Classes and Objects

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

.M.&.

N

Wolfgang Schreiner https://www.risc.jku.at 1/70

1. Classes as Namespaces

2. Classes as Object Types

3. Objects with Functions
4. Objects and Arrays
5. Objects and Information Hiding

6. The Standard Class string

Wolfgang Schreiner https://www.risc.jku.at 3/70

Classes as Record Types

class Date {
public:
int day;
char *month;

¥

Date date; // an object
date.day = 24;
date.month = "December";

// access specifier

Date *dptr = new Date;
dptr->day = 1;
dptr->month = "January";
delete dptr;

// a pointer to an object

The keywords struct and class mean (almost) the same; however,
class values are called “objects” (rather than “structures”).

Wolfgang Schreiner https://www.risc.jku.at 2/70
ZaN
° J
Classes as Namespaces %
[]
// Date.h // Date.cpp
class Date #include <iostream>
{ #include "Date.h"

// declarations of static members // definitions of static data members
const int Date::thisDay;
// data members char* Date::thisMonth = "January";
static const int thisDay = 1;
static char* thisMonth; // definitions of static member functions
void Date::print(Date *date) {
std::cout << date->day << "/"

<< date->month;

// member functions
static Datex create() {
Date*x d = new Date;

d->day = thisDay;

d->month = thisMonth; // Main.cpp
return d; #include "Date.h"
} int main(int argc, charx argv[]) {

Date::thisMonth = "February";
static void print(Date *date); Date* d = Date::create();
% Date::print(d);
return O;
}

Wolfgang Schreiner https://www.risc.jku.at 4/70

I

Classes as Namespaces
NP

Classes can serve as namespaces.
Static data members and member functions are “bound” to a class.
They are also called class variables and class functions.
There exists only one instance of the static members (independently
of the number of objects of the class to which the members belong).
Names of static members must be qualified by the class name.
Class: :member
Other static members in the same class may use the short name.
A static data member is only declared in the class.
Must have a corresponding definition/initialization somewhere else.
Constant members of integral types may be initialized in class.
A static member function may be also defined in the class.
Then the definition may be inlined at the point of every application.
If not, there must exist a corresponding definition somewhere else.
Static member definitions outside of class must not use static.
For global variables/functions, static means “internal linkage".

Use static members rather than variables/functions on namespace level.

Wolfgang Schreiner https://www.risc.jku.at 5/70
AN
File Organization ¢ *
"4

// C.h: declaration of C and its members

#ifndef C_H_

#define C_H_

class C {
static T x; // declaration, no definition
static T £(...); // declaration, no definition
static T g(...) { ... } // declaration with definition

}

#endif /* C_H_ */

// C.cpp: definitions of members of C
#include "C.h"

T C::x;

TC::fC...) { ... }

// Main.cpp: use of C
#include "C.h"
int main() { ... C::x ... C::f(C...) ... C::gC ...) ... }

Wolfgang Schreiner

https://www.risc.jku.at 7/70

File Organization N4

Typically there are two files related to a class Class.
File Class.h contains the class definition.
Contains declarations of all members of a class.
Must be included by every other file that wants to access members.
#include "Class.h"
If the class declaration changes, all files that include Class.h must
be recompiled.
File Class.cpp contains the corresponding member definitions.
Must include Class.h
If some member definition changes, only this file must be recompiled
(and the program must be relinked).
Any change to a member function that is defined in a class declaration
may cause a lot of recompilations.

Wolfgang Schreiner https://www.risc.jku.at 6/70

1. Classes as Namespaces

2. Classes as Object Types

3. Objects with Functions

4. Objects and Arrays

5. Objects and Information Hiding

6. The Standard Class string

Wolfgang Schreiner https://www.risc.jku.at 8/70

O
07\
Nonstatic Data Members K *
N4
class Date
{
public:
int day;
char *month;
s

Non-static data members “belong to" an object of the class.
They are also called object variables.
For every object of the class, the exists a separate instance of the
object variable.

Names of nonstatic data members must be qualified by an object.

object.member
objectptr—->member

Data members with access specifier public can be freely used like the
variables of a structure.

Wolfgang Schreiner

.%. []
Constructors v

A constructor is a special method that is declared in a class.

The constructor has the same name as the class.
It has no return type (also not void).

A constructor is bound to an object.

Called after the space for the object has been allocated.
Executed in the context of the object.

Can access all data members without qualification.

There may be multiple constructors with different argument types.
Same constraints as for function overloading.

If defined inside the class, the constructor is inlined.
Same effect as if using the keyword inline.

A constructor may execute arbitrary code.
Not only initializations of data members.

Objects should be initialized by calling constructors.

Wolfgang Schreiner

https://www.risc.jku.at 9/70

https://www.risc.jku.at 11/70 Wolfgang Schreiner

Constructors
N4
class Date // Date.h class Date // Date.h
{ {
// inline declaration Date(int d, char *m);
Date(int d, char *m) +s
{
day = d; Date::Date(int d, char *m) // Date.cpp
month = m; {
} day = d;
+s month = m;
}

Date date(24, "December"); // calls Date(int, charx)
Date *dptr = new Date(26, "October"); // calls Date(int, charx)

A constructor is a method that initializes an object’'s data members.

Wolfgang Schreiner https://www.risc.jku.at 10/70
/™y
. . ° Q
The this Pointer

N4

class Date // Date.h

{

Date(int day, char* month);

s

Date::Date(int day, char *month) // Date.cpp

{

this->day = day;
this->month = month;

}

The keyword this is a pointer to the current object.

Can be used e.g. inside the body of a constructor.
Can be used e.g. to resolve name ambiguities.

We will see later the general rules for the use of this.

https://www.risc.jku.at 12/70

The Default Constructor .ﬁ < The Default Constructor '& Z
[[J
Elass Date // Date.h <{:1ass Date // Date.h A default constructor can be called without arguments.
o o Is called for object declarations without initializers.
Date() { Date(); Is called for initialization of array elements.
day = 1; }; Is called for initialization of non-static data members before a
month = "January"; user-defined constructor is called.
} Date :: Date() { // Date.cpp Is called for initializing static data members when program is started.
b day = 1; If a class has no user defined constructor, an implicit default
month = "January";

constructor is automatically generated.

} Calls the default constructors of all non-static data members.
Date date; // calls Date() If a class has user defined constructors, only these may be called.
Date date(); // WRONG: declares function date() If some constructor is defined, also a default constructor has to
Date *dptrl = new Date; // calls Date() (respectively should) be explicitly defined.
Date *dptr2 = new Date(); // calls Date() Without a default constructor, it is not possible to declare a variable
Date darray[10]; // calls Date() for each object of this type without initialization (and thus no arrays with this base
Date *darr = new Date[10]; // calls Date() for each object type can be created).
All objects are initialized with the default constructor of their class. All objects are automatically initialized by constructors.
Wolfgang Schreiner https://www.risc.jku.at 13/70 Wolfgang Schreiner https://www.risc.jku.at 14/70
™\ AN
Initialization Lists .ﬁ l(. The Copy Constructor .E {'
[] []

1 Dat Date.h
class Date // Date.h E ass Date // Date
{

Date(int d, char* m);

b b

Date(const Date date&);

// the copy constructor

licit initializati £ _ .
// explicit initialization of non-static data members Date: :Date(const Date& date): day(date.day), month(date.month) { }

Date::Date(int d, char *m): day(d), month(m)

tat d t(Date date);
// executed after data members have been initialized static void print(Date date)
) Date dateO; // calls default constructor
Date datel(date0); // calls copy constructor
Date date2 = date0; // calls copy constructor
The preferred way of initializing non-static data members (avoids calling print(date0); // calls copy constructor
return dateO; // calls copy constructor

their default constructors).

An object duplicate is created with the copy constructor of the class.

Wolfgang Schreiner https://www.risc.jku.at 15/70 Wolfgang Schreiner https://www.risc.jku.at 16/70

™,
W

The Copy Constructor

The copy constructor of a class can be called with a reference to an
object of this class as argument.

Is called in variable initializations
Here the token “=" does here not denote assignment.

Is called when passing objects as function arguments.
Is called when returning objects as function results.

If a class has no copy constructor, an implicit copy constructor is
automatically generated.

Calls the copy constructors of all non-static data members.

Object duplication can be controlled by the programmer.

Wolfgang Schreiner https://www.risc.jku.at 17/70
AN
Preventing Implicit Constructor Calls .ﬁ l(.
[]

Implicit constructor calls may be unwanted.

class Complex

{
// constructor declaration with keyword "explicit"
// constructors may be also provided with default arguments
explicit Complex(double re = 0.0, double im = 0.0);
static Complex neg(Complex c);
s
Complex a; // calls Complex(0, 0)
Complex b = 1; // calls Complex(1l, 0)
Complex c(1); // calls Complex(1l, 0)

Complex c = Complex::neg(2); // ERROR
Complex c = Complex::neg(static_cast<Complex>(2));// calls Complex(2,0)

With keyword explicit, unexpected constructor calls can be avoided.

Wolfgang Schreiner https://www.risc.jku.at 19/70

Implicit Conversions

Constructors may be also called in unexpected situations.

class Complex

{
// constructors may be also provided with default arguments
Complex(double re = 0.0, double im = 0.0);
static Complex neg(Complex c);

}s

Complex a; // calls Complex(0, 0)

Complex b = 1; // calls Complex(1l, 0)
Complex c = Complex::neg(2); // calls Complex(2, 0) to create argument

Constructors are also implicitly called to perform type conversions.

Wolfgang Schreiner https://www.risc.jku.at 18/70
7\
The Copy Assignment Operator ‘& {'
[]

class Date // Date.h

{

Date& operator=(const Date& date);

s

// the copy assignment operator
Date& operator=(const Date& date)
{

day = date.day;

month = date.month;

return *this;

}

Date date0(4, "July"); // calls Date(int, charx)
Date datel(dateO); // calls copy constructor
datel = date0; // calls copy assignment operator

Object assignment is performed with the copy assignment operator.

Wolfgang Schreiner https://www.risc.jku.at 20/70

The Copy Assignment Operator v

The copy assignment operator of a class can be called with a
reference to an object of this class as argument.

Is called in object assignments.
Not in object initializations!

If a class has no copy assignment operator, an implicit copy
assignment operator is automatically generated.

Calls the copy assignment operators of all non-static data members.

Destructive object assignment can be controlled by the programmer.

Wolfgang Schreiner

The Destructor .ﬁ {‘

The destructor of a class can be called without arguments.

Is called on local variable when declaration scope is left.

Is called on dynamically allocated objects when delete is called.

Is called on statically allocated objects when program is terminated.
Is called on every array element, if an array is destroyed.

If a class has no destructor, an implicit destructor is generated.
Calls the destructors of all non-static data members.

Object destruction can be controlled by the programmer.

Wolfgang Schreiner

https://www.risc.jku.at 21/70

https://www.risc.jku.at 23/70 Wolfgang Schreiner

. 0
The Destructor

Nul"4

class Date {

Date(int d, char *m);
“Date();
s
Date::Date(int d, char *m): day(d), month(new char[100]) {
strncpy (month, m, 100);

}

// the destructor

Date::"Date() { delete[] month; }

{

Date date(24, "December"); // calls Date(int, char*)

} // calls destructor

Date *dptr = new Date(14, "July"); // calls Date(int, charx)

delete dptr; // calls destructor

Objects are destroyed by the destructor of the class.
Wolfgang Schreiner https://www.risc.jku.at 22/70

/™y
. O

1. Classes as Namespaces

2. Classes as Object Types

3. Objects with Functions

4. Objects and Arrays

5. Objects and Information Hiding

6. The Standard Class string

https://www.risc.jku.at 24/70

Non-Static Member

Functions v

class Date // Date.h

{

void print();

void set(int d, char* m);
int getDay() const;

char* getMonth() const;

};

// main program

Date date(1l, "January");
date.print();
date.set (2, "January");
Date *dptr = &date;
dptr->print();

// Date.cpp
#include <iostream>
#include "Date.h"

void Date::print() {
std::cout << day << " " << month;

}

void Date::set(int d, char* m) {
day = d; month = m;

}

int Date::getDay() const { return day; }

char* Date::getMonth() const { return month; }

dptr->set ((dptr->getDay())+1, dptr->getMonth());

Objects can have member functions “attached”.

Wolfgang Schreiner https://www.risc.jku.at 25/70
7"

Calling Non-Static Member Functions .ﬁ l(.
[]

class Date // Date.h

{

void nextDay();

};

void Date::nextDay() {
int d = getDay();
char* m = getMonth();

set(d+1, m); // stupid, of course

}

Date date(28, "February");

date.nextDay();

The non-static member functions of a class may call each other without
object qualification; then they refer to the same object.

Wolfgang Schreiner

https://www.risc.jku.at 27/70

I

Non-Static Member Functions v

A non-static member function is “bound to" a particular object.
Such a function is also called an object function.
Every object of a class has an instance of this function attached.
The function operates “within” the object to which it is bound.

It can access all non-static data members of the object without object
qualification (and also all static data members of the class without
class qualification).

The data members are “global variables” for the function.

A member function declared as const does not change the object.

May be called on objects declared as const.
Constructors/destructors/copy assignment operators are special
cases of non-static member functions.

With non-static member functions objects can be used without exposing
their internal representation.

Wolfgang Schreiner https://www.risc.jku.at 26/70
ZAY
Calling Non-Static Member Functions '& l(.
[]

class Date // Date.h

{

void copyDay(Date date);

b

void Date::copyDay(Date date) {
int d = date.getDay();
char* m = getMonth();
set(d, m);

}

Date datel(28, "February");
Date date2(15, "March");
datel.copyDay(date2) ;

To call the member function of another object, explicit qualification by

the object is necessary.
Wolfgang Schreiner https://www.risc.jku.at 28/70

Wolfgang Schreiner

Wolfgang Schreiner

.) 7™\
The this Pointer .E {'

In a non-static context, this is a pointer to the “current” object.
Initialization expressions of non-static data members.
Bodies of constructors/destructors/non-static member functions.
Any plain (unqualified) reference to a non-static member is implicitly
extended to a qualified reference by adding this.
var — this->var
fun(...) — this=->fun(...)
From static contexts, such unqualified references are not allowed.
For a non-static data member, this is just the address of the
structure in which the member is looked up.
For a non-static member function, this is just an additional
parameter whose value is provided by the caller.
fun(...) { ...} — fun(this, ...) { ...}
object.fun(...) — fun(&object, ...)
The difference between static and non-static members is just the
availability of the this pointer.

https://www.risc.jku.at 29/70

1. Classes as Namespaces

2. Classes as Object Types

3. Objects with Functions

4. Objects and Arrays

5. Objects and Information Hiding

6. The Standard Class string

https://www.risc.jku.at 31/70

Wolfgang Schreiner

Wolfgang Schreiner

7\

Operators as Non-Static Member-Functions '% {'

How to implement operators on objects?

class BigNumber { ... public: int sign() comst; ... };
BigNumber a = ... ; BigNumber b = ...;
BigNumber c = a+b; // operator call

Solution 1: operator as a global function.

BigNumber operator+(const BigNumber& x, const BigNumber& y) {
. x.signQ) . y.sign(O
}

Solution 2: operator as a non-static member function.
class BigNumber { ...

public:
BigNumber operator+(const BigNumber& y) {
. sign() ... y.sign(Q)
}
}

Operator call is for both solutions identical.

https://www.risc.jku.at 30/70

™,
W

Objects as Array Elements

// default constructions, then creation and assignments of new objects
Class al[N]; // objects initialized by default constructor
for (int i=0; i < N; i++) alil = Class(...);

// new objects initialized by arbitrary constructor
Class* b[N]; // uninitialized pointers
for (int i=0; i < N; i++) b[i] = new Class(...);

// default constructions, then creation and assignments of new objects
Class *c = new Class[N]; // objects initialized by default constructor
for (int i=0; i < N; i++) c[i] = Class(...);

// new objects initialized by arbitrary constructor

Class* *d = new Class*[N]; // uninitialized pointers

for (int i=0; i < N; i++) d[i] = new Class(...);

Be sure to have array objects appropriately initialized.

https://www.risc.jku.at 32/70

o/ 2y,
Example: Phone Book v A Phone Book Entry 4

class Entry {

Write a program that reads a sequence of at most N phone book entries public:
consisting of a name and a phone number. The program then reads const char *name;
sequences of names and prints the corresponding phone numbers. const char *number;
const int N = 100; Entry() { }
void mainPhoneBook () Entry(char* na, char *nu): name(copy(na)), number(copy(nu)) { }
{ “Entry() { delete[] name; delete[] number; }
Entry* book[N];
int n = readPhoneBook(book, N); const char* getName() const { return name; }
usePhoneBook (book, n); const char* getNumber() const { return number; }
deletePhoneBook (book, n); +;
}

static const char* copy(char xstr) {
Central data structure is an array of (pointers to) objects. int n = strlen(str);
char* result = new char[n+1];
strncpy(result, str, n+l);
return result;

}

Wolfgang Schreiner https://www.risc.jku.at 33/70 Wolfgang Schreiner https://www.risc.jku.at 34/70
o, o
17\ 7\
Constructing a Phone Book .E {' Using a Phone Book .ﬁ {'
. °
int readPhoneBook(Entry **book, int N) void usePhoneBook (Entry** book, int n) {
{ while (true) {
for (int i=0; i<N; i++) cout << "Another lookup (y/n)? ";
{ char ch[2]; cin.getline(ch, 2); if (ch[0] != ’y’) return;
Entry *entry = readEntry(); cout << "Name: "; char name[100]; cin.getline(name, 100);
if (entry == NULL) return i; const char *number = getNumber(book, n, name);
book[i] = entry; if (number == NULL) { cout << "Name not found\n"; continue; }
} cout << "Number: " << number << "\n";
return N; }
} t
Entry* readEntry() const char* getNumber (Entry #**book, int n, char *name) {
{ for (int i=0; i<n; i++) {
cout << "Another entry (y/n)? "; Entry *entry = book[i];
char ch[2]; cin.getline(ch, 2); if (ch[0] '= ’y’) return NULL; if (strcmp(name, entry->getName()) == 0)
cout << "Name: "; char name[100]; cin.getline(name, 100); return entry->getNumber();
cout << "Number: "; char number[100]; cin.getline(number, 100); }
return new Entry(name, number);) return NULL;
}

Wolfgang Schreiner https://www.risc.jku.at 35/70 Wolfgang Schreiner https://www.risc.jku.at 36/70

Deleting a Phone Book

void deletePhoneBook(Entry **book, int n)

{
for (int i=0; i<n; i++)
delete book[i];
}

Solution has various disadvantages:
Fixed maximum N of number phone book entries.
Number of actual entries n has to be passed around.
No abstraction from representation of phone book as Entryx*x*.
Application directly operates on phone book entries.
Explicit deallocation of allocated phone book entries.

Not yet a really “object-oriented” solution.

Wolfgang Schreiner https://www.risc.jku.at 37/70

Prime Number Computation

Print all prime numbers up to n.

void printPrimes(int n)
{
if (n < 2) return;
cout << 2 << "\n";
PrimeTable p; // table to hold all odd primes computed so far
for (int ¢ = 3; ¢ <= n; c += 2)
if (!p.isPrime(c)) continue;
cout << ¢ << "\n";
p-add(c);

}
}

Core functionality is packed into a “prime table”.

Wolfgang Schreiner https://www.risc.jku.at 39/70

Objects Containing Arrays

A “naked” array is usually not sufficient to represent program data.
Typically a data structure consists of various bits and pieces.
All these should be packaged together into a single object.
Object provide via methods “high-level” access to its data.

Typically arrays are just part of an object representation.

Wolfgang Schreiner https://www.risc.jku.at 38/70
()
| o,
A Prime Table %

class PrimeTable {
public:
int N; // the size of the table
int n; // the number of elements actually contained in it
int *p; // the table itself

// create the table
// delete the table

PrimeTable();
~“PrimeTable();

bool isPrime(int c); // check whether candidate c is prime
void add(int c); // add a new prime c to the table

void resize(); // make table bigger

s
PrimeTable: :PrimeTable(): N(100), n(0), p(new int[N]) { }
PrimeTable:: PrimeTable() { deletel] p; }

Wolfgang Schreiner https://www.risc.jku.at 40/70

7™\ 17\
A Prime Table .E {' The Phone Book Revisited '& {'
O °
bool PrimeTable::isPrime(int c) {
for (int i=0; i<n; i++) Now let us make the phone book really “object-oriented”.
if (c % pli]l == 0) return false; void mainPhoneBook ()
return true; {
} PhoneBook book; // empty book is created by default constructor
readPhoneBook (book); // book is filled
void PrimeTable::add(int c) { usePhoneBook(book); // book is used
if (n == N) resize(); } // book is destroyed by destructor
plnl = c;
n = n+l; void readPhoneBook (PhoneBook& book) {
} while (true)
void PrimeTable::resize() { t cout << "Another entry (y/n)? ";
int NO = 2%N+1; char ch[2]; cin.getline(ch, 2); if (ch[0] != ’y’) return;
int *pO = new int[NOJ; cout << "Name: "; char name[100]; cin.getline(name, 100);
for (int i=0; i<n; i++) pO[i] = p[il; cout << "Number: "; char number[100]; cin.getline(number, 100);
delete[] p; book.add(name, number); // an entry is added to the book
N = NO; p = pO; }
} }
Wolfgang Schreiner https://www.risc.jku.at 41/70 Wolfgang Schreiner https://www.risc.jku.at 42/70

The Phone Book Reuvisited .ﬁ l(. The New Phone Book .ﬁ l(.

class PhoneBook {
void usePhoneBook (PhoneBook& book)

public:
{ int N; // the size of the book
while (true) int n; // the number of entries allocated in it
{ Entry *xb; // the book itself, a table of entry *pointers*
cout << "Another lookup (y/n)? ";
char ch[2]; cin.getline(ch, 2); if (ch[0] !'= ’y’) return; PhoneBook () ; // construct the book
cout << "Name: "; char name[100]; cin.getline(name, 100); ~PhoneBook(); // delete the book
const char *number = book.search(name); // name looked up in book
if (number == NULL) { cout << "Name not found\n"; continue; } void add(char *name, char *number); // add an entry
cout << "Number: " << number << "\n"; const char* search(char *name); // search for a number
} void resize(); // make the book bigger
} +;
Core functionality is now completely hidden in the phone book. PhoneBook : : PhoneBook () : N(100), n(0), b(new Entry*[N1) { }

PhoneBook: : "PhoneBook () {
for (int i=0; i<n; i++) delete b[i]; // delete entry
delete[] b; // delete book itself

}

Wolfgang Schreiner https://www.risc.jku.at 43/70 Wolfgang Schreiner https://www.risc.jku.at 44/70

The New Phone Book .E {'

void PhoneBook::add(char *name, char *number) {

if (n == N) resize();
b[n] = new Entry(name, number);
n = n+l;

}

const char* PhoneBook::search(char *name) {
for (int i=0; i<n; i++) {
Entry *entry = b[i];
if (entry->hasName(name)) return entry->getNumber();

}

return NULL;

}

void PhoneBook::resize() {
int NO = 2%N+1; Entry **bO = new Entry*[NO];
for (int i=0; i<n; i++) bO[i] = b[il; // only *pointers* are copied
delete[] b; N = NO; b = b0;

}
Wolfgang Schreiner https://www.risc.jku.at 45/70
7\
Objects versus Pointer to Objects .E {‘
[]

Object values may become unhandy.
It is costly to copy full objects.
Objects should be mainly passed to functions by reference.
Use of reference parameters in method declarations is recommended.
Otherwise the copy constructor is invoked on each function call with
an object as argument to create a temporary copy of the object.
Object pointers are frequently preferred.
It is cheap to copy pointers to objects.
Objects referenced by pointers should be created on the heap by new.
It is unwise to use pointers to stack-allocated data.
However, such objects must be then explicitly destroyed by delete.
Otherwise “memory leaks” will arise in the program.
Destructors of objects must explicitly free the space of all objects
referenced by pointers (provided that there exist nowhere else
references to these objects, otherwise “dangling pointers” will arise).

If the representation of an object contains dynamically created objects,

these objects should be better “hidden” from the outside world.

Wolfgang Schreiner https://www.risc.jku.at 47/70

The New Phone Book Entry .E {'

class Entry {
public:
const char *name;
const char *number;

Entry() { }
Entry(char* na, char *nu): name(copy(na)), number(copy(nu)) { }
“Entry() { delete[] name; delete[] number; }

const char* getName() const { return name; }
const char* getNumber() const { return number; }
bool hasName(char *name) const { return strcmp(name, this->name) == 0; }

static const char* copy(char *str) {
int n = strlen(str);
char* result = new char[n+1];
strncpy(result, str, n+l);
return result;

}s
Wolfgang Schreiner https://www.risc.jku.at 46/70
AN
) ®
[]

1. Classes as Namespaces

2. Classes as Object Types

3. Objects with Functions

4. Objects and Arrays

5. Objects and Information Hiding

6. The Standard Class string

Wolfgang Schreiner https://www.risc.jku.at 48/70

Access Specifiers W

Special labels restrict who can access a member.
public Anyone can access public members.
protected Only the class, derived classes, and friends can access
protected members.
private Only the class and friends can access private members.
Derived classes and friends will be introduced later.
Without an access specifier, default access levels are used.
class Default is private.
struct Default is public.
While this is actually the only difference between class and
struct, the later is typically used for plain structures only.
Distinguish between a class's interface and its implementation.
Interface: “contract” between user and implementor; members that
belong to the interface are declared public.
Implementation: “internals” of a particular realization; members that
belong to the implementation are declared private or protected.

Explicit access specifiers should be always used.
Wolfgang Schreiner

Example %

class Entry {
private:
const char *name;
const char *number;

public:
Entry() { }
Entry(char* na, char *nu): name(copy(na)), number(copy(nu)) { }
“Entry() { delete[] name; delete[] number; }

const char* getName() const { return name; }
const char* getNumber() const { return number; }
bool hasName(char *name) const { return strcmp(name, this->name) == 0; }

private:

static const char* copy(char *str) {
int n = strlen(str);
char* result = new char[n+1];
strncpy(result, str, n+l);
return result;

}

s

Wolfgang Schreiner

https://www.risc.jku.at 49/70

https://www.risc.jku.at 51/70

A
Typical Class Layout .E {'
.
class Class {
private: // object representation
type wvar ;
public: // interface constructors/functions
Class(...) {}
type fun(...) { ...}
private: // implementation functions
type fun(...) { ...}
b
Data members should generally not be declared public.
Wolfgang Schreiner https://www.risc.jku.at 50/70
A
Friends .E l(.
.

A class may declare an external entity as friend.

class Class {

friend type fun(...);
friend type C::fun(...);
friend class D;

s

Friend gets full access to all members of Class.
Function fun and member function C:: fun receive friend status.
All member functions of D receive friend status.

Friendship is not transitive.

A friend of a friend of Class is not automatically a friend of Class.
Friendship is not inherited.

The concept of “inheritance” will be introduced later.

Controlled break of access rules; use with care!
Wolfgang Schreiner

https://www.risc.jku.at 52/70

Nested Classes

Nested Classes

A class definition may contain the definition of another class.

class Outer {
éi;ss Inner {
};...

};...

Inner class may be externally referred as Outer : : Inner.

Similar to access of static class members.
However, an inner class also obeys access specifiers.

Private inner class can be only used by outer class and its friends.
The outer and the inner class are not automatically friends.

Each class can only refer to the non-public members of the other
class, if it is explicitly declared as friend.

Wolfgang Schreiner https://www.risc.jku.at

Example: Dynamic Lists

A class definition may contain just the declaration of another class.

// Outer.h
class Outer {

class Inner;
I¥

// Inner.h
class Outer::Inner {

type fun(...);
// Inner.cpp
type Outer::Immer::fun(...) { ...}

If only type Innerx is used, definition of Inner needs not be included.

53/70 Wolfgang Schreiner

N l(. Example: Dynamic Lists

https://www.risc.jku.at 54/70

™,
W

#include <iostream>
#include "IntList.h"

// IntList.h
class IntList

{

class IntNode; using namespace std;
private: int main()
IntNode *head; {
int number; IntList 1;

1.insert(2).insert(3).insert(5);

public: cout << l.length(); // 3
IntList(); cout << l.get(2); // 5
~IntList(); return 0;
int length() const; }

IntList& insert(int e);
int get(int i) const;

s

IntNode is only declared (not defined) in IntList.

Wolfgang Schreiner https://www.risc.jku.at

// IntList.cpp
#include "IntList.h"
#define NULL (0)

class IntList::IntNode {
friend class IntList;
private:
int value; IntNode* next;

IntNode(int v, IntNode *n):

value(v), next(n) { }

}

IntList::IntList():
head (NULL), number(0) { }

IntList::"IntList() {
IntNode *node = head;
while (node != NULL) {

IntNode *node0 = node->next;

delete node;
node = node0;

}

55/70 Wolfkang Schreiner

int IntList::length() const {
return number;
}

IntList& IntList::insert(int e) {
IntNode* node = new IntNode(e, head);
head = node;
number = number+1;
return *this;

}

int IntList::get(int i) const {
IntNode *node = head;
for (int j=0; j<number-i-1; j++)
node = node->next;
return node->value;

}

Frequently used technique called
“Pointer to Implementation”.

https://www.risc.jku.at 56/70

N, | 2N,
M The Standard Class string E.{

C++ has a much more convenient representation of strings than C.

1. Classes as Namespaces C/C++: char[N] s
) Strings as arrays of characters terminated by the null character.
2. Classes as Object Types Very rigid representation because each string has a fixed size.

Constructing new strings (reading, concatenating, ...) is tedious.
3. Objects with Functions There is the persistent danger that the allocated buffer is overwritten.
// reads up to 4 characters, may cause buffer overflow
char s[3]; cin.getline(s, 4);
C++: string s (#include <string>)

Strings as objects with associated operations.

4. Objects and Arrays

5. Objects and Information Hiding No fixed length; easy construction and manipulation.
Automatic memory management hidden in class.
6. The Standard Class string // reads safely text line of arbitrary length

string s; getline(cin, s);

Class string is strongly recommended for string processing in C++-.

Wolfgang Schreiner https://www.risc.jku.at 57/70 Wolfgang Schreiner https://www.risc.jku.at 58/70
" Y
H D (J H D) (]
String Input and Output v Other String Operators %
L] °
// reads line and places it in s (excluding the end of line marker) // returns concatentation of strings, character sequences, characters
istream& getline(istream& in, string& s); string& operator+(const string& s, const string& t);
string& operator+(const char* s, const string& t);
// reads characters until delim occurs and places it in s (excluding delim) string& operator+(const string& s, char* t);
istream& getline(istream& in, string& s, char delim); string& operator+(const string& s, char c);
// reads one word (excluding white space) and returns string // compares string
istream& operator>>(istream& in, const string& s); // - operator== for equality
// - operator!= for inequality
// writes string // - operator<, operator <=, operator >, operator >= for lexical ordering
ostream& operator<<(ostream& out, const string& s); bool operator==(const string& s, const string& t);
bool operator==(const char* s, const string& t);
The result of the input operations (converted to type bool) is false, if bool operator==(const stringk s, const char* t);
and only if no (more) input was available. // swaps contents of strings

void swap(string& a, string& b);

Wolfgang Schreiner https://www.risc.jku.at 59/70 Wolfgang Schreiner https://www.risc.jku.at 60/70

Wolfgang Schreiner

I

Constructors and Basic Access Functions v
[]

// the empty string
string();

// a copy of s
string(const string& s);

// a copy of the null-terminated character sequence s as a string
string(const charx s);

// denotes "no position" in several methods
static const int npos = -1;

// a substring of s starting at pos and having at most n characters
// (for n = npos everything up to the end of the string is copied)
string(const string& s, int pos, int n = npos);

// a copy of the first n characters of s as a string
string(const char* s, int n);

// number of characters in string and a test for emptiness
int length() const;

int size() const;

bool empty() const;

Wolfgang Schreiner https://www.risc.jku.at 61/70
AN
Destructive Member Functions .ﬁ {.
[]

// erase characters in string
void clear();

// assign to this string another string, character sequence, or character
string& operator=(const string&s); // also: assign
string& operator=(const char* s); // also: assign
string& operator=(char c); // also: assign

// assign to this string the denoted substring to s
string& assign(const string& s, int pos, int n);
string& assign(const char* s, int pos);

// append to this string another string or character
string& operator+=(string& s); // also: append
string& operator+=(char *s); // also: append
string& operator+=(char c); // also: append

// append to this string the denoted substring of s
string& append(string& s, int pos, int n);
string& append(char *s, int pos, int n);

Wolfgang Schreiner

Non-Destructive Member Functions v

// reference to character at position i
char& operator[] (int i);

// substring of this string starting at pos with at most n characters
string substr(int pos = 0, int n = npos);

// return string as a null-terminated sequence of characters
// (must not be modified and becomes invalid after modifying this string)
const char* c_str() const;

// copies from this string into the buffer up to n character starting at pos
int copy(char* buffer, int n, int pos = 0);

// compare (a substring of) this string with (a substring of) another string
// 0 if equal, <O if this string is lexicographically smaller, >0 otherwise
int compare(const string& s) const;

int compare(const char* s) const;

int compare(int pos, int n, const string& s) const;

int compare(int pos, int n, const char* s) const;

int compare(int pos, int n, const string& s, int pos2, int n2) const;

int compare(int pos, int n, const char* s, int pos2, int n2) const;

A

Member Functions for Inserting/Replacing .E {'

https://www.risc.jku.at 63/70 Wolfgang Schreiner

// insert into this string at pos another string or character sequence
string& insert(int pos, const string& s);

string& insert(int pos, const char* s);

string& insert(int pos, int n, char c);

// insert into this string at pos the denoted substring
string& insert(int pos, const string& s, int pos2, int n2);
string& insert(int pos, char* s, int n);

// erases denoted substring from this string and inserts other string instead
string& replace(int pos, int n, const string& s);
string& replace(int pos, int n, const char* s);

// insert denoted substring instead
string& replace(int pos, int n, const string& s, int pos2, int n2);

string& replace(int pos, int n, const char* s, n2);

// insert n2 copies of character c instead
string& replace(int pos, int n, int n2, char c);

https://www.risc.jku.at 64/70

https://www.risc.jku.at 62/70

Member Functions for String Searching M

// search (starting at pos) for smallest position where s occurs in this string
// (npos, if s does not occur in this string)

int find(const string& s, int pos = 0) const;

int find(const char* s, int pos = 0) const;

int find(char c, int pos = 0) const;

// search for substring of s with at most n characters
int find(const char* s, int pos, int n) const;

// search (starting at pos) for largest position where s occurs in this string
// (npos, if s does not occur in this string)

int rfind(const string& s, int pos = npos) const;

int rfind(const char* s, int pos = npos) const;

int rfind(char c, int pos = 0) const;

// search for substring of s with at most n characters
int rfind(const char* s, int pos, int n) const;

Wolfgang Schreiner

Examples W

string lower = "abc..z";
string upper = "ABC..Z",
string letters = lower + upper;

cout << letters[26]; // 0N
cout << letters.length(); // 52
cout << letters.substring(2, 3); // "cde"
cout << letters.find("cde"); // 2
cout << letters.find("xxx"); // npos

letters.insert (0, "<");
letters.append(">");
cout << letters; // "<abc..zABC..z>"
String line; // empty string

bool okay = getline(cin, line); // read one text line

if (lokay) return; // check for end of input

Flexible construction and manipulation of strings.

Wolfgang Schreiner

A

Member Functions for Character Searching .E {'

https://www.risc.jku.at 65/70

https://www.risc.jku.at 67/70 Wolfgang Schreiner

// search for smallest position where some chararacter of s occurs
// (does not occur) in this string

int find_first_of(const string& s, int pos = 0) const;

int find_first_of (const char *s, int pos = 0) const;

int find_first_not_of (const string& s, int pos = 0) const;

int find_first_not_of (const char *s, int pos = 0) const;

// search for largest position where some chararacter of s occurs
// (does not occur) in this string

int find_last_of(const string& s, int pos = npos) const;

int find_last_of(const char *s, int pos = npos) const;

int find_last_not_of(const string& s, int pos = npos) const;

int find_last_not_of(const char *s, int pos = npos) const;

For more functions and detailed information, see the class documentation.

Wolfgang Schreiner https://www.risc.jku.at 66/70
7\
Example: Text Processing X *
N4

Write a program that reads a text (a sequence of lines) which contains
multiple words (sequences of letters) separated by other characters. The
program then prints all words of the text in separate lines in the order of
their occurrence in the text. For instance, the input

One, two, and three!
shall result in output

One
two
and
three

A simple example of text processing.

https://www.risc.jku.at 68/70

Example: Text Processing .ﬁ {' Example: Text Processing 'E {'
° °
#include <string> const char LETTERS[] =
#include <iostream> "abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ" ;
using namespace std;
void printWords(const string& text)
void printWords(const string& text); {
int i = 0;
int main() int end = text.length();
{ while (i < end)
while (true) {
{ int a = text.find_first_of (LETTERS, i);
string line; if (a == string::npos) break;
bool okay = getline(cin, line); int b = text.find_first_not_of (LETTERS, a+1);
if (lokay) break; if (b == string::npos) b = end;
printWords(line); cout << text.substr(a, b-a) << "\n";
} i = b+1;
¥ }

}

Easy with the help of the existing string methods.

Wolfgang Schreiner https://www.risc.jku.at 69/70 Wolfgang Schreiner https://www.risc.jku.at 70/70

