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Generalization problem

Given: An equational theory E and two terms t1 and t2.

Find: A term r such that for some substitutions σ1 and σ2,

rσ1 =E t1 and rσ2 =E t2.

r is more general than t1 and t2 (notation: r ⪯E ti, i = 1, 2).

σ1 and σ2: witness substitutions.

r: a common generalization of t1 and t2.

r is a least general generalization (lgg) of t1 and t2 if there is no
r′ such that

■ r′ is a generalization of t1 and t2, and

■ r′ is strictly less general than r.
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Examples

E = ∅ : syntactic equality

t1 = f(a, g(a))

t2 = f(b, g(b))

r = f(x, g(x)) : a single lgg

r{x 7→ a} =E t1

r{x 7→ b} =E t2
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Examples

E = {f(x, y) = f(y, x)} : f is commutative

t1 = g(a, f(a, b))

t2 = g(b, f(b, a))

r1 = g(x, f(x, y)) : an lgg

r1{x 7→ a, y 7→ b} =E t1

r1{x 7→ b, y 7→ a} =E t2

r2 = g(z, f(a, b)) : another lgg

r2{z 7→ a} =E t1

r1{z 7→ b} =E t2

4 / 29



Examples

E = {f(x, y) = f(y, x)} : f is commutative

t1 = g(a, f(a, b))

t2 = g(b, f(b, a))

r1 = g(x, f(x, y)) : an lgg

r1{x 7→ a, y 7→ b} =E t1

r1{x 7→ b, y 7→ a} =E t2

r2 = g(z, f(a, b)) : another lgg

r2{z 7→ a} =E t1

r1{z 7→ b} =E t2

4 / 29



Examples

E = {f(f(x, y), z) = f(x, f(y, z))} : f is associative

t1 = f(a, b, b, a)

t2 = f(a, b, a)

r1 = f(a, b, x) : an lgg

r1{x 7→ f(b, a)} =E t1

r1{x 7→ a} =E t2

r2 = f(y, b, a) : another lgg

r2{y 7→ f(a, b)} =E t1

r1{y 7→ a} =E t2
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Examples

E = {f(f(x, y), z) = f(x, f(y, z)), f(x, e) = x, f(e, x) = x} :

f is associative, e its unit element

t1 = f(a, b, b, a)

t2 = f(a, b, a)

r1 = f(a, b, x, a) : one lgg

r1{x 7→ b} =E t1

r1{x 7→ e} =E t2

r2 = f(a, y, b, a) : another lgg

r2{y 7→ b} =E t1

r1{y 7→ e} =E t2
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Examples

E = {f(f(a, a), a) = f(a, a), f(f(b, b), b) = f(b, b)}
t1 = f(a, a)

t2 = f(b, b)

r1 = f(x1, x1),

r2 = f(f(x2, x2), x2),

r3 = f(f(f(x3, x3), x3), x3),

. . .

infinitely many lggs

ri{xi 7→ a} =E t1 for any i ≥ 1

ri{xi 7→ b} =E t2 for any i ≥ 1
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Examples

E = {f(a) = a, f(b) = b}
t1 = a

t2 = b

A chain of strictly decreasing generalizations

r1 = x1 ≺E r2 = f(x2) ≺E r3 = f(f(x3)) · · ·
ri{xi 7→ a} =E t1 for any i ≥ 1

ri{xi 7→ b} =E t2 for any i ≥ 1
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Minimal Complete Set of Generalizations

Given an equational theory E, a set of terms G is called a
complete set of E-generalizations of the given terms t1 and t2,
if the following properties are satisfied:

■ Soundness: each r ∈ G is an E-generalization of t1 and t2.

■ Completeness: for each E-generalization r′ of t1 and t2
there exists r ∈ G such that r′ ⪯E r.

The set G is called a minimal complete set of E-generalizations
of t1 and t2, denoted by mcsgE(t1, t2), if, in addition, the
following holds:

■ Minimality: no distinct elements of G are ⪯E-comparable.
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Generalization Algorithm in the Free Theory

A rule-base algorithm working on configurations P ;S;σ, where

■ P is a set of unsolved problems,

■ S is a set of solved problems, and

■ σ is a substitution representing the generalization
computed so far.

To generalize t and s, take a fresh variable x, create the initial
configuration {x : t ≜ s}; ∅; Id and apply the algorithm rules as
long as possible.

The process stops in some final configuration ∅;S;σ such that

■ xσ is an lgg of t and s,

■ S gives the corresponding witness substitutions.
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Generalization Algorithm in the Free Theory

DEC: Decomposition

{x : f(t1, . . . , tn) ≜ f(s1, . . . , sn)} ⊎ P ;S;σ =⇒
P ∪ {y1 : t1 ≜ s1, . . . , yn : tn ≜ sn};S;σ{x 7→ f(y1, . . . , yn)},

where n ≥ 0 and y1, . . . , yn are fresh.

SOL: Solve

{x : t ≜ s} ⊎ P ;S;σ =⇒ P ;S ∪ {x : t ≜ s};σ,

if root(t) ̸= root(s).

MER: Merge

∅; {x : t ≜ s, x′ : t ≜ s} ⊎ S;σ =⇒ ∅;S ∪ {x : t ≜ s};σ{x′ 7→ x}.
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Generalization Algorithm in the Free Theory

Example

Syntactic generalization of f(a, g(a)) and f(b, g(b)):

{x : f(a, g(a)) ≜ f(b, g(b))}; ∅; Id =⇒Dec

{y : a ≜ b, z : g(a) ≜ g(b)}; ∅; {x 7→ f(y, z)} =⇒Sol

{z : g(a) ≜ g(b)}; {y : a ≜ b}; {x 7→ f(y, z)} =⇒Dec

{u : a ≜ b}; {y : a ≜ b}; {x 7→ f(y, g(u)), z 7→ g(u)} =⇒Sol

∅; {y : a ≜ b, u : a ≜ b}; {x 7→ f(y, g(u)), z 7→ g(u)} =⇒Mer

∅; {y : a ≜ b}; {x 7→ f(y, g(y)), z 7→ g(y), u 7→ y}.

The lgg: the instance of x under the computed subst.: f(y, g(y)).

The witness substitutions: {y 7→ a} and {y 7→ b}.
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Generalization Type

The type of the E-generalization problem between t1 and t2 is

■ unitary (1): if mcsgE(t1, t2) is a singleton,

■ finitary (ω): if mcsgE(t1, t2) is finite (not a singleton),

■ infinitary (∞): if mcsgE(t1, t2) is infinite,

■ nullary (0): if mcsgE(t1, t2) does not exist
(i.e., minimality and completeness contradict each other).

The generalization type of an equational theory E:

■ the <-maximal type of E-generalization problems, where
1 < ω <∞ < 0.
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Generalization Type: Examples

■ Unitary:
E = ∅.

■ Finitary:
commutativity, associativity, associativity with unit.

■ Infinitary:
E = {f(f(a, a), a) = f(a, a), f(f(b, b), b) = f(b, b)}

■ Nullary:
E = {f(a) = a, f(b) = b}.
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Combination Problem

Is it possible to derive a generalization algorithm for a union of
equational theories from the existing generalization algorithms
for the component theories?

Given (complete) algorithms for theory E1 and for theory E2,
can we obtain a (complete) algorithm for E1 ∪ E2?

Modularity.
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Combination Problem

For theories sharing function symbols, the combination problem
is very challenging.

Generalization type might change.

Each of E1 = {f(a) = a} and E2 = {f(b) = b} are theories with
the unitary generalization type, but E1 ∪ E2 is nullary.

We focus on signature-disjoint union (no shared symbols in the
axioms).
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Combination Problem

Even signature-disjoint union can be problematic.

Each of

■ E1 = {f(x, 0) = x, f(0, x) = x} and

■ E2 = {g(x, 1) = x, g(1, x) = x}

are theories with the finitary generalization type, but E1 ∪ E2 is
nullary.

−→ Signature-disjoint union for a restricted class of equational
theories.
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Classes of Equational Theories

Permutative

Finite

Subterm collapse-free

Collapse-free

Regular

∅, A, C,AC

{f(x) = g(x)}

{f(a, b) = f(b, c)}

{f(a, g(x)) = f(a, x), f(b, g(x)) = f(b, x)}

{f(g(x)) = f(x)}

{f(a) = a, f(b) = b}

{f(f(x, x), y) = f(x, f(y, y))}

{f(e, x) = e, f(x, e) = e}

{f(x, x) = x}

{f(x, e) = x,

f(e, x) = x}
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Regular Collapse-Free Theories

We designed a combination method for generalization in the
union of signature-disjoint regular collapse-free theories, where

■ free (uninterpreted) constants are allowed in generalization
problems together with symbols from the component
signatures,

■ for each component theory (enriched with free constants),
we have a procedure that computes a minimal complete
set of generalizations together with their witness
substitutions,

■ equality is decidable in the combined theory.
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Combination Algorithms: Two Versions

Black-box combination:

■ does not require the knowledge of how the component
algorithms work,

■ only an input-output interface with the them is needed,

■ more generic, but less transparent.
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Combination Algorithms: Two Versions

White-box combination:

■ both component algorithms work on the same
data-structure: P ;S;σ, where P is a set of unsolved
problems, S is a set of solved ones, σ is a substitution
representing the generalization computed so far.

■ PSS: problem, solved set, substitution,

■ less generic than black-box, but more transparent and
provides more flexibility,

■ many existing algorithms for particular theories are PSS
algorithms.
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Alien Subterm Abstraction

A technique used in various combination algorithms.

Idea:

■ If the root of a term t is a symbol from the signature Σ1

(resp. Σ2), replace all maximal subterms of t rooted in Σ2

(resp. Σ1) by fresh free constants.

■ Equal subterms are replaces by the same constants.

■ Hence, if the original term contains symbols from Σ1, Σ2,
and C (free constants), and is rooted in Σ1, then the
abstracted term contains symbols from Σ1 and C.
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Alien Subterm Abstraction

Idea by example.

Assume

■ Σ1 = {f, h},

■ Σ2 = {g, a, b} with g(a) =E2 b,

■ c is a free constant.

Then

■ Blue subterms of f(g(a), b, h(g(b)), c) are alien in it.

■ Abstraction of f(g(a), b, h(g(b)), c) is f(c1, c1, h(c2), c),
where c1 and c2 are new free constants.
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Black-Box Combination Algorithm: Rules

Ei-GEN: Generalization in the Ei-theory

{x : t ≜ s} ⊎A;S;σ =⇒
(P \ Si) ∪A;Si ∪ S;σ{x 7→ π−1(r)},

where

■ root(t) ∈ Σi ∪ C and root(s) ∈ Σi ∪ C,

■ π is the alien subterm abstraction mapping,

■ r ∈ mcsgEi
(π(t), π(s)), and ϕ, ψ are its witnesses,

■ P = {y : π−1(yϕ) ≜ π−1(yψ) | y ∈ var(r)},

■ Si = {y : t′ ≜ s′ | (y : t′ ≜ s′) ∈ P,

root(t′) ∈ Σi ∪ C, root(s′) ∈ Σi ∪ C}.
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Black-Box Combination Algorithm

E1,2-SOL: Solving in the combined theory

{x : t ≜ s} ⊎A;S;σ =⇒ A;S ∪ {x : t ≜ s};σ,

if root(t) ∈ Σi and root(s) ∈ Σ3−i, i = 1, 2.

E1,2-MER: Merging in the combined theory

∅; {x : t ≜ s, x′ : t′ ≜ s′} ⊎ S;σ =⇒
∅;S ∪ {x : t ≜ s};σ{x′ 7→ x},

if t =E1∪E2 t
′ and s =E1∪E2 s

′.
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White-Box Combination Algorithm: Rules

Ei-STEP: Step in the Ei-theory

{x : t ≜ s} ⊎ P ; S; σ =⇒
P ∪ π−1(Pi); S ∪ π−1(Si); σ(π

−1(σi)),

where

■ root(t) ∈ Σi ∪ C and root(s) ∈ Σi ∪ C,

■ π is the alien subterm abstraction mapping, and

■ {x : π(t) ≜ π(s)}; ∅; Id =⇒Gi Pi;Si;σi, where =⇒Gi is a
step performed by the Gi algorithm for theory Ei.
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White-Box Combination Algorithm

E1,2-SOL: Solving in the combined theory

{x : t ≜ s} ⊎A;S;σ =⇒ A;S ∪ {x : t ≜ s};σ,

if root(t) ∈ Σi and root(s) ∈ Σ3−i, i = 1, 2.

E1,2-MER: Merging in the combined theory

∅; {x : t ≜ s, x′ : t′ ≜ s′} ⊎ S;σ =⇒
∅;S ∪ {x : t ≜ s};σ{x′ 7→ x},

if t =E1∪E2 t
′ and s =E1∪E2 s

′.
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Properties

We designed a combination method for generalization in the union of
signature-disjoint regular collapse-free theories, where

■ free (uninterpreted) constants are allowed in generalization
problems together with symbols from the component signatures,

■ for each component theory (enriched with free constants), we
have a procedure that computes a minimal complete set of
generalizations together with their witness substitutions,

■ equality is decidable in the combined theory.

Both black-box and white-box combined algorithms are complete.

If at least one of the component theories is not finitary, the white-box
combination is preferred over the black-box, since the latter may
generate an infinitely branching derivation tree.
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Next Steps

Relaxing the disjointness restriction: shared constructors?

Replacing substitutions by a certain kind of tree grammars
(finitary representation of an infinite set of generalizations)
−→ terminating algorithms for some non-finitary problems?

Relaxing regularity and collapse-freeness restrictions.
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