
Formal Models for
Parallel and Distributed Systems

Exercise 3 (July 7, 2025)
Wolfgang Schreiner

Wolfgang.Schreiner@risc.jku.at

The exercise is to be submitted by the deadline stated above via the Moodle interface as a single
.zip or .tgz file containing

1. a PDF file with a decent cover page (mentioning the title of the course, your full name and
Matrikelnummer) with

• listings of the model files and

• the outputs/screenshots of the tool,

2. the model files used in the exercise.

1



LTSA/FSP Model of a Client/Server System

Take a distributed system of a server and 𝑁 clients numbered 1, . . . , 𝑁 where the server maintains
a shared resource which it grants to at most one of the clients at a time:
Server:
local given, waiting, sender

begin
given := 0; waiting := { }
loop
sender := receiveRequest()
if sender = given then
if waiting = { } then
given := 0

else
choose given from waiting
waiting := waiting \ { given }
sendAnswer(given)

endif
elsif given = 0 then
given := sender
sendAnswer(given)

else
waiting :=
waiting U { sender }

endif
endloop

end Server

Client(p):
param ident

begin
loop
...
c1: sendRequest()
c2: receiveAnswer()
... // critical region
c3: sendRequest()

endloop
end Client

Develop a LTSA/FSP model of this system where the server and the clients interact by syn-
chronous message passing (use 𝑁 = 2, possibly 𝑁 = 3, if the state space does not get too large).
Please note that a set 𝑆 of at most 𝑁 integers 1, . . . , 𝑁 can be represented by a single 𝑁-bit integer
whose bit 𝑖 is set if and only if 𝑖 + 1 ∈ 𝑆. Please also note that the server continuously receives
a message and then choses one of four possible execution paths (depending on the sender of the
message and the local state variables given and waiting); every client has a single execution path
of sending, receiving, and again sending a message.

Construct in LTSA drawings for the labeled transition system of the server process, one client
process, and (if possible) of the composed system.

Construct manually in the animator a trace of a (part of a) system run where Client 1 requests
the resource, receives the resource, and releases the resource.

Check whether the system may run into a deadlock and give the output of the check.

Check whether the system maintains liveness for client 1 by defining a progress property that
includes the client’s action for entering the critical region, e.g.

progress LIVENESS = { c[1].enter }

2



(see also example Twocoin in LTSA).

Hide from the model all action names except those for entering and exiting the critical region by
the clients, perform minimization, and construct a drawing for the minimized system (see also
example User in LTSA).

Explain whether/how the drawing illustrates that mutual exclusion is preserved.

Check whether the system maintains mutual exclusion by defining a corresponding mutual
exclusion property, e.g.

property MUTEX_P = (enter[i:1..N]-> exit[i] -> MUTEX_P).

which is composed with the system (see also Example Mutex_property in LTSA).

Also check whether the system maintains mutual exclusion by defining a corresponding FLTL
property, e.g.

fluent CRITICAL[i:1..N] = < { enter[i] }, { exit[i] } >
assert MUTEX = forall[i1:1..N] forall[i2:1..N]
rigid(i1 < i2) -> [] !(CRITICAL[i1] && CRITICAL[i2])

(see also Example Mutex_fluent in LTSA).

3


