COMBINING
GENERALIZATION
ALGORITHMS

4

Temur Kutsia

Joint work with Mauricio Ayala (University of Brasilia), David Cerna
(Czech Academy) and Christophe Ringeissen (INRIA/LORIA)

"Ny
IXY, W

UNIVERSITY LINZ



Generalization problem

Given: An equational theory E and two terms t; and ¢s.
Find: A term r such that for some substitutions o1 and o,

roy =g t1 and rog =g to.

r is more general than t; and ¢ (notation: r <g t;,i =1, 2).

o1 and oy: witness substitutions.

r: a common generalization of ¢; and t,.

1/29



Generalization problem

Given: An equational theory E and two terms t; and ¢s.
Find: A term r such that for some substitutions o1 and o,

roy =g t1 and rog =g to.

r is more general than t; and ¢ (notation: r <g t;,i =1, 2).
o1 and o9: witness substitutions.
r: a common generalization of ¢; and t,.

r is a least general generalization (Igg) of ¢; and ¢, if there is no
r’ such that

B /’ is a generalization of ¢; and ¢,, and
B ¢’ is strictly less general than r.

1/29



Lest General Generalizations

01 02

2/29



Lest General Generalizations

01 ('HI) g9
p1 pz

2/29



Lest General Generalizations

2/29



Examples

E =0 : syntactic equality
t1 = f(aag(a‘))

r= f(xz,g(x)) : asingle lgg
r{z—a} =gt

r{x — b} =g t2

3/29



Examples

E={f(z,y) = f(y,z)} : fis commutative
tr = g(a, f(a,0))
to = g(b7 f(b7 a))

r = g('rvf('rvy)) :an Igg
ri{x —a,y— b} =gt

ri{x —by— a} =gty

4/29



Examples

E={f(z,y) = f(y,z)} : fis commutative
tr = g(a, f(a,0))
to = g(b7 f(b7 a))

r1 = g(x, f(z,y)) - anlgg
ri{x —a,y— b} =gt
ri{x —by— a} =gty

ro = g(z, f(a,b)) : another lgg
ro{z—a} =gt

ri{z— b} =gty

4/29



Examples

E={f(f(x,y),2) = f(z, f(y,2))} : fis associative
t1 = f(a7b7 ba CL)

to = f(a,b,a)

r1 = f(a,b,x): anlgg
7”1{33 = f(bv a’)} =gt

ri{x—a} =g t2

5/29



Examples

E={f(f(x,y),2) = f(z, f(y,2))} : fis associative
t1 = f(a7b7 ba CL)

to = f(a,b,a)

r1 = f(a,b,x) : anlgg
ri{z — f(b,a)} =g t1
ri{x—a} =g t2

re = f(y,b,a) : another Igg
ra{y = fla,b)} =g ta

ri{y — a} =g to

5/29



Examples

E={f(f(z,9),2) = f(&, [(y.2)), f(x,€) = &, fe,2) =z} -
f is associative, e its unit element

t1 = f(a,b,b,a)

to = f(a,b,a)

r1 = f(a,b,x,a) : onelgg
7"1{1"—)1)} =g t1

ri{r—e} =gty

6/29



Examples

E={f(f(z,9),2) = f(&, [(y.2)), f(x,€) = &, fe,2) =z} -
f is associative, e its unit element

t1 = f(a,b,b,a)

to = f(a,b,a)

r1 = f(a,b,x,a) : onelgg
ri{x — b} =gt
ri{r—e} =gty

ro = f(a,y,b,a) : anotherlgg
ro{y — b} =g t1
ri{y— e} =g ta

6/29



Examples

E = {f(f(ava’)va) = f(a’v a)a f(f(bv b)’b) = f(b7 b)}
3 :f(aaa)
2 :f(bab)

r1 = f(z1,11),
ro = f(f(xg,xg),aﬁg),
r3 = f(f(f(x3,23),23),23),

infinitely many Iggs
ri{z; — a} =p t; foranyi > 1

ri{z; — b} =gty forany i > 1

7129



Examples

E={f(a) =a, f(b) = b}
t1:: a

ta=0>

A chain of strictly decreasing generalizations
=1 <pry = f(x2) <pr3 = f(f(x3)) -
ri{x; —a} =gty forany: > 1

ri{z; — b} =g to forany i > 1

8/29



Minimal Complete Set of Generalizations

Given an equational theory E, a set of terms G is called a
complete set of F-generalizations of the given terms t; and to,
if the following properties are satisfied:

B Soundness: each r € G is an E-generalization of ¢; and ts.

B Completeness: for each E-generalization r’ of ¢; and ¢
there exists r € G such that ' <p r.

9/29



Minimal Complete Set of Generalizations

Given an equational theory E, a set of terms G is called a
complete set of F-generalizations of the given terms t; and to,
if the following properties are satisfied:

B Soundness: each r € G is an E-generalization of ¢; and ts.

B Completeness: for each E-generalization r’ of ¢; and ¢
there exists r € G such that ' <p r.

The set G is called a minimal complete set of F-generalizations
of ¢; and t,, denoted by mcsg (1, t2), if, in addition, the
following holds:

B Minimality: no distinct elements of G are <g-comparable.

9/29



Generalization Algorithm in the Free Theory

A rule-base algorithm working on configurations P; S; o, where

B P is a set of unsolved problems,
B S is a set of solved problems, and

B o is a substitution representing the generalization
computed so far.

10/29



Generalization Algorithm in the Free Theory

A rule-base algorithm working on configurations P; S; o, where

B P is a set of unsolved problems,
B S is a set of solved problems, and

B o is a substitution representing the generalization
computed so far.

To generalize t and s, take a fresh variable x, create the initial
configuration {z : t £ s};; Id and apply the algorithm rules as
long as possible.

10/29



Generalization Algorithm in the Free Theory

A rule-base algorithm working on configurations P; S; o, where

B P is a set of unsolved problems,
B S is a set of solved problems, and

B o is a substitution representing the generalization
computed so far.

To generalize t and s, take a fresh variable x, create the initial
configuration {z : t £ s};; Id and apply the algorithm rules as
long as possible.

The process stops in some final configuration §; S; o such that

B 2o is anlgg of t and s,
B S gives the corresponding witness substitutions.

10/29



Generalization Algorithm in the Free Theory

DEc: Decomposition
{:U:f(tl,...,tn)éf(sl,...,sn)}LﬂP;S;U:>
PU{y1:t1ésl,...,yn:tnésn};S;a{xHf(yl,...,yn)}

where n > 0 and 41, ..., y, are fresh.

SoL: Solve
{z:t2s}wWP;S;0 = P;SU{z:t=s};0,

if root(t) # root(s).

MER: Merge

)

Pi{x:t2s 2" t2s}wS;0= 0;SU{x:t2 s} 0{z' — x}.

11/29



Generalization Algorithm in the Free Theory

Example

Syntactic generalization of f(a, g(a)) and f(b, g(b)):
{z: fa,g(a)) £ f(b,9(0)}; 0; Id =>pec
{y:a2bz:g(a) £ g(0)};0; {z = fy,2)} =>sal
{z:9(a) £ g(0)}i{y:a £ b} {z = f(y,2)} = pec
{uza2b}{y: a2} {z = f(y,9(w)),z = g(u)} =>so
O:{y:a2b uza2bli{z = fy,9(w)), 2 = g(u)} = mer
0:{y:a £ b} {z — f(y,9(v)), 2~ 9(y),u — y}.

The Igg: the instance of « under the computed subst.: f(y, g(v)).

The witness substitutions: {y — a} and {y > b}.

12/29



Generalization Type

The type of the E-generalization problem between ¢; and t9 is

B unitary (1): if mesgy(t1,t2) is a singleton,
B finitary (w): if mesgy(t1, t2) is finite (not a singleton),
B infinitary (oo): if mesgp (¢, t2) is infinite,

B nullary (0): if mesgp(t1,t2) does not exist
(i.e., minimality and completeness contradict each other).

The generalization type of an equational theory FE:

B the <-maximal type of E-generalization problems, where
1<w<oo<O.

13/29



Generalization Type: Examples

B Unitary:

E =0.
B Finitary:

commutativity, associativity, associativity with unit.
B Infinitary:

E={f(f(a,a),a) = f(a,a), f(f(bb),b) = f(bb)}
H Nullary:

E={f(a)=a, f(b) =b}.

14/29



Combination Problem

Is it possible to derive a generalization algorithm for a union of
equational theories from the existing generalization algorithms
for the component theories?

15/29



Combination Problem

Is it possible to derive a generalization algorithm for a union of
equational theories from the existing generalization algorithms
for the component theories?

Given (complete) algorithms for theory E; and for theory E»,
can we obtain a (complete) algorithm for £y U Es?

Modularity.

15/29



Combination Problem

For theories sharing function symbols, the combination problem
is very challenging.
Generalization type might change.

Each of E; = {f(a) = a} and Ey = {f(b) = b} are theories with
the unitary generalization type, but £ U Es is nullary.

16/29



Combination Problem

For theories sharing function symbols, the combination problem
is very challenging.

Generalization type might change.

Each of E; = {f(a) = a} and Ey = {f(b) = b} are theories with
the unitary generalization type, but £ U Es is nullary.

We focus on signature-disjoint union (no shared symbols in the
axioms).

16/29



Combination Problem

Even signature-disjoint union can be problematic.

Each of

B FE ={f(x,0) =z, f(0,z)=2z}and
B L= {9(377 1) ==z, g(1,7) :x}

are theories with the finitary generalization type, but £, U E; is
nullary.

17/29



Combination Problem

Even signature-disjoint union can be problematic.
Each of

B B = {f(z,0) ==, f(0,z) =2} and

B E,={g(x,1) ==, g(l,z) =z}

are theories with the finitary generalization type, but £, U E; is
nullary.

— Signature-disjoint union for a restricted class of equational
theories.

17/29



Classes of Equational Theories

Collapse-free

Regular

Subterm collapse-free

Finite

Permutative

18/29



Classes of Equational Theories

Collapse-free

Regular

Subterm collapse-free

Finite

Permutative
0,A,C, AC

18/29



Classes of Equational Theories

Collapse-free

Regular

Subterm collapse-free

Finite
{f(@) = g(=)}
Permutative
0,A,C, AC

{/(a,b) = f(b,0)}

18/29



Classes of Equational Theories

Collapse-free

Regular

Subterm collapse-free

{f(g(=)) = F(=)}

Finite
{f(@) = g(=)}
Permutative
0,A,C, AC

{/(a,b) = f(b,0)}

{f(a,g(z)) = f(a,2), (b, g(x)) = f(b,z)}

18/29



Classes of Equational Theories

Collapse-free

Regular

Subterm collapse-free

{f(g(=)) = F(=)}

Finite
{f(@) = g(=)}
Permutative
0,A,C, AC

{/(a,b) = f(b,0)}

{f(a,g(z)) = f(a,2), (b, g(x)) = f(b,z)}

{f(a) =a, f(b) =0}

18/29



Classes of Equational Theories

Collapse-free

Regular
Subterm collapse-free
{f(g(x)) = f()}
Finite

{f(z,2) ==} {f(z) =g(=)}

Permutative

0,A,C,AC
{f(z,e) =z, {f(a,b) = £(b,)}
fle,z) =z}
{f(a,g(z)) = f(a,2), (b, g(x)) = f(b,z)}
{f(a) = a, f(b) =0}

18/29



Classes of Equational Theories

Collapse-free

Regular

{f@.w) =)

{(f(z,0) = =,
fle,x) =}

Subterm collapse-free

{f(g(=)) = F(=)}

Finite

{f(@) = g(=)}

Permutative
0,A,C, AC

{/(a,b) = f(b,0)}

{f(a,9(x))

= f(a,z), f(b,g(z)) = (b, )}

{f(a) =a, f(b) =0}

{fle,z) =e, f(z,e) =}

18/29



Classes of Equational Theories

Collapse-free

Regular

Subterm collapse-free

Finite

Permutative

18/29



Regular Collapse-Free Theories

We designed a combination method for generalization in the
union of signature-disjoint regular collapse-free theories, where

B free (uninterpreted) constants are allowed in generalization
problems together with symbols from the component
signatures,

B for each component theory (enriched with free constants),
we have a procedure that computes a minimal complete
set of generalizations together with their witness
substitutions,

B equality is decidable in the combined theory.

19/29



Combination Algorithms: Two Versions

Black-box combination:

B does not require the knowledge of how the component
algorithms work,

B only an input-output interface with the them is needed,
B more generic, but less transparent.

20/29



Combination Algorithms: Two Versions

White-box combination:

B both component algorithms work on the same
data-structure: P;S; o, where P is a set of unsolved
problems, S is a set of solved ones, o is a substitution
representing the generalization computed so far.

B PSS: problem, solved set, substitution,

B less generic than black-box, but more transparent and
provides more flexibility,

B many existing algorithms for particular theories are PSS
algorithms.

21/29



Alien Subterm Abstraction

A technique used in various combination algorithms.
ldea:

Bl [f the root of a term ¢ is a symbol from the signature ¥
(resp. X»), replace all maximal subterms of ¢ rooted in X5
(resp. 1) by fresh free constants.

B Equal subterms are replaces by the same constants.

B Hence, if the original term contains symbols from %4, X,
and C (free constants), and is rooted in ¥, then the
abstracted term contains symbols from ¥; and C.

22/29



Alien Subterm Abstraction

ldea by example.

Assume
X, ={fh}
B > = {g,a,b} with g(a) =g, b,
M cis a free constant.

Then

B Blue subterms of f(g(a),b, h(g(D)),c) are alien in it.

B Abstraction of f(g(a),b, h(g(b)),c)is f(c1,c1,h(c2),c),
where c¢; and ¢y are new free constants.

23/29



Black-Box Combination Algorithm: Rules

E;-GEN: Generalization in the F;-theory

{r:t25}WA;S;0 =
(P\S;)UA;S;US;0{x— Wﬁl(r)},

where

B root(t) € 3; U C and root(s) € X; U C,
B r is the alien subterm abstraction mapping,
B 7 € mesgg, (n(t), 7(s)), and ¢, are its witnesses,
W P={y:7 (yp) 27 '(y¥) | y € var(r)},
WS ={y:t'2s|(y:t'=5)eP,
root(t') € ¥; U C, root(s’) € 3; UC}.

24/29



Black-Box Combination Algorithm

E15-SoL: Solving in the combined theory
{z:t2s}WA;S;0= A;SU{z:t=25};0,

if root(t) € ¥; and root(s) € ¥3_;, i =1,2.

E1>-MER: Merging in the combined theory

Pi{z:t2s 2/t 25 WS 0=
P;SU{z:t= s} o{ — x},

if ¢ =F1UE> t"and s =F1UE> s,

25/29



White-Box Combination Algorithm: Rules

E;-STEP: Step in the E;-theory

{r:t2s}WP; S 0=
PU 77_1(Pi); S U w_l(Si); O'(7T_1(O'i)),

where

B root(t) € 3; UC and root(s) € X; U C,

B = is the alien subterm abstraction mapping, and

B {z:7(t) 2 7(s)};0; Id =, Pi; Si; 04, Where =, is @
step performed by the &; algorithm for theory FE;.

26/29



White-Box Combination Algorithm

E15-SoL: Solving in the combined theory
{z:t2s}WA;S;0= A;SU{z:t=25};0,

if root(t) € ¥; and root(s) € ¥3_;, i =1,2.

E1>-MER: Merging in the combined theory

Pi{z:t2s 2/t 25 WS 0=
P;SU{z:t= s} o{ — x},

if ¢ =F1UE> t"and s =F1UE> s,

27/29



Properties

We designed a combination method for generalization in the union of
signature-disjoint regular collapse-free theories, where

B free (uninterpreted) constants are allowed in generalization
problems together with symbols from the component signatures,

B for each component theory (enriched with free constants), we
have a procedure that computes a minimal complete set of
generalizations together with their witness substitutions,

B equality is decidable in the combined theory.

Both black-box and white-box combined algorithms are complete.

If at least one of the component theories is not finitary, the white-box
combination is preferred over the black-box, since the latter may
generate an infinitely branching derivation tree.

28/29



Next Steps

Relaxing the disjointness restriction: shared constructors?

Replacing substitutions by a certain kind of tree grammars
(finitary representation of an infinite set of generalizations)
— terminating algorithms for some non-finitary problems?

Relaxing regularity and collapse-freeness restrictions.

29/29



