
Semantics for proximity-based logic programming

Maximilian Donnermair

2024-12-03



Background: unification

Task: find

(R, λ)-

unifiers of terms t to s, i.e., substitutions σ such
that tσ = sσ.

1. from crisp case to similarity relation

2. from similarity relation to block-based proximity relation

3. from block-based proximity to class-based proximity

4. from minimum T-norm to arbitrary T-norms

Let a ∼ b and b ∼ c. Then

▶ p(b, b) not close to p(a, a)

▶ p(b, b) not close to p(c , c)

▶ p(b, b) not close to p(a, c)

▶ all depending on T-norm and cut value



Background: unification

Task: find (R, λ)-unifiers of terms t to s, i.e., substitutions σ such
that R(tσ, sσ) ≥ λ with cut value λ and similarity relation R.
1. from crisp case to similarity relation

2. from similarity relation to block-based proximity relation

3. from block-based proximity to class-based proximity

4. from minimum T-norm to arbitrary T-norms

Let a ∼ b and b ∼ c. Then

▶ p(b, b) close to p(a, a)

▶ p(b, b) close to p(c , c)

▶ p(b, b) not close to p(a, c)

▶ all depending on T-norm and cut value



Background: unification

Task: find (R, λ)-unifiers of terms t to s, i.e., substitutions σ such
that R(tσ, sσ) ≥ λ with cut value λ and proximity relation R.
1. from crisp case to similarity relation

2. from similarity relation to block-based proximity relation

3. from block-based proximity to class-based proximity

4. from minimum T-norm to arbitrary T-norms

Let a ∼ b and b ∼ c. Then

▶ p(b, b) close to p(a, a)

▶ p(b, b) close to p(c , c)

▶ p(b, b) not close to p(a, c)

▶ all depending on T-norm and cut value



Background: unification

Task: find (R, λ)-unifiers of terms t to s, i.e., substitutions σ such
that R(tσ, sσ) ≥ λ with cut value λ and proximity relation R.
1. from crisp case to similarity relation

2. from similarity relation to block-based proximity relation

3. from block-based proximity to class-based proximity

4. from minimum T-norm to arbitrary T-norms

Let a ∼ b and b ∼ c. Then

▶ p(b, b) close to p(a, a)

▶ p(b, b) close to p(c , c)

▶ p(b, b) close to p(a, c)

▶ all depending on T-norm and cut value



Background: unification

Task: find (R, λ)-unifiers of terms t to s, i.e., substitutions σ such
that R(tσ, sσ) ≥ λ with cut value λ and proximity relation R.
1. from crisp case to similarity relation

2. from similarity relation to block-based proximity relation

3. from block-based proximity to class-based proximity

4. from minimum T-norm to arbitrary T-norms

Let a ∼ b and b ∼ c. Then

▶ p(b, b) close to p(a, a)

▶ p(b, b) close to p(c , c)

▶ p(b, b) close to p(a, c)

▶ all depending on T-norm and cut value



From unification to logic programming

Literature
▶ 2002, Maria Sessa: “Approximate reasoning by

similarity-based SLD-resolution”

▶ 2017, Julián-Iranzo and Rubio-Manzano: “A sound and
complete semantics for a similarity-based logic programming
language”
▶ includes declarative and operational semantics

▶ 2023, Julián-Iranzo and Sáenz-Pérez: “Bousi Prolog - Design
and implementation of a proximity-based fuzzy logic
programming language”
▶ only block-based approach
▶ no declarative semantics



From unification to logic programming

Literature
▶ 2002, Maria Sessa: “Approximate reasoning by

similarity-based SLD-resolution”
▶ 2017, Julián-Iranzo and Rubio-Manzano: “A sound and

complete semantics for a similarity-based logic programming
language”
▶ includes declarative and operational semantics

▶ 2023, Julián-Iranzo and Sáenz-Pérez: “Bousi Prolog - Design
and implementation of a proximity-based fuzzy logic
programming language”
▶ only block-based approach
▶ no declarative semantics



From unification to logic programming

Literature
▶ 2002, Maria Sessa: “Approximate reasoning by

similarity-based SLD-resolution”
▶ 2017, Julián-Iranzo and Rubio-Manzano: “A sound and

complete semantics for a similarity-based logic programming
language”
▶ includes declarative and operational semantics

▶ 2023, Julián-Iranzo and Sáenz-Pérez: “Bousi Prolog - Design
and implementation of a proximity-based fuzzy logic
programming language”
▶ only block-based approach
▶ no declarative semantics



Declarative semantics: Interpretation

Theoretical foundation on definite (Horn) clauses A← B1, . . . ,Bn.
Interpretation function: I = ⟨D,V⟩, where
▶ D subset of Herbrand base

▶ V : Dn → [0, 1]

Recursively:

▶ I(A1, . . . ,An) =
∧n

i=1 I(Ai )

▶ I(A← Q) =

{
I(A) if I(A) < I(Q)

1 else



Declarative semantics: Interpretation

Theoretical foundation on definite (Horn) clauses A← B1, . . . ,Bn.
Interpretation function: I = ⟨D,V⟩, where
▶ D subset of Herbrand base

▶ V : Dn → [0, 1]

Recursively:

▶ I(A1, . . . ,An) =
∧n

i=1 I(Ai )

▶ I(A← Q) =

{
I(A) if I(A) < I(Q)

1 else



Declarative semantics: Annotation

▶ equip elements of program with truth value 1

▶ instantiate with terms from Herbrand universe

▶ subsequently add atoms in proximity classes

▶ problem: non-linear atoms (e.g., p(X ,X ))

Linearization
Needed for defining notions of model and logical consequence.

Example:
lin({p(X ,X )}) = {p(X ,Y )← X ∼ Y } = {p(X ,Y )← R(X ,Y )}

In proximity case: lin({p(X ,X )}) =
{p(Y ,Z )← Y ∼ X ,X ∼ Z} = {p(Y ,Z )← R(Y ,X )⊗R(X ,Z )}



Declarative semantics: Annotation

▶ equip elements of program with truth value 1

▶ instantiate with terms from Herbrand universe

▶ subsequently add atoms in proximity classes

▶ problem: non-linear atoms (e.g., p(X ,X ))

Linearization
Needed for defining notions of model and logical consequence.

Example:
lin({p(X ,X )}) = {p(X ,Y )← X ∼ Y } = {p(X ,Y )← R(X ,Y )}

In proximity case: lin({p(X ,X )}) =
{p(Y ,Z )← Y ∼ X ,X ∼ Z} = {p(Y ,Z )← R(Y ,X )⊗R(X ,Z )}



Declarative semantics: Annotation

▶ equip elements of program with truth value 1

▶ instantiate with terms from Herbrand universe

▶ subsequently add atoms in proximity classes

▶ problem: non-linear atoms (e.g., p(X ,X ))

Linearization
Needed for defining notions of model and logical consequence.

Example:
lin({p(X ,X )}) = {p(X ,Y )← X ∼ Y } = {p(X ,Y )← R(X ,Y )}

In proximity case: lin({p(X ,X )}) =
{p(Y ,Z )← Y ∼ X ,X ∼ Z} = {p(Y ,Z )← R(Y ,X )⊗R(X ,Z )}



Declarative semantics: Models

Models
▶ I is λ-model for formula F iff I(F) ≥ λ.

▶ Looking for suitable notion of least Herbrand λ-model

Tasks
▶ describe fixpoint/immediate consequence operator

▶ check model intersection property



Declarative semantics: Models

Models
▶ I is λ-model for formula F iff I(F) ≥ λ.

▶ Looking for suitable notion of least Herbrand λ-model

Tasks
▶ describe fixpoint/immediate consequence operator

▶ check model intersection property



Declarative semantics: Models

Models
▶ I is λ-model for formula F iff I(F) ≥ λ.

▶ Looking for suitable notion of least Herbrand λ-model

Tasks
▶ describe fixpoint/immediate consequence operator

▶ check model intersection property



Declarative semantics: Models

Models
▶ I is λ-model for formula F iff I(F) ≥ λ.

▶ Looking for suitable notion of least Herbrand λ-model

Tasks
▶ describe fixpoint/immediate consequence operator

▶ check model intersection property



Operational semantics

Weak (fuzzy) unification

Has to be checked for correctness.

Weak SLD-resolution
▶ decide between computing family of answers or

constraints/best answer

▶ adapt for linearized programs

▶ check for correctness



Operational semantics

Weak (fuzzy) unification

Has to be checked for correctness.

Weak SLD-resolution
▶ decide between computing family of answers or

constraints/best answer

▶ adapt for linearized programs

▶ check for correctness



Further outlook

Rewriting

Builds on fuzzy matching :
Find all (R, λ)-matchers of t to s, i.e., substitutions σ such that
R(tσ, s) ≥ λ.

▶ Task: Extend Meseguer’s rewriting logic (foundation of the
Maude programming language)

Quantales
Generalization of “arbitrary T-norms”.



Further outlook

Rewriting

Builds on fuzzy matching :
Find all (R, λ)-matchers of t to s, i.e., substitutions σ such that
R(tσ, s) ≥ λ.

▶ Task: Extend Meseguer’s rewriting logic (foundation of the
Maude programming language)

Quantales
Generalization of “arbitrary T-norms”.



Further outlook

Rewriting

Builds on fuzzy matching :
Find all (R, λ)-matchers of t to s, i.e., substitutions σ such that
R(tσ, s) ≥ λ.

▶ Task: Extend Meseguer’s rewriting logic (foundation of the
Maude programming language)

Quantales
Generalization of “arbitrary T-norms”.


