
Object-Oriented Programming in C++ (SS 2025)
Exercise 1: April 3, 2025

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

February 24, 2025

The exercise is to be submitted by the denoted deadline via the submission interface of the Moodle
course as a single file in zip (.zip) or tarred gzip (.tgz) format which contains the following files:

• A PDF file ExerciseNumber-MatNr.pdf (where Number is the number of the exercise and
MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise, and the
author of the solution (identified by name, Matrikelnummer and email address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that indentations
are appropriately preserved) and an appropriate font size such that source code lines do
not break.

3. A description of all tests performed (copies of program inputs and program outputs)
explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your solution has
unwanted problems or bugs, please document these explicitly (you will get more credit
for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.



Exercise 1: Atoms

Write a program Atoms that animates a collection of bouncing disks (“atoms”):

Each atom moves with a certain velocity in a certain direction. If it collides with the boundary of the
window, it bounces back from the boundary; likewise, if two atoms collide, they bounce back from
each other (see also the animation on the course site).

Introduce a (structure/class) type Atom whose values represent atoms by its color 𝑐 (an integer),
radius 𝑟 , center position (𝑥, 𝑦), and velocity vector (𝑣𝑥 , 𝑣𝑦) (all double precision floating point
numbers). The main program shall then execute the piece of code depicted on the next page.

The program first creates a window of size 𝑊 × 𝐻 with white background on which the results of
output operations are not immediately shown (above screenshots are for 𝑊 = 640 and 𝐻 = 480,
use these values also in your program). It then determines the number 𝑛 of atoms and creates a
corresponding array which is appropriately initialized. Then it draws the 𝑛 atoms on the screen and
waits until the user presses the “Enter” key. The program then updates in 𝐹 iterations the atoms (i.e.,
it computes their new positions and velocities), draws the atoms and waits for 𝑆 milliseconds before
the next iteration is started. When the user closes the window, the allocated array is deallocated and
the program is terminated.

Your task is to implement the functions number, init, draw, and update as follows (whenever
numerical constants are described, introduce correspondingly named constants in your program and
give them values of your choice):

• If the program is called without command line arguments (i.e., argc==1), number returns a
pre-defined value 𝑁 and init creates 𝑁 atoms in random colors with random sizes in some
predefined interval [𝑅0, 𝑅1] with random velocities in some predefined interval [𝑉0, 𝑉1] at
random positions; however, the atoms must be fully contained in the window and must not
intersect with each other (try to place a new atom 3 times; if then no suitable position can be
found, the program may be aborted).

For this, you may use the C++ random number generator by declaring a global variable:

default_random_engine rng;

1



#include <iostream>
#include <random>
#include <thread>
#include <cmath>
#include "Drawing.h"

using namespace std;
using namespace compsys;

const int W = 640;
const int H = 480;
const int S = 40;
const int F = 200;

// TODO
struct Atom { };
int number(int argc, const char* argv[]) { return 0; }
void init(int n, Atom atoms[], int argc, const char* argv[]) { }
void draw(int n, Atom atoms[]) { }
void update(int n, Atom atoms[]) { }

int main(int argc, const char* argv[])
{
beginDrawing(W, H, "Atoms", 0xFFFFFF, false);
int n = number(argc, argv);
Atom *atoms = new Atom[n];
init(n, atoms, argc, argv);
draw(n, atoms);
cout << "Press <ENTER> to continue..." << endl;
string s; getline(cin, s);
for (int i = 0; i < F; i++)
{
update(n, atoms);
draw(n, atoms);
this_thread::sleep_for(chrono::milliseconds(S));

}
delete[] atoms;
cout << "Close window to exit..." << endl;
endDrawing();

}

Figure 1: Skeleton Code for Exercise 1

2



If you initialize this variable in init as

random_device rand_dev;
rng.seed(rand_dev());

then the random number generator is nondeterministically seeded such that each run of the
program produces different atoms.

To achieve this, you can use this generator to produce numbers of type 𝑇 that are uniformly
distributed in interval [𝐴, 𝐵], by globally declaring an object:

uniform_real_distribution<T> next_r(A,B);

Then each call

T r = next_r(rng);

sets variable 𝑟 to such a number. For each interval of random numbers needed by the program,
you can declare a corresponding object.

• The program may also be called with one command line argument (i.e., argc==2). This
argument argv[1] is the name of a text file that contains a sequence of lines

n
c1 r1 x1 y1 vx1 vy1
c2 r2 x2 y2 vx2 vy2
...
cn rn xn yn vxn vyn

whose first line contains the number 𝑛 of atoms. The file then contains 𝑛 additional lines
each of which describes the values of one atom. The function number shall read the first
line of the file and return 𝑛, the function init shall read the remaining 𝑛 lines and create
the corresponding atoms. If the input file does not exist or is ill-formed, the program may be
aborted with an error message.

• However the program is called (with or without argument), the number 𝑛 of atoms and the
descriptions of the initial values of the atoms are printed to the standard output in the form
shown above.

• The function draw first clears the screen by drawing a white rectangle of size 𝑊 × 𝐻. It then
draws each atom as a filled circle at its current position with its specific size and color. After
drawing all atoms, it calls the function flush() which updates the content of the window,
i.e., makes all atoms visible.

• A first version of update only checks for collisions of every atom with every wall (i.e., the
atoms may run through each other): if the distance of the center of the atom from a wall is less
than or equal the radius, the atom is re-positioned at a distance which is equal to the radius;
the corresponding component of the velocity vector is then negated (𝑣𝑥 for a collision with a
vertical wall, 𝑣𝑦 for a collision with a horizontal wall).

Test your program once without argument and once with the file input.txt given on the course
site. Give in each case as a deliverable the text output of your program (showing the initial values
of the atoms), the screenshot of the initial situation and the screenshot of the final situation after

3



𝐹 = 200 updates (if you set 𝑆 = 40, then about 1000/40=25 updates per second are performed, thus
the animation runs less than 10 seconds).

After that, extend update to also consider the collisions between atoms. In more detail, after
updating the position of all atoms and handling their collisions with the window boundaries, perform
for each pair of atoms 𝑖 and 𝑗 with 𝑖 < 𝑗 the following tasks:

1. Determine the distance between the atoms 𝑖 and 𝑗 ; if the distance is bigger than the sum of the
radii of the atoms, they do not collide and we are done. Otherwise, we continue as described
below.

2. If the distance is smaller than the sum of the radii (i.e., the atoms overlap), we move one atom
along the vector between the centers of both atoms so far away that the distance of both atoms
becomes exactly the sum (i.e., both atoms just touch).

3. Assume both atoms would move towards each other’s centers with velocities 𝑣1 and 𝑣2 (the
velocities thus have different signs). Then the theory of elastic impacts1 tells us their new
velocities 𝑣′1 and 𝑣′2 as

𝑣′1 = 2𝑉 − 𝑣1, 𝑣
′
2 = 2𝑉 − 𝑣2

where
𝑉 =

𝑚1 · 𝑣1 + 𝑚2 · 𝑣2
𝑚1 + 𝑚2

denotes the velocity of the common center of gravity of both atoms and 𝑚1 and 𝑚2 denote
their masses (we consider in our program as the masses the squares of the atom’s radii, i.e.,
the masses are proportional to their areas as circular discs).

v2

v1

v1
’

v2
’a

4. To apply this knowledge to the general case (where atoms may collide at arbitrary angles), we
proceed as follows (see the figure above):

a) We compute the vector of the tangent of the intersection point of both atoms (the normal
of the vector between their centers).

b) We transform this vector from Cartesian form (horizontal and vertical coordinate) into
polar form (length and angle); this gives us its angle 𝑎 towards the horizontal.

1http://de.wikipedia.org: Stoß (Physik); https://en.wikipedia.org/wiki/Elastic_collision

4

http://de.wikipedia.org/wiki/Sto%C3%9F_%28Physik%29
https://en.wikipedia.org/wiki/Elastic_collision


c) We transform both velocity vectors into polar form and subtract 𝑎 from their angles (we
thus rotate the coordinate system such that the tangent is along the horizontal axis).

d) We transform the rotated velocity vectors back into Cartesian form; the vertical com-
ponents of both vectors denote the two velocities 𝑣1 and 𝑣2 by which the circles move
towards each others center; from these the new vertical velocities 𝑣′1 and 𝑣′2 are computed
as indicated above.

e) The resulting vectors (with unchanged horizontal components and transformed vertical
components) are converted into polar form; we add 𝑎 to their angles (and thus rotate the
coordinate system back into its original position).

f) The resulting velocity vectors are converted into Cartesian form; these forms are stored
as the new velocities in the atoms.

Please note that above strategy is physically not completely correct since the repositioning of an
atom (due to its moving inside another atom) might position it into a wall or a third atom; however,
we will ignore this problem in our exercise (in rare situations you might observe this behavior in
your animation).

In your program avoid code duplication (and recomputation of values) but make extensive use of
auxiliary functions (and variables). In particular, the functions

void toPolar(double x, double y, double &r, double &a)
{
a = atan2(y, x);
r = sqrt(x*x+y*y);

}

void toCartesian(double r, double a, double &x, double &y)
{
x = r*cos(a);
y = r*sin(a);

}

can be used to perform the conversions of a vector from Cartesian form (𝑥, 𝑦) into polar form (length
𝑟 and angle 𝑎) and back.

Test your updated programs in the same way as the original one and give the screenshots of the new
final situations.

Deliver in your report the complete source code of the final version of the program with the new
update function (it is not necessary to also provide the original one).

5


