Semantics for proximity-based logic programming

Maximilian Donnermair

2024-12-03

Task: find unifiers of terms t to s, i.e., substitutions σ such that $t\sigma = s\sigma$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $a \sim b$ and $b \sim c$. Then

- \blacktriangleright p(b, b) not close to p(a, a)
- p(b, b) not close to p(c, c)
- \blacktriangleright p(b, b) not close to p(a, c)

Task: find (\mathcal{R}, λ) -unifiers of terms t to s, i.e., substitutions σ such that $\mathcal{R}(t\sigma, s\sigma) \geq \lambda$ with cut value λ and similarity relation \mathcal{R} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

1. from crisp case to similarity relation

Let $a \sim b$ and $b \sim c$. Then

- \blacktriangleright p(b, b) close to p(a, a)
- ▶ p(b, b) close to p(c, c)
- p(b, b) not close to p(a, c)

Task: find (\mathcal{R}, λ) -unifiers of terms t to s, i.e., substitutions σ such that $\mathcal{R}(t\sigma, s\sigma) \geq \lambda$ with cut value λ and proximity relation \mathcal{R} .

- 1. from crisp case to similarity relation
- 2. from similarity relation to block-based proximity relation

```
Let a \sim b and b \sim c. Then
```

- p(b, b) close to p(a, a)
- p(b, b) close to p(c, c)
- p(b, b) not close to p(a, c)

Task: find (\mathcal{R}, λ) -unifiers of terms t to s, i.e., substitutions σ such that $\mathcal{R}(t\sigma, s\sigma) \geq \lambda$ with cut value λ and proximity relation \mathcal{R} .

- 1. from crisp case to similarity relation
- 2. from similarity relation to block-based proximity relation
- 3. from block-based proximity to class-based proximity

```
Let a \sim b and b \sim c. Then

\blacktriangleright p(b, b) close to p(a, a)

\blacktriangleright p(b, b) close to p(c, c)

\blacktriangleright p(b, b) close to p(a, c)
```

Task: find (\mathcal{R}, λ) -unifiers of terms t to s, i.e., substitutions σ such that $\mathcal{R}(t\sigma, s\sigma) \geq \lambda$ with cut value λ and proximity relation \mathcal{R} .

- 1. from crisp case to similarity relation
- 2. from similarity relation to block-based proximity relation
- 3. from block-based proximity to class-based proximity
- 4. from minimum T-norm to arbitrary T-norms

Let $a \sim b$ and $b \sim c$. Then

- p(b, b) close to p(a, a)
- ▶ p(b, b) close to p(c, c)
- p(b, b) close to p(a, c)
- all depending on T-norm and cut value

From unification to logic programming

Literature

2002, Maria Sessa: "Approximate reasoning by similarity-based SLD-resolution"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

From unification to logic programming

Literature

- 2002, Maria Sessa: "Approximate reasoning by similarity-based SLD-resolution"
- 2017, Julián-Iranzo and Rubio-Manzano: "A sound and complete semantics for a similarity-based logic programming language"

includes declarative and operational semantics

From unification to logic programming

Literature

- 2002, Maria Sessa: "Approximate reasoning by similarity-based SLD-resolution"
- 2017, Julián-Iranzo and Rubio-Manzano: "A sound and complete semantics for a similarity-based logic programming language"
 - includes declarative and operational semantics
- 2023, Julián-Iranzo and Sáenz-Pérez: "Bousi Prolog Design and implementation of a proximity-based fuzzy logic programming language"

- only block-based approach
- no declarative semantics

Declarative semantics: Interpretation

Theoretical foundation on definite (Horn) clauses $A \leftarrow B_1, \ldots, B_n$. Interpretation function: $\mathcal{I} = \langle \mathcal{D}, \mathcal{V} \rangle$, where

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

• \mathcal{D} subset of Herbrand base

$$\blacktriangleright \mathcal{V}: \mathcal{D}^n \to [0,1]$$

Declarative semantics: Interpretation

Theoretical foundation on definite (Horn) clauses $A \leftarrow B_1, \ldots, B_n$. Interpretation function: $\mathcal{I} = \langle \mathcal{D}, \mathcal{V} \rangle$, where

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• \mathcal{D} subset of Herbrand base

$$\blacktriangleright \ \mathcal{V}: \mathcal{D}^n \to [0,1]$$

Recursively:

$$\mathcal{I}(A_1, \dots, A_n) = \bigwedge_{i=1}^n \mathcal{I}(A_i)$$

$$\mathcal{I}(A \leftarrow Q) = \begin{cases} \mathcal{I}(A) & \text{if } \mathcal{I}(A) < \mathcal{I}(Q) \\ 1 & \text{else} \end{cases}$$

Declarative semantics: Annotation

- \blacktriangleright equip elements of program with truth value 1
- instantiate with terms from Herbrand universe

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

subsequently add atoms in proximity classes

Declarative semantics: Annotation

- equip elements of program with truth value 1
- instantiate with terms from Herbrand universe

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- subsequently add atoms in proximity classes
- ▶ problem: non-linear atoms (e.g., p(X, X))

Declarative semantics: Annotation

- equip elements of program with truth value 1
- instantiate with terms from Herbrand universe
- subsequently add atoms in proximity classes
- problem: non-linear atoms (e.g., p(X, X))

Linearization

Needed for defining notions of model and logical consequence.

Example: $lin(\{p(X,X)\}) = \{p(X,Y) \leftarrow X \sim Y\} = \{p(X,Y) \leftarrow \mathcal{R}(X,Y)\}$

In proximity case: $lin(\{p(X, X)\}) = \{p(Y, Z) \leftarrow Y \sim X, X \sim Z\} = \{p(Y, Z) \leftarrow \mathcal{R}(Y, X) \otimes \mathcal{R}(X, Z)\}$

Models

• \mathcal{I} is λ -model for formula \mathcal{F} iff $\mathcal{I}(\mathcal{F}) \geq \lambda$.

Models

- \mathcal{I} is λ -model for formula \mathcal{F} iff $\mathcal{I}(\mathcal{F}) \geq \lambda$.
- Looking for suitable notion of least Herbrand λ -model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Models

- \mathcal{I} is λ -model for formula \mathcal{F} iff $\mathcal{I}(\mathcal{F}) \geq \lambda$.
- Looking for suitable notion of least Herbrand λ -model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Models

- \mathcal{I} is λ -model for formula \mathcal{F} iff $\mathcal{I}(\mathcal{F}) \geq \lambda$.
- Looking for suitable notion of least Herbrand λ -model

Tasks

describe fixpoint/immediate consequence operator

check model intersection property

Operational semantics

Weak (fuzzy) unification

Has to be checked for correctness.

Operational semantics

Weak (fuzzy) unification

Has to be checked for correctness.

Weak SLD-resolution

 decide between computing family of answers or constraints/best answer

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- adapt for linearized programs
- check for correctness

Further outlook

Rewriting

Builds on *fuzzy matching*: Find all (\mathcal{R}, λ) -matchers of t to s, i.e., substitutions σ such that $\mathcal{R}(t\sigma, s) \geq \lambda$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Further outlook

Rewriting

Builds on *fuzzy matching*:

Find all (\mathcal{R}, λ) -matchers of t to s, i.e., substitutions σ such that $\mathcal{R}(t\sigma, s) \geq \lambda$.

 Task: Extend Meseguer's rewriting logic (foundation of the Maude programming language)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Further outlook

Rewriting

Builds on *fuzzy matching*:

Find all (\mathcal{R}, λ) -matchers of t to s, i.e., substitutions σ such that $\mathcal{R}(t\sigma, s) \geq \lambda$.

 Task: Extend Meseguer's rewriting logic (foundation of the Maude programming language)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Quantales

Generalization of "arbitrary T-norms".