COMBINING GENERALIZATION ALGORITHMS

Temur Kutsia

Joint work with Mauricio Ayala (University of Brasilia), David Cerna (Czech Academy) and Christophe Ringeissen (INRIA/LORIA)

Generalization problem

Given: An equational theory *E* and two terms t_1 and t_2 . **Find:** A term *r* such that for some substitutions σ_1 and σ_2 ,

$$r\sigma_1 =_E t_1$$
 and $r\sigma_2 =_E t_2$.

r is more general than t_1 and t_2 (notation: $r \leq_E t_i$, i = 1, 2).

 σ_1 and σ_2 : witness substitutions.

r: a common generalization of t_1 and t_2 .

Generalization problem

Given: An equational theory *E* and two terms t_1 and t_2 . **Find:** A term *r* such that for some substitutions σ_1 and σ_2 ,

 $r\sigma_1 =_E t_1$ and $r\sigma_2 =_E t_2$.

r is more general than t_1 and t_2 (notation: $r \leq_E t_i$, i = 1, 2).

 σ_1 and σ_2 : witness substitutions.

r: a common generalization of t_1 and t_2 .

r is a least general generalization (lgg) of $t_1 \mbox{ and } t_2$ if there is no r^\prime such that

 \blacksquare r' is a generalization of t_1 and t_2 , and

 \blacksquare r' is strictly less general than r.

Lest General Generalizations

Lest General Generalizations

Lest General Generalizations

$$\begin{split} E &= \emptyset : \text{ syntactic equality} \\ t_1 &= f(a, g(a)) \\ t_2 &= f(b, g(b)) \\ r &= f(x, g(x)) : \text{ a single lgg} \\ r\{x \mapsto a\} =_E t_1 \end{split}$$

 $r\{x \mapsto b\} =_E t_2$

3/29

$$E = \{f(x, y) = f(y, x)\}: f \text{ is commutative}$$

$$t_1 = g(a, f(a, b))$$

$$t_2 = g(b, f(b, a))$$

$$\begin{split} r_1 &= g(x, f(x, y)): \text{ an lgg} \\ r_1\{x \mapsto a, y \mapsto b\} =_E t_1 \\ r_1\{x \mapsto b, y \mapsto a\} =_E t_2 \end{split}$$

$$E = \{f(x, y) = f(y, x)\}: f \text{ is commutative}$$

$$t_1 = g(a, f(a, b))$$

$$t_2 = g(b, f(b, a))$$

$$r_1 = g(x, f(x, y)) : \text{ an lgg}$$

$$r_1\{x \mapsto a, y \mapsto b\} =_E t_1$$

$$r_1\{x \mapsto b, y \mapsto a\} =_E t_2$$

$$r_2 = g(z, f(a, b)) : \text{ another lgg}$$

$$r_2\{z \mapsto a\} =_E t_1$$

$$r_1\{z \mapsto b\} =_E t_2$$

$$E = \{f(f(x, y), z) = f(x, f(y, z))\}: f \text{ is associative}$$

$$t_1 = f(a, b, b, a)$$

$$t_2 = f(a, b, a)$$

$$r_1 = f(a, b, x) : \text{ an lgg}$$
$$r_1\{x \mapsto f(b, a)\} =_E t_1$$
$$r_1\{x \mapsto a\} =_E t_2$$

$$E = \{f(f(x, y), z) = f(x, f(y, z))\}: f \text{ is associative}$$

$$t_1 = f(a, b, b, a)$$

$$t_2 = f(a, b, a)$$

$$r_1 = f(a, b, x) : \text{ an lgg}$$

$$r_1\{x \mapsto f(b, a)\} =_E t_1$$

$$r_1\{x \mapsto a\} =_E t_2$$

$$r_2 = f(y, b, a) : \text{ another lgg}$$

$$r_2\{y \mapsto f(a, b)\} =_E t_1$$

$$r_1\{y \mapsto a\} =_E t_2$$

 $E = \{f(f(x, y), z) = f(x, f(y, z)), f(x, e) = x, f(e, x) = x\}:$ f is associative, e its unit element $t_1 = f(a, b, b, a)$ $t_2 = f(a, b, a)$ $r_1 = f(a, b, x, a): \text{ one lgg}$ $r_1\{x \mapsto b\} =_E t_1$ $r_1\{x \mapsto e\} =_E t_2$

 $E = \{f(f(x, y), z) = f(x, f(y, z)), f(x, e) = x, f(e, x) = x\}:$ f is associative, e its unit element $t_1 = f(a, b, b, a)$ $t_2 = f(a, b, a)$ $r_1 = f(a, b, x, a)$: one lgg $r_1\{x \mapsto b\} =_E t_1$ $r_1\{x \mapsto e\} =_E t_2$ $r_2 = f(a, y, b, a)$: another lgg $r_2\{y \mapsto b\} =_E t_1$ $r_1\{y \mapsto e\} =_E t_2$

. . .

$$E = \{f(f(a, a), a) = f(a, a), f(f(b, b), b) = f(b, b)\}$$

$$t_1 = f(a, a)$$

$$t_2 = f(b, b)$$

$$r_1 = f(x_1, x_1),$$

$$r_2 = f(f(x_2, x_2), x_2),$$

$$r_3 = f(f(f(x_3, x_3), x_3), x_3),$$

 $\begin{aligned} & \text{infinitely many lggs} \\ & r_i \{ x_i \mapsto a \} =_E t_1 \text{ for any } i \geq 1 \\ & r_i \{ x_i \mapsto b \} =_E t_2 \text{ for any } i \geq 1 \end{aligned}$

$$E = \{f(a) = a, f(b) = b\}$$

$$t_1 = a$$

$$t_2 = b$$

A chain of strictly decreasing generalizations $r_1 = x_1 \prec_E r_2 = f(x_2) \prec_E r_3 = f(f(x_3)) \cdots$ $r_i \{x_i \mapsto a\} =_E t_1$ for any $i \ge 1$ $r_i \{x_i \mapsto b\} =_E t_2$ for any $i \ge 1$

Minimal Complete Set of Generalizations

Given an equational theory E, a set of terms G is called a complete set of *E*-generalizations of the given terms t_1 and t_2 , if the following properties are satisfied:

- **Soundness:** each $r \in \mathcal{G}$ is an *E*-generalization of t_1 and t_2 .
- **Completeness:** for each *E*-generalization r' of t_1 and t_2 there exists $r \in \mathcal{G}$ such that $r' \preceq_E r$.

Minimal Complete Set of Generalizations

Given an equational theory E, a set of terms G is called a complete set of *E*-generalizations of the given terms t_1 and t_2 , if the following properties are satisfied:

- **Soundness:** each $r \in \mathcal{G}$ is an *E*-generalization of t_1 and t_2 .
- **Completeness:** for each *E*-generalization r' of t_1 and t_2 there exists $r \in \mathcal{G}$ such that $r' \preceq_E r$.

The set G is called a minimal complete set of *E*-generalizations of t_1 and t_2 , denoted by $mcsg_E(t_1, t_2)$, if, in addition, the following holds:

Minimality: no distinct elements of \mathcal{G} are \leq_E -comparable.

A rule-base algorithm working on configurations $P; S; \sigma$, where

- \blacksquare *P* is a set of unsolved problems,
- \blacksquare S is a set of solved problems, and
- σ is a substitution representing the generalization computed so far.

A rule-base algorithm working on configurations $P; S; \sigma$, where

- \blacksquare *P* is a set of unsolved problems,
- \blacksquare S is a set of solved problems, and
- σ is a substitution representing the generalization computed so far.

To generalize t and s, take a fresh variable x, create the initial configuration $\{x : t \triangleq s\}; \emptyset; Id$ and apply the algorithm rules as long as possible.

A rule-base algorithm working on configurations $P; S; \sigma$, where

- \blacksquare *P* is a set of unsolved problems,
- \blacksquare S is a set of solved problems, and
- σ is a substitution representing the generalization computed so far.

To generalize t and s, take a fresh variable x, create the initial configuration $\{x : t \triangleq s\}; \emptyset; Id$ and apply the algorithm rules as long as possible.

The process stops in some final configuration $\emptyset; S; \sigma$ such that

- $x\sigma$ is an lgg of t and s,
- \blacksquare *S* gives the corresponding witness substitutions.

DEC: Decomposition

$$\{x : f(t_1, \dots, t_n) \triangleq f(s_1, \dots, s_n) \} \uplus P; S; \sigma \Longrightarrow P \cup \{y_1 : t_1 \triangleq s_1, \dots, y_n : t_n \triangleq s_n\}; S; \sigma\{x \mapsto f(y_1, \dots, y_n)\},$$

where $n \ge 0$ and y_1, \ldots, y_n are fresh.

SOL: Solve

$$\{x: t \triangleq s\} \uplus P; S; \sigma \Longrightarrow P; S \cup \{x: t \triangleq s\}; \sigma,$$

 $\text{if } \operatorname{root}(t) \neq \operatorname{root}(s).$

MER: Merge

$$\emptyset; \{x: t \triangleq s, \; x': t \triangleq s\} \uplus S; \sigma \Longrightarrow \emptyset; S \cup \{x: t \triangleq s\}; \sigma\{x' \mapsto x\}.$$

Example

Syntactic generalization of f(a, g(a)) and f(b, g(b)):

$$\begin{split} \{x: f(a, g(a)) &\triangleq f(b, g(b))\}; \emptyset; Id \Longrightarrow_{\mathsf{Dec}} \\ \{y: a \triangleq b, z: g(a) \triangleq g(b)\}; \emptyset; \{x \mapsto f(y, z)\} \Longrightarrow_{\mathsf{Sol}} \\ \{z: g(a) \triangleq g(b)\}; \{y: a \triangleq b\}; \{x \mapsto f(y, z)\} \Longrightarrow_{\mathsf{Dec}} \\ \{u: a \triangleq b\}; \{y: a \triangleq b\}; \{x \mapsto f(y, g(u)), z \mapsto g(u)\} \Longrightarrow_{\mathsf{Sol}} \\ \emptyset; \{y: a \triangleq b, u: a \triangleq b\}; \{x \mapsto f(y, g(u)), z \mapsto g(u)\} \Longrightarrow_{\mathsf{Mer}} \\ \emptyset; \{y: a \triangleq b\}; \{x \mapsto f(y, g(y)), z \mapsto g(y), u \mapsto y\}. \end{split}$$

The lgg: the instance of x under the computed subst.: f(y, g(y)). The witness substitutions: $\{y \mapsto a\}$ and $\{y \mapsto b\}$.

Generalization Type

The type of the *E*-generalization problem between t_1 and t_2 is

- **unitary** (1): if $mcsg_E(t_1, t_2)$ is a singleton,
- finitary (ω): if mcsg_E(t_1, t_2) is finite (not a singleton),
- infinitary (∞): if $mcsg_E(t_1, t_2)$ is infinite,
- nullary (0): if mcsg_E(t₁, t₂) does not exist (i.e., minimality and completeness contradict each other).

The generalization type of an equational theory E:

■ the <-maximal type of *E*-generalization problems, where $1 < \omega < \infty < 0$.

Generalization Type: Examples

■ Unitary:

 $E = \emptyset.$

■ Finitary:

commutativity, associativity, associativity with unit.

■ Infinitary:

$$E = \{f(f(a, a), a) = f(a, a), \ f(f(b, b), b) = f(b, b)\}$$

■ Nullary:

$$E = \{f(a) = a, f(b) = b\}.$$

Is it possible to derive a generalization algorithm for a union of equational theories from the existing generalization algorithms for the component theories?

Is it possible to derive a generalization algorithm for a union of equational theories from the existing generalization algorithms for the component theories?

Given (complete) algorithms for theory E_1 and for theory E_2 , can we obtain a (complete) algorithm for $E_1 \cup E_2$?

Modularity.

For theories sharing function symbols, the combination problem is very challenging.

Generalization type might change.

Each of $E_1 = \{f(a) = a\}$ and $E_2 = \{f(b) = b\}$ are theories with the unitary generalization type, but $E_1 \cup E_2$ is nullary.

For theories sharing function symbols, the combination problem is very challenging.

Generalization type might change.

Each of $E_1 = \{f(a) = a\}$ and $E_2 = \{f(b) = b\}$ are theories with the unitary generalization type, but $E_1 \cup E_2$ is nullary.

We focus on signature-disjoint union (no shared symbols in the axioms).

Even signature-disjoint union can be problematic.

Each of

•
$$E_1 = \{f(x,0) = x, f(0,x) = x\}$$
 and
• $E_2 = \{g(x,1) = x, g(1,x) = x\}$

are theories with the finitary generalization type, but $E_1 \cup E_2$ is nullary.

Even signature-disjoint union can be problematic.

Each of

$$E_1 = \{ f(x,0) = x, \ f(0,x) = x \} \text{ and }$$
$$E_2 = \{ g(x,1) = x, \ g(1,x) = x \}$$

are theories with the finitary generalization type, but $E_1 \cup E_2$ is nullary.

 \longrightarrow Signature-disjoint union for a restricted class of equational theories.

	Collapse-free
Regular	Subterm collapse-free Finite Permutative

	Collapse-free
Regular	Subterm collapse-free Finite \emptyset, A, C, AC

	Collapse-free
Regular	Subterm collapse-free Finite Permutative
	· · · · · · · · · · · · · · · · · · ·

Regular Collapse-Free Theories

We designed a combination method for generalization in the union of signature-disjoint regular collapse-free theories, where

- free (uninterpreted) constants are allowed in generalization problems together with symbols from the component signatures,
- for each component theory (enriched with free constants), we have a procedure that computes a minimal complete set of generalizations together with their witness substitutions,
- equality is decidable in the combined theory.

Combination Algorithms: Two Versions

Black-box combination:

- does not require the knowledge of how the component algorithms work,
- only an input-output interface with the them is needed,
- more generic, but less transparent.

Combination Algorithms: Two Versions

White-box combination:

- both component algorithms work on the same data-structure: $P; S; \sigma$, where P is a set of unsolved problems, S is a set of solved ones, σ is a substitution representing the generalization computed so far.
 - PSS: problem, solved set, substitution,
- less generic than black-box, but more transparent and provides more flexibility,
- many existing algorithms for particular theories are PSS algorithms.

Alien Subterm Abstraction

A technique used in various combination algorithms.

Idea:

- If the root of a term t is a symbol from the signature Σ₁ (resp. Σ₂), replace all maximal subterms of t rooted in Σ₂ (resp. Σ₁) by fresh free constants.
- Equal subterms are replaces by the same constants.
- Hence, if the original term contains symbols from Σ_1 , Σ_2 , and *C* (free constants), and is rooted in Σ_1 , then the abstracted term contains symbols from Σ_1 and *C*.

Alien Subterm Abstraction

Idea by example.

Assume

$$\Sigma_1 = \{f, h\},$$

$$\blacksquare \ \Sigma_2 = \{g, a, b\} \text{ with } g(a) =_{E_2} b,$$

 \bullet c is a free constant.

Then

- **Blue** subterms of f(g(a), b, h(g(b)), c) are alien in it.
- Abstraction of f(g(a), b, h(g(b)), c) is $f(c_1, c_1, h(c_2), c)$, where c_1 and c_2 are new free constants.

Black-Box Combination Algorithm: Rules

 E_i -GEN: Generalization in the E_i -theory

$$\{x : t \triangleq s\} \uplus A; S; \sigma \Longrightarrow$$
$$(P \setminus S_i) \cup A; S_i \cup S; \sigma\{x \mapsto \pi^{-1}(r)\},$$

where

$$\begin{array}{l} \blacksquare \ \operatorname{root}(t) \in \Sigma_i \cup C \ \text{and} \ \operatorname{root}(s) \in \Sigma_i \cup C, \\ \blacksquare \ \pi \ \text{is the alien subterm abstraction mapping,} \\ \blacksquare \ r \in \operatorname{mcsg}_{E_i}(\pi(t), \pi(s)), \ \text{and} \ \phi, \psi \ \text{are its witnesses,} \\ \blacksquare \ P = \{y : \pi^{-1}(y\phi) \triangleq \pi^{-1}(y\psi) \mid y \in \operatorname{var}(r)\}, \\ \blacksquare \ S_i = \{y : t' \triangleq s' \mid (y : t' \triangleq s') \in P, \\ \operatorname{root}(t') \in \Sigma_i \cup C, \ \operatorname{root}(s') \in \Sigma_i \cup C\}. \end{array}$$

Black-Box Combination Algorithm

$E_{1,2}$ -SoL: Solving in the combined theory

$$\{x: t \triangleq s\} \uplus A; S; \sigma \Longrightarrow A; S \cup \{x: t \triangleq s\}; \sigma,$$

 $\text{if } \operatorname{root}(t) \in \Sigma_i \text{ and } \operatorname{root}(s) \in \Sigma_{3-i}, \, i=1,2.$

$E_{1,2}$ -MER: Merging in the combined theory

$$\begin{split} \emptyset; \{ x: t \triangleq s, \; x': t' \triangleq s' \} \uplus S; \sigma \Longrightarrow \\ \emptyset; S \cup \{ x: t \triangleq s \}; \sigma \{ x' \mapsto x \}, \end{split}$$

if $t =_{E_1 \cup E_2} t'$ and $s =_{E_1 \cup E_2} s'$.

White-Box Combination Algorithm: Rules

 E_i -STEP: Step in the E_i -theory

$$\{x : t \triangleq s\} \uplus P; S; \sigma \Longrightarrow P \cup \pi^{-1}(P_i); S \cup \pi^{-1}(S_i); \sigma(\pi^{-1}(\sigma_i)),$$

where

• $\operatorname{root}(t) \in \Sigma_i \cup C$ and $\operatorname{root}(s) \in \Sigma_i \cup C$,

 \blacksquare π is the alien subterm abstraction mapping, and

 $\blacksquare \{x : \pi(t) \triangleq \pi(s)\}; \emptyset; Id \Longrightarrow_{\mathfrak{G}_i} P_i; S_i; \sigma_i, \text{ where } \Longrightarrow_{\mathfrak{G}_i} \text{ is a step performed by the } \mathfrak{G}_i \text{ algorithm for theory } E_i.$

White-Box Combination Algorithm

$E_{1,2}$ -SoL: Solving in the combined theory

$$\{x: t \triangleq s\} \uplus A; S; \sigma \Longrightarrow A; S \cup \{x: t \triangleq s\}; \sigma,$$

 $\text{if } \operatorname{root}(t) \in \Sigma_i \text{ and } \operatorname{root}(s) \in \Sigma_{3-i}, \, i=1,2.$

$E_{1,2}$ -MER: Merging in the combined theory

$$\begin{split} \emptyset; \{ x: t \triangleq s, \; x': t' \triangleq s' \} \uplus S; \sigma \Longrightarrow \\ \emptyset; S \cup \{ x: t \triangleq s \}; \sigma \{ x' \mapsto x \}, \end{split}$$

 $\text{if } t =_{E_1 \cup E_2} t' \text{ and } s =_{E_1 \cup E_2} s'.$

Properties

We designed a combination method for generalization in the union of signature-disjoint regular collapse-free theories, where

- free (uninterpreted) constants are allowed in generalization problems together with symbols from the component signatures,
- for each component theory (enriched with free constants), we have a procedure that computes a minimal complete set of generalizations together with their witness substitutions,
- equality is decidable in the combined theory.

Both black-box and white-box combined algorithms are complete.

If at least one of the component theories is not finitary, the white-box combination is preferred over the black-box, since the latter may generate an infinitely branching derivation tree.

Relaxing the disjointness restriction: shared constructors?

Replacing substitutions by a certain kind of tree grammars (finitary representation of an infinite set of generalizations) \rightarrow terminating algorithms for some non-finitary problems?

Relaxing regularity and collapse-freeness restrictions.