
Seminar Talk:
Theorema Document Processing
Jack Heseltine, December 3rd 2024
for RISC, JKU Linz/Seminar Formal Methods WS

2024

(University of Applied Sciences, Campus

Hagenberg - Software Engineering)

Plan for Today
 Personal Introduction/Background/Documents

 This Work/Its Context

 The Project Itself (Overview)

 Demo Document Transformation & Code Analysis

 Testing & Closing Remarks

 If Time Permits: Source Code Deep Dive (WL Focus)

 If Time Permits: Building Applications with the Wolfram Cloud (Excursus, see next slide)

 current topic: Appearance vs AppearanceElements vs AppearanceRules as a question about
style/presentation of a (Cloud-)notebook (or any CloudObject, as a matter of fact), which is to say

document representation format and transformation questions come up all the time in this technical
ecosystem, as well as the format (or level) of the design: Expression (vs Option) vs StyleSheet in Wolfram

ecosystem generally, Wolfram or Theorema Language (Expression) vs LATEX in the present work.

 Q&A

2 seminar-talk-Tma2TeX-2024.nb

https://www.wolfram.com/wolfram-u/courses/programming-applications/building-applications-wolfram-cloud-dev922/
https://reference.wolfram.com/language/ref/Appearance.html.en
https://reference.wolfram.com/language/ref/AppearanceElements.html
https://reference.wolfram.com/language/ref/AppearanceRules.html
https://reference.wolfram.com/language/ref/Notebook.html.en
https://reference.wolfram.com/language/ref/CloudObject.html.en

Background

Me
I am a Consultant Software Engineer for Wolfram Research (Cloud Project) and work from Austria,
where I am also completing a Masters in AI, at the Machine Learning Institute of Johannes Kepler Univer-
sity in Linz.

 GitHub: https://github.com/heseltime

 Project for Discussion Today: https://github.com/heseltime/Tma2TeX

 Website: https://heseltime.github.io

 LinkedIn: https://www.linkedin.com/in/heselt-in-e/

 If Time Permits: Building Applications with the Wolfram

Cloud (Excursus)

seminar-talk-Tma2TeX-2024.nb 3

https://www.wolfram.com/wolfram-u/courses/programming-applications/building-applications-wolfram-cloud-dev922/
https://www.wolfram.com/wolfram-u/courses/programming-applications/building-applications-wolfram-cloud-dev922/

Documents
I first started working with documents in a software development context while building an Enterprise

Content (read: Documents) Management (ECM) system in a team for the Red Cross, during COVID. One

of the remarkable things about good ECM is how knowledge becomes accessible and processes/work-
flows are enabled, making for more productive (non-profit, in my case) organizations: it comes down to

appropriate, readable documents, often.

My AI Masters Thesis project is also about documents, specifically how to use LLM tooling to make PDF-
documents accessible for people using screen-readers, in a fully automated fashion.

In this talk, we will look at Mathematica Notebooks as a type of document.

Of interest is document transformation, i.e. turning a source document format into a target format with

the same content.

4 seminar-talk-Tma2TeX-2024.nb

This Work (Its Context)

A Software Engineering Thesis
This work happened as a collaboration between RISC (JKU) and University of Applied Sciences Upper
Austria, Campus Hagenberg, as a capstone to the Bachelor’s course of study in Software Engineering.

Theorema Project: Document Processing

The task in this thesis is to setup an environment for preparing entire (big) mathematical documents in

Theorema 2.0. This comprises the design of appropriate Mathematica stylesheets and a mechanism for
translating Mathematica notebooks into nicely formatted LaTeX documents.

Note on Scope: the basic Theorema formulas are the transformation object, proofs are not included in

the transformation at the moment.

seminar-talk-Tma2TeX-2024.nb 5

https://risc.jku.at/th/theorema-project-document-processing/

Mathematica/Wolfram Language (WL)
This was the main prerequisite in terms of conceptual background, apart from basic familiarity with First
Order Predicate Logic (FOPL) and LATEX on the technical side.

 Motivation: The Mathematical Document Problem (Chapter 1)

 While LATEX documents look good on paper, they are not live, in the sense that they do not allow for
evaluation of mathematical statements (in a world where systems for doing so exist)

 The Theorema Project and in a broader sense, the WL ecosystem today (see links in this presentation

and Appendix D in thesis), address this problem at the root by representing event the document itself
as an expression that can be worked with

Mathematica and WL as a Programming Language

 Everything is an Expression: Compound Expression (from Buchberger, Mathematica as a Rewrite

Language) idea

 If F is an expression that is not a variable and T1, ..., Tn are expressions or sequence variables

(specifying one, no or multiple occurrences) then
F[T1, ..., Tn]

is also an expression

 Rewrite Rules: expressions can also make up conditional rewrite rules of the form
lhsExpr := rhsExpr(/; condition)

 “Mathematica programs are just finite sequences of such (conditional) rewrite rules separated by

semicolons.”

 We will look at code in just a moment

 Remark: Compound Expressions as a suitable data structure for FOPL (these are WL examples, extends

to Theorema Language, see below)

 Logical Connectives

In[14]:= And[p,q]

Out[14]=

p && q

 Predicates

In[11]:= EvenQ[n]
Out[11]=

False

 Quantifiers

In[12]:= ForAll[x, x > 0, x^2 > 0]
Out[12]=

∀x,x>0 x2 > 0

 Theorema Language Expression Example

6 seminar-talk-Tma2TeX-2024.nb

Iff$TM[And$TM[Forall$TM[RNG$[SIMPRNG$[VAR$[Theorema`Knowledge`VARxTM]]],
True, Or$TM[Theorema`Knowledge`P$TM[VAR$[Theorema`Knowledge`VAR$x$TM]],
Theorema`Knowledge`Q$TM[VAR$[Theorema`Knowledge`VARxTM]]]],

Forall$TM[RNG$[SIMPRNG$[VAR$[Theorema`Knowledge`VARyTM]]], True,
Implies$TM[Theorema`Knowledge`P$TM[VAR$[Theorema`Knowledge`VAR$y$TM]],
Theorema`Knowledge`Q$TM[VAR$[Theorema`Knowledge`VARyTM]]]]],

Forall$TM[RNG$[SIMPRNG$[VAR$[Theorema`Knowledge`VARxTM]]], True,
Theorema`Knowledge`Q$TM[VAR$[Theorema`Knowledge`VARxTM]]]]

(“Theorema`Language`” context-paths removed.)

Comparison to Object-Oriented Programming (OOP)

 Mathematica Book (1996) example

“Overloading” specific definitions and “tagging” specific objects (here as quat-objects):

In[15]:= quat[x_] + quat[y_] ^:= quat[x + y]

This is also called an Upvalue Definition

In[16]:= quat[1] + quat[2]
Out[16]=

quat[3]

In[17]:= quat[1] + quat[2] + quat[3]
Out[17]=

quat[6]

When you define an upvalue for quat with respect to an operation like Plus, what you are effectively doing is

to extend the domain of the Plus operation to include quat objects.

Also to Buchberger this ‘mechanism for associating rules with identifiers opens an immediate possibility

of realizing “object oriented programming” in Mathematica.’ (Rewriting Paper)

Comparison to Existing Functionality in Mathematica

 Save as PDF/save as LATEX: either way, there is a disconnect between the optics and the semantics that
should be retained in an export functionality for Theorema.

Vision/Connection to Theorema

 This project is a prototype for functionality that could ultimately be exposed directly to the Theorema

user in the Theorema Commander, for instance

seminar-talk-Tma2TeX-2024.nb 7

The Theorema notebook itself will be shown in the Demo.

8 seminar-talk-Tma2TeX-2024.nb

The Project: Tma2TeX (Theorema)

Theorema: Automated Theorem Prover

Overview

 https://github.com/windsteiger/Theorema

“A System for Automated Reasoning (Theorem Proving) and Automated Theory Exploration based on

Mathematica”

Large Systems with WL

General good practice also recommended by Wolfram Research

 Divide the System into Components (Packages)

 Write and Use Unit Tests (we will get to this later)

 Think of Architecture, Not the Code (cf. “High-Level Programming”)

 Use Source Control

 Write Documentation

(These last two points do not have any WL-specific implementation.)

Programming Paradigms

While not a pure OOP language, WL can mimic OOP concepts: that said, why limit ourselves?

 Functional vs Procedural

 “High-Level Programming”

 Rule-Based Programming, Pattern Matching (Connection to Rewriting)

Concept (Tma2TeX)

WL-Native Approach

For direct integration with Theorema: Main idea is to make use of suitable programming paradigms and

the natural Compound Expression data structure for FOPL.

seminar-talk-Tma2TeX-2024.nb 9

Package Specification

Core Idea: No Layout-Information in LATEX (Output Format)

10 seminar-talk-Tma2TeX-2024.nb

Theorema & Tma2TeX Demo
Note on the IDE used: Eclipse with Wolfram Workbench

seminar-talk-Tma2TeX-2024.nb 11

The Main Approach: Recursive Descent

Code Analysis (Overview)

We are now talking about WL-code in the tma2tex.wl (package):

Two recursions, parseNbContent[] and parseTmaData[], through the notebook generally and then the

Theorema expressions specifically: the latter are tagged and indexed, a helper function getTmaData[]
establishes the connection to the Theorema-internal representation via an ID.

Code Analysis: Implementing the Double-Recursive Descent and Connecting to

Theorema

parseNbContent[]

(*--Part 1.A,Recursive Pattern
Matching:parseNbContent[] with a focus on (mathematical) symbol-

level transformations--*)(*--Part 1.A.0-- Structural
Expressions: \light{}-TeX Command available in Frontend,

to demarcate structural text output from content*)
(*parseNbContent[Notebook[l_List,___]]:="NB reached "<>parseNbContent/@l*)

12 seminar-talk-Tma2TeX-2024.nb

(*Careful with Map:Goes to parseNbContent[c_Cell]*)
parseNbContent[Notebook[l_List, ___]] :=
"\\light{NB reached} " <> parseNbContent[l]

(*goes to parseNbContent[l_List],this our entry point to parsing*)

parseNbContent[c_Cell] := "\\light{Cell reached} " (*matches Cells that
are not further specified (as relevant WL or TMA cells) below*)

parseNbContent[l_List] := "\\light{List reached} "
parseNbContent[l_List] /; MemberQ[l, _Cell] :=
StringJoin["\\light{List of cells reached} ", ToString /@ parseNbContent /@ l]

parseNbContent[Cell[CellGroupData[l_List, ___], ___]] :=
"\\light{CellGroupData reached} " <> parseNbContent[l]

(*--Part 1.A.1-- Text Expressions (at the Cell Level)*)

parseNbContent[Cell[text_String, "Text", ___]] :=
"\\begingroup \\section*{} " <> text <> "\\endgroup \n\n"

parseNbContent[Cell[text_String, "Section", ___]] :=
"\\section{" <> text <> "}\n\n"

(*--Part 1.A.2-- Text/Math/Symbols at the String Level*)

(*Operators*)
parseNbContent["<"] := "\\textless"

parseNbContent[">"] := "\\textgreater"

(*Greek Letters*)
parseNbContent["Δ"] := "\\Delta"

(*--Part 1.A.3-- Boxes*)

parseNbContent[
Cell[BoxData[FormBox[content_, TraditionalForm]], "DisplayFormula", ___]] :=

StringJoin["\\begin{center}", parseNbContent[content], "\\end{center}\n"]

(*This particular rule does a lot of the parsing through the Tma-Env.*)
parseNbContent[RowBox[list_List]] := StringJoin[parseNbContent /@ list]

(*Underscriptboxes*)

seminar-talk-Tma2TeX-2024.nb 13

parseNbContent[UnderscriptBox[base_, script_]] := StringJoin[
"\\underset{", parseNbContent[script], "}{", parseNbContent[base], "}"]

parseNbContent[UnderscriptBox["∃", cond_]] :=
"\\underset{" <> parseNbContent[cond] <> "}{\\exists}"

parseNbContent[UnderscriptBox["∀", cond_]] :=
"\\underset{" <> parseNbContent[cond] <> "}{\\forall}"

(*--Part 1.A.4-- Symbols Dependent on Boxes ...*)

... and so on – here we already see output LATEX: we talk about the surrounding file-handling in the next
section.

getTmaData[]

I n [] : = (*--Part 1.C.0,
Recursive Pattern Matching:getTmaData[] selects the relevant part in

Theorema`Common`FML$ in preperation for a second recursive descent,
see 1.B.2--*)getTmaData[id_Integer] :=
Module[{assoc, cleanStringKeysAssoc, numericKeysAssoc},
assoc = Association[Cases[$tmaData, Theorema`Common`FML$[

{idFormula_, _}, expr_, no_] (idFormula expr), {1}]];
cleanStringKeysAssoc =

Association[StringReplace[#, "ID:" ""] assoc[#] & /@ Keys[assoc]];
numericKeysAssoc = Association[

ToExpression[#] cleanStringKeysAssoc[#] & /@ Keys[cleanStringKeysAssoc]];
numericKeysAssoc[id]]

14 seminar-talk-Tma2TeX-2024.nb

parseTmaData[]

I n [] : = (*--Part 1.C.1,
Recursive Pattern Matching:second recursive descent more generalized--*)
(*Generalized parsing function*)
parseTmaData[op_[args___]] := (*always seems to have list length 1*)
Module[{nextOp, argList, parsedArgs}, nextOp = tmaToInputOperator[op];
argList = {args};
parsedArgs = Switch[Length[argList], (*expected to be 1*)1,

parseTmaData[argList〚1〛], _, "unexpected number of arguments"];
" " <> ToString[nextOp] (*TODO:LaTeX Conversion*) <> parsedArgs]

(*Parsing function for expressions with standard operators*)
(*parseTmaData[(op_?isStandardOperatorName)[args___]]:=
With[{nextOp=tmaToInputOperator[op]},
ToString[nextOp]<>" "<>StringJoin[parseTmaData/@{args},", "]]*)

parseTmaData[(op_?isStandardOperatorName)[args___]] :=
Module[{nextOp, argList, parsedArgs}, nextOp = tmaToInputOperator[op];
argList = {args};
parsedArgs = Switch[Length[argList], 1,

parseTmaData[argList〚1〛], 2, parseTmaData[argList〚1〛] <>

(*--interjection--<>*)parseTmaData[argList〚2〛],
3, parseTmaData[argList〚1〛] <> (*True/False discarded<>*)
parseTmaData[argList〚3〛], _, "unexpected number of arguments"];

" " <> ToString[nextOp] (*TODO:LaTeX Conversion*) <> parsedArgs]

Code Analysis: Main Client Functions

These are the functions offered to the user of the package.

seminar-talk-Tma2TeX-2024.nb 15

https://reference.wolfram.com/language/guide/PackageDevelopment.html

I n [] : = convertToLatexDoc[notebookPath_] :=
Module[{nb, content, latexPath, latexTemplatePath, resourceDir = $resDir,

texResult, sownData, filledContent}, If[Length[$tmaData] 0,
(*Issue message if Theorema-Formula-Data not provisioned*)Message[
tmaDataImport::empty, "The Theorema-Formula-Datastructure is empty.

Did you evaluate a Theorema notebook before loading
the package and calling the conversion function?"];

(*Additional handling for empty data can be added here*)
Return[$Failed]];

nb = NotebookOpen[notebookPath, Visible False];
content = NotebookGet[nb];
NotebookEvaluate[content];
(*on content:important,so that Tma env.variables are
available in any case*)latexPath = getLatexPath[notebookPath];

latexTemplatePath = getLatexTemplatePath[notebookPath];
(*filledContent=

fillLatexTemplate[resourceDir,"nbName"FileBaseName[notebookPath]];*)
{texResult, sownData} = Reap[parseNbContent[content],

{"title", "author", "date"}];
filledContent = fillLatexTemplate[

resourceDir, "nbContent" texResult, "nbTitle" First[sownData〚1, 1〛],
"nbAuthor" First[sownData〚2, 1〛], "nbDate" First[sownData〚3, 1〛]];

Export[latexPath, filledContent, "Text"];
(*Print[Theorema`Common`$tmaEnv];*)]

convertToLatexAndPdfDocs[notebookPath_] :=
Module[{latexPath, pdfPath, compileCmd, conversionResult},
conversionResult = convertToLatexDoc[notebookPath];
If[conversionResult === $Failed, Return[$Failed]];
(*Compile LaTeX to PDF using pdflatex*)
latexPath = getLatexPath[notebookPath];
pdfPath = StringReplace[latexPath, ".tex" ".pdf"];
compileCmd = "pdflatex -interaction=nonstopmode -output-directory=" <>

DirectoryName[latexPath] <> " " <> latexPath;
RunProcess[{"cmd", "/c", compileCmd}];]

16 seminar-talk-Tma2TeX-2024.nb

Testing

Messages, Failures and Testing in WL

(Since this is a Software Engineering thesis, after all.)

Closing Remarks and Potential Future Work

WL as a Software Engineering Tool

seminar-talk-Tma2TeX-2024.nb 17

If Time Permits: Source Code Deep Dive
What would it look like to contain the main syntax/output in WL file, rather than LATEX? For this, we can

take a look at the WL-native MakeTeX/TeXForm implementation, if time.

In[13]:= TeXForm[And[x, y]]
Out[13]//TeXForm=

x\land y

Speaking of Modern WL

 If Time Permits: Building Applications with the Wolfram Cloud (Excursus)

18 seminar-talk-Tma2TeX-2024.nb

https://www.wolfram.com/wolfram-u/courses/programming-applications/building-applications-wolfram-cloud-dev922/

