
▶ Lin(P ′) = Lin(P) ∪ {p(x)← x ∼ y , r(y)}
▶ Approx(Lin(P ′)) = Approx(Lin(P)) ∪ {p(x)← x ∼ y , r(y)}
▶ Ground(Approx(Lin(P ′))) = Π(P ′) =

Ground(Approx(Lin(P))) ∪ {(p(a)← a ∼ a, r(a)),
(p(a)← a ∼ b, r(b)), (p(b)← b ∼ a, r(a)),
(p(b)← b ∼ b, r(b)), (p(b)← b ∼ c , r(c)),
(p(c)← c ∼ b, r(b)), (p(c)← c ∼ c , r(c))}



Immediate consequence operator: Example revisited

Let now R′ = R, but P ′ = P ∪ {p(y)← r(y)}.
▶ Lin(P ′) = Lin(P) ∪ {p(x)← x ∼ y , r(y)}
▶ Approx(Lin(P ′)) = Approx(Lin(P)) ∪ {p(x)← x ∼ y , r(y)}
▶ Ground(Approx(Lin(P ′))) = Π(P ′) =

Ground(Approx(Lin(P))) ∪ {(p(a)← a ∼ a, r(a)),
(p(a)← a ∼ b, r(b)), (p(b)← b ∼ a, r(a)),
(p(b)← b ∼ b, r(b)), (p(b)← b ∼ c , r(c)),
(p(c)← c ∼ b, r(b)), (p(c)← c ∼ c , r(c))}

H ′0 = H0 ∪ {(p ∼ p, 1)} and



Immediate consequence operator: Example revisited

Let now R′ = R, but P ′ = P ∪ {p(y)← r(y)}.
▶ Lin(P ′) = Lin(P) ∪ {p(x)← x ∼ y , r(y)}
▶ Approx(Lin(P ′)) = Approx(Lin(P)) ∪ {p(x)← x ∼ y , r(y)}
▶ Ground(Approx(Lin(P ′))) = Π(P ′) =

Ground(Approx(Lin(P))) ∪ {(p(a)← a ∼ a, r(a)),
(p(a)← a ∼ b, r(b)), (p(b)← b ∼ a, r(a)),
(p(b)← b ∼ b, r(b)), (p(b)← b ∼ c , r(c)),
(p(c)← c ∼ b, r(b)), (p(c)← c ∼ c , r(c))}

H ′0 = H0 ∪ {(p ∼ p, 1)} and
H ′1 = H ′0 ∪ {(r(a), 1), (r(b), 0.7), (q(a), 0.8), (q(b), 0.7)}.



Immediate consequence operator: Example revisited

Let now R′ = R, but P ′ = P ∪ {p(y)← r(y)}.
▶ Lin(P ′) = Lin(P) ∪ {p(x)← x ∼ y , r(y)}
▶ Approx(Lin(P ′)) = Approx(Lin(P)) ∪ {p(x)← x ∼ y , r(y)}
▶ Ground(Approx(Lin(P ′))) = Π(P ′) =

Ground(Approx(Lin(P))) ∪ {(p(a)← a ∼ a, r(a)),
(p(a)← a ∼ b, r(b)), (p(b)← b ∼ a, r(a)),
(p(b)← b ∼ b, r(b)), (p(b)← b ∼ c , r(c)),
(p(c)← c ∼ b, r(b)), (p(c)← c ∼ c , r(c))}

H ′2 = TP(H
′
1) = H ′1 ∪ {

(p(a), sup{1 ∧ 1, 0.7 ∧ 0.7}),
(p(b), sup{0.7 ∧ 1, 1 ∧ 0.7}),
(p(c), sup{0.5 ∧ 0.7})
}



Immediate consequence operator: Example revisited

Let now R′ = R, but P ′ = P ∪ {p(y)← r(y)}.
▶ Lin(P ′) = Lin(P) ∪ {p(x)← x ∼ y , r(y)}
▶ Approx(Lin(P ′)) = Approx(Lin(P)) ∪ {p(x)← x ∼ y , r(y)}
▶ Ground(Approx(Lin(P ′))) = Π(P ′) =

Ground(Approx(Lin(P))) ∪ {(p(a)← a ∼ a, r(a)),
(p(a)← a ∼ b, r(b)), (p(b)← b ∼ a, r(a)),
(p(b)← b ∼ b, r(b)), (p(b)← b ∼ c , r(c)),
(p(c)← c ∼ b, r(b)), (p(c)← c ∼ c , r(c))}

H ′2 = TP(H
′
1) = H ′1 ∪ {

(p(a), 1),
(p(b), 0.7),
(p(c), 0.5)
}



Proving via SLD-resolution

Definition
Let A,A′ be atoms and Q,G be conjunctions of atoms. Then

← A′,G =⇒C ,σ,β
WSLD← (Q,G )σ

is a weak SLD-resolution step, where

▶ C = A← Q ∈ P

▶ σ = wmgu(A,A′)

▶ β = R(Aσ,A′σ) ≥ λ
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Then we prove (p(c), 0.5) via

← p(c) =⇒p(y)←r(y),y→b,0.5
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Then we prove (p(c), 0.5) via
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← r(b) =⇒r(a),id ,1
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← A′,G =⇒C ,σ,β
WSLD← (Q,G )σ

is a weak SLD-resolution step, where

▶ C = A← Q ∈ P
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Then we prove (p(c), 0.5) via
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Proving via SLD-resolution

Definition
Let A,A′ be atoms and Q,G be conjunctions of atoms. Then

← A′,G =⇒C ,σ,β
WSLD← (Q,G )σ

is a weak SLD-resolution step, where

▶ C = A← Q ∈ P

▶ σ = wmgu(A,A′)

▶ β = R(Aσ,A′σ) ≥ λ

We say that a pair (A, α) is provable from the program P, i.e.
P ⊢ (A, α), iff ← A =⇒∗,αWSLD .



Proving via SLD-resolution

Definition
Let A,A′ be atoms and Q,G be conjunctions of atoms. Then

← A′,G =⇒C ,σ,β
WSLD← (Q,G )σ

is a weak SLD-resolution step, where

▶ C = A← Q ∈ P

▶ σ = wmgu(A,A′)

▶ β = R(Aσ,A′σ) ≥ λ

We say that a pair (A, α) is provable from the program P, i.e.
P ⊢ (A, α), iff ← A =⇒∗,αWSLD .
{(A, α)|P ⊢ (A, α)} should again coincide with the least Herbrand
model.


