
Object-Oriented Programming in C++ (SS 2025)
Exercise 4: May 22, 2025

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

May 19, 2025

The exercise is to be submitted by the denoted deadline via the submission interface of the Moodle
course as a single file in zip (.zip) or tarred gzip (.tgz) format which contains the following files:

• A PDF file ExerciseNumber-MatNr.pdf (where Number is the number of the exercise and
MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise, and the author
of the solution (identified by name, Matrikelnummer and email address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that indentations
are appropriately preserved) and an appropriate font size such that source code lines do not
break.

3. A description of all tests performed (copies of program inputs and program outputs) explic-
itly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your solution has
unwanted problems or bugs, please document these explicitly (you will get more credit for
such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.



Exercise 4: Generic Polynomials by Inheritance

Write a program that implements a type Polynomial of multivariate polynomials in distributive
representation: here a polynomial 𝑝 ∈ 𝑅[𝑥1, . . . , 𝑥𝑛] symbolically written as

𝑘∑︁
𝑖=1

𝑐𝑖𝑥
𝑒1,𝑖
1 · · · 𝑥𝑒𝑛,𝑖𝑛

is represented by a sequence [𝑚1, . . . , 𝑚𝑘] of 𝑘 monomials where each 𝑚𝑖 is a pair

⟨𝑐𝑖 , [𝑒1,𝑖 , . . . , 𝑒𝑛,𝑖]⟩

of a non-zero coefficient 𝑐𝑖 ∈ 𝑅 and a sequence [𝑒1,𝑖 , . . . , 𝑒𝑛,𝑖] of 𝑛 exponents (natural numbers)
representing the power product of the monomial. We sort the monomials 𝑚1, . . . , 𝑚𝑘 in reverse
lexicographic order where monomial 𝑚𝑎 occurs before monomial 𝑚𝑏, if for some variable index 𝑗

we have 𝑒 𝑗 ,𝑎 > 𝑒 𝑗 ,𝑏 and for every index 𝑗 ′ < 𝑗 we have 𝑒 𝑗′ ,𝑎 = 𝑒 𝑗′ ,𝑏. For instance, the polynomial
3𝑥𝑦2 + 5𝑥2𝑦 + 7𝑥 + 11𝑦 + 13 in Z[𝑥, 𝑦] is represented by the sequence

[⟨5, [2, 1]⟩, ⟨3, [1, 2]⟩, ⟨7, [1, 0]⟩, ⟨11, [0, 1]⟩, ⟨13, [0, 0]⟩]

Every polynomial has thus a unique representation; please note that the zero polynomial is represented
by the empty sequence.

In our program, we allow 𝑅 to be any type that supports the usual ring operations, i.e., Polynomial is
generic in its coefficient domain. To achieve this, proceed as follows:

1. Take the following abstract class Ring:

class Ring {
public:
// destructor
virtual ~Ring() {}

// the string representation of this element
virtual string str() = 0;

// the constant zero of the type of this element
virtual Ring* zero() = 0;

// sum of this element and c
virtual Ring* operator+(Ring* c) = 0;

// comparison function
virtual bool operator==(Ring* c) = 0;

};

2. Implement a concrete class Integer
class Integer: public Ring {
public:
// integer with value n (default 0)
Integer(long n=0);

};

1



This class overrides all the abstract (pure virtual) operations of class Ring by concrete definitions
for integer arithmetic (where integers are represented by long values).

Note that the definition of the arithmetic and comparison functions the parameter cmust be explic-
itly converted from type Ring* to type Integer*. Use the term dynamic_cast<Integer*>(c)
to receive a pointer to a Integer object (respectively 0, if the conversion is not possible; the
program may then be aborted with an error message).

3. Implement a concrete class Polynomial
class Polynomial: public Ring {
public:
// zero-polynomial in n variables with given names
Polynomial(int n, string* vars);

// add new term with given coefficient and exponents to this polynomial
// and return this polynomial
Polynomial& add(Ring* coeff, int* exps);

// destructor
virtual ~Polynomial();

};

which implements polynomials with generic coefficient types (i.e., coefficients that are represented
by a concrete subclass of class Ring).

A Polynomial object shall be represented by

a) the number of variables,

b) a pointer to an array of the variable names,

c) a pointer to a heap-allocated array of monomials in these variables,

d) the length of this array,

e) the actual number of monomials in this array.

Each monomial holds a pointer to its coefficient (of type Ring*) and a pointer to the array of
exponents. At any time, the array shall hold as many monomials as are indicated by the number
value which is less than or equal the length value; these monomials hold coefficients different
from 0, are unique with respect to their exponents and are sorted in reverse lexicographic order. It
might be a good idea to introduce a class Monomial such that the monomial array in Polynomial
holds elements of this type (or pointers to such elements, respectively).

When a new polynomial is created, we allocate an empty array of some default size. When a new
monomial is added, we first check its coefficient; if it is zero, the monomial is ignored. Otherwise,
we search in the array for the position where

a) either a monomial with the given exponent sequence already occurs; in this case, the given
coefficient is added; if the resulting coefficient is zero, the monomial is discarded from the
array and all subsequent monomials are shifted to fill the gap;

b) or, if there is no such exponent sequence, a new monomial is to be inserted; the subsequent
monomials have to be shifted to make room for the new monomial.

2



Class Polynomial is itself a concrete subclass of Ring; it thus overrides the abstract (pure
virtual) operations of class Ring by concrete definitions for polynomial arithmetic.

Please note the following:

• Class Polynomial does not use the class Integer described above, it is only based on the
class Ring representing the coefficient domain.

• No memory leaks shall arise from the implementation. Thus the class needs a destructor
that frees the memory allocated for the object.

• Check in the addition of polynomials whether the number and names of variables in both
polynomials match; if not, abort the program with an error message.

• For printing a polynomial, remember that the interpretation of a polynomial with an empty
monomial sequence is 0.

Avoid any code duplication but make extensive use of auxiliary functions (that shall become as far
as possible private member functions of Polynomial). Write the declaration of Polynomial into
a file Polynomial.h and the implementation of all non-trivial member functions of Polynomial
and of into a file Polynomial.cpp.

Write a file PolynomialMain.cpp that uses Polynomial and tests its operations comprehensively.
Test each operation with at least three test cases that also include special cases (such as adding a zero
polynomial). Test the program also with the following piece of code:

// variable names and exponent vectors ("power products")
string vars[2] = { "x", "y" };
int e1[2] = {1,2}; int e2[2] = {2,1}; int e3[2] = {1,0};
int e4[2] = {0,1}; int e5[2] = {0,0}; int e6[2] = {2,2};

// construct polynomials p and q in two variables
Polynomial* p = new Polynomial(2, vars);
p->add(new Integer(3),e1).add(new Integer(5),e2).add(new Integer(7),e3)
.add(new Integer(11),e4).add(new Integer(13),e5);

Polynomial* q = new Polynomial(2, vars);
q->add(new Integer(11),e4).add(new Integer(-3),e2).add(new Integer(2),e6)
.add(new Integer(-2),e2);

// print p and q
cout << p->str() << endl << q->str() << endl;

// set r to p+2*q and print it
Polynomial* r = dynamic_cast<Polynomial*>(p->operator+(q)->operator+(q));
cout << r->str() << endl;

3


