Quantitative unification over "simply permutative" theories

Georg Ehling

Formal Methods & Automated Reasoning Seminar

November 4th, 2024

Fix a signature \mathcal{F} and a set of variables X.

• "Classical" setting:

Equations s = t between terms $s, t \in T(\mathcal{F}, X)$.

Fix a signature \mathcal{F} and a set of variables X.

"Classical" setting:

Equations s = t between terms $s, t \in T(\mathcal{F}, X)$.

- Equations can be true or false (modulo a given theory *E*): either $s =_E t$, or $s \neq_E t$.
- $=_E$ is reflexive, transitive, symmetric, stable under substitutions and compatible with \mathcal{F} -operations

Fix a signature \mathcal{F} and a set of variables X.

"Classical" setting:

Equations s = t between terms $s, t \in T(\mathcal{F}, X)$.

- Equations can be true or false (modulo a given theory *E*): either $s =_E t$, or $s \neq_E t$.
- $=_E$ is reflexive, transitive, symmetric, stable under substitutions and compatible with \mathcal{F} -operations
- Quantitative setting:

Similarity/proximity rather than strict equality!

Fix a signature \mathcal{F} and a set of variables X.

"Classical" setting:

Equations s = t between terms $s, t \in T(\mathcal{F}, X)$.

- Equations can be true or false (modulo a given theory *E*): either $s =_E t$, or $s \neq_E t$.
- $=_E$ is reflexive, transitive, symmetric, stable under substitutions and compatible with \mathcal{F} -operations
- Quantitative setting:

Similarity/proximity rather than strict equality!

 \rightsquigarrow Equip equations s = t with some element ε that measures the "degree to which they hold true".

Quantitative Equational Reasoning ೧●೧೧೧	Unification Problems	Unification Method	Conclusion O

Quantales

General notion of proximity requires a general notion of distances.

Definition (Quantale)

Quantale: $\Omega = (\Omega, \precsim, \otimes, \kappa)$ such that

- (Ω, \preceq) is a complete lattice (poset where every subset has a supremum and infimum, denoted \lor and \land)
- $(\Omega, \otimes, \kappa)$ is a monoid

satisfying the following distributivity laws:

$$\delta \otimes \left(\bigvee_{i \in I} \varepsilon_i\right) = \bigvee_{i \in I} (\delta \otimes \varepsilon_i), \qquad \left(\bigvee_{i \in I} \varepsilon_i\right) \otimes \delta = \bigvee_{i \in I} (\varepsilon_i \otimes \delta).$$

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion
೧●೧೧೧	ດດ		O

Quantales

General notion of proximity requires a general notion of distances.

Definition (Quantale)

Quantale: $\Omega = (\Omega, \precsim, \otimes, \kappa)$ such that

- (Ω, \preceq) is a complete lattice (poset where every subset has a supremum and infimum, denoted \lor and \land)
- $(\Omega, \otimes, \kappa)$ is a monoid

satisfying the following distributivity laws:

$$\delta \otimes \left(\bigvee_{i \in I} \varepsilon_i\right) = \bigvee_{i \in I} (\delta \otimes \varepsilon_i), \qquad \left(\bigvee_{i \in I} \varepsilon_i\right) \otimes \delta = \bigvee_{i \in I} (\varepsilon_i \otimes \delta).$$

Example

- $\mathbb{I} = ([0,1],\leqslant,\min,1)$ "Fuzzy quantale"
- $\mathbb{L} = ([0,\infty], \geqslant, +, 0)$ "Lawvere quantale"
- $2 = (\{0,1\},\leqslant,\cdot,1)$ "Boolean quantale"

	Problems
00	

Assume that we are working with Lawverean quantales.

Definition

A quantale $\Omega = (\Omega, \preceq, \otimes, \kappa)$ is called *Lawverean* if

- Sis commutative
- Ω is *integral*: $\kappa = \top$ (where \top is the top element)
- Ω is *co-integral*: if $\varepsilon \otimes \delta = \bot$, then either $\varepsilon = \bot$ or $\delta = \bot$ (where \bot is the bottom element)
- Ω is non-trivial: $\kappa \neq \bot$

Quantitative Equational Reasoning

Inference rules for quantitative equational logic (Gavazzo and Di Florio 2023)

$$(Ax) \quad \frac{\varepsilon \Vdash t \approx s \in E}{\varepsilon \Vdash t =_E s} \qquad (Refl) \quad \frac{\varepsilon \Vdash t =_E t}{\varepsilon \Vdash t =_E t} \qquad (Sym) \quad \frac{\varepsilon \Vdash t =_E s}{\varepsilon \Vdash s =_E t}$$

$$(Trans) \quad \frac{\varepsilon \Vdash t =_E s}{\varepsilon \otimes \delta \Vdash t =_E r}$$

$$(NExp) \quad \frac{\varepsilon_1 \Vdash t_1 =_E s_1 \cdots \varepsilon_n \Vdash t_n =_E s_n}{\varepsilon_1 \otimes \cdots \otimes \varepsilon_n \Vdash f(t_1, \dots, t_n) =_E f(s_1, \dots, s_n)}$$

$$(Subst) \quad \frac{\varepsilon \Vdash t =_E s}{\varepsilon \Vdash t\sigma =_E s\sigma} \qquad (Join) \quad \frac{\varepsilon_1 \Vdash t =_E s}{\varepsilon_1 \vee \cdots \vee \varepsilon_n \Vdash t =_E s}$$

$$(\operatorname{Ord}) \underbrace{\begin{array}{c} \varepsilon \Vdash t =_E s & \delta \precsim \varepsilon \\ \hline \delta \Vdash t =_E s \end{array}}_{\varepsilon \Vdash t =_E s} \qquad \qquad (\operatorname{Arch}) \underbrace{\begin{array}{c} \forall \delta \ll \varepsilon . \, \delta \Vdash t =_E s \\ \hline \varepsilon \Vdash t =_E s \end{array}}$$

Example

- $\Omega = 2 = (\{0, 1\}, \leq, \cdot, 1)$: Classical equational reasoning (read $1 \Vdash s =_E t$ as $s =_E t$)
- $\Omega = \mathbb{I} = ([0, 1], \leq, \min, 1)$: Fuzzy reasoning
- $\Omega = \mathbb{L} = ([0, \infty], \ge, +, 0):$

quantitative algebraic theories in the sense of Mardare, Panangaden, and Plotkin 2016 (with slightly modified (NExp) rule)

Quantitative Equational Reasoning	Unification Problems ●0	Unification Method	Conclusion O
Unification Problems			

Let $s, t \in T(\mathcal{F}, X)$ be terms, E a set of equations.

(Classical) Unification problem: $s = {}^{?}_{F}t$

Find a substitution σ such that $s\sigma =_E t\sigma$.

Quantitative Equational Reasoning	Unification Problems ●0	Unification Method	Conclusion O
Unification Problems			

Let $s,t\in \mathcal{T}(\mathcal{F},X)$ be terms, E a set of equations.

(Classical) Unification problem: $s = {}^{?}_{F}t$

Find a substitution σ such that $s\sigma =_E t\sigma$.

Example

$$E = \{f(x, y) \approx f(y, x)\}.$$

The problem
$$f(g(x), f(b, a)) =_E^? f(f(x, b), y)$$

has the solution $\sigma = \{x \mapsto a, y \mapsto g(a)\}.$

Quantitative Equational Reasoning	Unification Problems ●∩	Unification Method	Conclusion O
Unification Problems			

Let $s, t \in T(\mathcal{F}, X)$ be terms, E a set of equations.

(Classical) Unification problem: $s = {}^{?}_{E}t$

Find a substitution σ such that $s\sigma =_E t\sigma$.

Let $s, t \in T(\mathcal{F}, X)$ be terms, E a set of Ω -equations, $\varepsilon \in \Omega$.

Quantitative unification problem: $s = \frac{?}{E \cdot \varepsilon} t$

Find a substitution σ such that $\varepsilon \Vdash s\sigma =_E t\sigma$.

Quantitative Equational Reasoning	Unification Problems ●∩	Unification Method	Conclusion ဂ
Unification Problems			

Let $s, t \in T(\mathcal{F}, X)$ be terms, E a set of equations.

(Classical) Unification problem: $s = {}^{?}_{E}t$

Find a substitution σ such that $s\sigma =_E t\sigma$.

Let $s, t \in T(\mathcal{F}, X)$ be terms, E a set of Ω -equations, $\varepsilon \in \Omega$.

Quantitative unification problem: $s=_{F}^{?}t$

Find a substitution σ such that $\varepsilon \Vdash s\sigma =_E t\sigma$.

Example

$$\Omega = \mathbb{L}, E = \{1 \Vdash a \approx b, 1 \Vdash b \approx c, 1 \Vdash c \approx d\}.$$

The problem

$$f(x,x) =_{E,2}^{?} f(a,c)$$

has solutions $\{x \mapsto a\}, \{x \mapsto b\}, \{x \mapsto c\}.$

Quantitative Equational Reasoning	Unification Problems ∩●	Unification Method	Conclusion O
Assumption			

• Consider a special class of quantitative theories:

Let E_{π} be a finite set of quantitative equations of the form

$$\varepsilon \Vdash f(x_1,\ldots,x_n) \approx g(x_{\pi(1)}\ldots x_{\pi(n)}),$$

where x_1, \ldots, x_n are distinct variable symbols and $\pi \in \mathfrak{S}_n$ is a permutation.

(Previously: only $\varepsilon \Vdash f(x_1, \ldots, x_n) \approx g(x_1, \ldots, x_n)$ was allowed)

Quantitative Equational Reasoning	Unification Problems ∩●	Unification Method	Conclusion O
Assumption			

• Consider a special class of quantitative theories:

Let E_{π} be a finite set of quantitative equations of the form

$$\varepsilon \Vdash f(x_1,\ldots,x_n) \approx g(x_{\pi(1)}\ldots x_{\pi(n)}),$$

where x_1, \ldots, x_n are distinct variable symbols and $\pi \in \mathfrak{S}_n$ is a permutation.

(Previously: only $\varepsilon \Vdash f(x_1, \ldots, x_n) \approx g(x_1, \ldots, x_n)$ was allowed)

Example

Near-commutativity: $E_{\pi} = \{ \varepsilon \Vdash f(x, y) \approx f(y, x) \}.$

Quantitative Equational Reasoning	Unification Problems ∩●	Unification Method	Conclusion O
Assumption			

• Consider a special class of quantitative theories:

Let E_{π} be a finite set of quantitative equations of the form

$$\varepsilon \Vdash f(x_1,\ldots,x_n) \approx g(x_{\pi(1)}\ldots x_{\pi(n)}),$$

where x_1, \ldots, x_n are distinct variable symbols and $\pi \in \mathfrak{S}_n$ is a permutation.

(Previously: only $\varepsilon \Vdash f(x_1, \ldots, x_n) \approx g(x_1, \ldots, x_n)$ was allowed)

Example

Near-commutativity: $E_{\pi} = \{ \varepsilon \Vdash f(x, y) \approx f(y, x) \}.$

Degrees:

$$\mathfrak{d}_{E}(f,g,\pi) \coloneqq \bigvee \{ \varepsilon \in \Omega : \varepsilon \Vdash f(x_{1},\ldots,x_{n}) =_{E} g(x_{\pi(1)},\ldots,x_{\pi(n)}) \}$$

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion O

The calculus

• **Configurations:** Triples P; δ ; σ , where

- *P* is a set of unification problems (the remainder of the problem)
- $\delta \in \Omega$ (the current approximation degree)
- σ is a substitution (the solution computed so far)
- Initial configuration for $s =_{E,\varepsilon}^{?} t$: { $s = {}^{?} t$ }; κ ; Id

• **Unification algorithm** QUNIFY-*π*:

Construct initial configuration and apply unification rules as long as possible. Return terminal configuration(s).

Quantitative Equational Reasoning	Unification Problems ດດ	Unification Method	Conclusion ဂ
Unification rules			

$\begin{aligned} \mathsf{Tri}_{E_{\pi}} : \mathbf{Trivial} \\ \{t = {}^{?} t\} & \uplus P; \delta; \sigma \implies P; \delta; \sigma \end{aligned}$

$Dec_{E_{\pi}}$: **Decompose**

$$\{f(t_1, \ldots, t_n) = {}^? g(s_1, \ldots, s_n)\} \uplus P; \ \delta; \ \sigma \implies \\ \{t_{\pi(1)} = {}^? s_1, \ldots, t_{\pi(n)} = {}^? s_n\} \cup P; \ \delta \otimes \mathfrak{d}_{E_{\pi}}(f, g, \pi); \ \sigma,$$
where f and g are n-ary function symbols, $\pi \in \mathfrak{S}_n$ and $\delta \otimes \mathfrak{d}_{E_{\pi}}(f, g, \pi) \succeq \varepsilon.$

There is an a grade in any function symbols, $\pi \in \mathcal{O}_n$ and $0 \otimes 0$

$Cla_{E_{\pi}}$: **Clash**

$$\{f(t_1,\ldots,t_n) = {}^{?} g(s_1,\ldots,s_m)\} \uplus P; \ \delta; \ \sigma \implies \mathbf{F},$$

if $\delta \otimes \mathfrak{d}_{E_{\pi}}(f,g,\pi) \not\gtrsim \varepsilon$ for all $\pi \in \mathfrak{S}_n$.

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion
	ດດ	00●0000000	O
Unification rules ((cont)		

Unification rules (cont.)

L-Sub_{*E*_π}: **Substitute (lazy)** $\{x = {}^{?} f(t_{1}, ..., t_{n})\} \uplus P; \ \delta; \ \sigma \implies \{x_{\pi(1)} = {}^{?} t_{1}, ..., x_{\pi(n)} = {}^{?} t_{n}\} \cup P\rho; \ \delta \otimes \mathfrak{d}_{E_{\pi}}(f, g, \pi); \ \sigma\rho,$

where x does not appear in an occurrence cycle in $\{x = f(t_1, \ldots, t_n)\} \cup P$, and $\rho = \{x \mapsto g(x_1, \ldots, x_n)\}$ with x_1, \ldots, x_n being fresh variables and $\delta \otimes \mathfrak{d}_{E_{\pi}}(f, g, \pi) \succeq \varepsilon$.

 $CCh_{E_{\pi}}$: Cycle check

 $P; \ \delta; \ \sigma \implies \mathbf{F},$

if P contains an occurrence cycle.

 $Ori_{E_{\pi}}$: **Orient**

 $\{t=?x\} \uplus P; \delta; \sigma \implies \{x=?t\} \cup P; \delta; \sigma,$

where x is a variable and t is a non-variable term.

Quantitative Equational Reasoning	Unification Problems	Unification Method ೧೧೧●೧೧೧೧೧೦	Conclusion O

Example

Example

$$\begin{split} & \Omega = \mathbb{L}, \ E_{\pi} = \{1 \Vdash f(x, y) \approx f(y, x)\}. \\ & \text{Solve} \\ & f(f(z, a), x) =_{E_{\pi}, 2}^{?} f(c, f(y, b)). \\ & \text{We have } \mathfrak{d}_{E_{\pi}}(f, f, \text{Id}) = 0 \text{ and } \mathfrak{d}_{E_{\pi}}(f, f, (1 \ 2)) = 1. \\ & \text{Initial config.:} \quad \{f(f(z, a), x) =^{?} f(c, f(y, b))\}; 0; \text{Id} \\ & \implies \text{Dec}_{(12)} \qquad \{x =^{?} c, \ f(z, a) =^{?} f(y, b)\}; 1; \text{Id} \\ & \implies \text{L-Sub}_{x \mapsto c} \qquad \{f(z, a) =^{?} f(y, b)\}; 1; \{x \mapsto c\} \\ & \implies \text{Dec}_{(12)} \qquad \{a =^{?} y, \ z =^{?} b\}; 2; \{x \mapsto c\} \\ & \implies \text{L-Sub}_{z \mapsto b} \qquad \{a =^{?} y\}; 2; \{x \mapsto c, z \mapsto b\} \\ & \implies \text{Ori} \qquad \{y =^{?} a\}; 2; \{x \mapsto c, z \mapsto b\} \\ & \implies \text{L-Sub} \qquad \emptyset; 2; \{x \mapsto c, z \mapsto b, y \mapsto a\} \end{split}$$

 \rightsquigarrow obtain the solution $\{x \mapsto c, y \mapsto a, z \mapsto b\}$

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion
00000	00	00000000	0

 $\ensuremath{\mathbf{Q}}\xspace$: Why cannot we use a simpler eager substitution rule instead of L-Sub?

 $\begin{array}{l} \mathsf{E}\operatorname{-Sub}_{E_{\pi}}\colon \mathbf{Substitute} \ (\mathbf{eager}) \\ \{x = \overset{?}{t} \} \uplus P; \delta; \sigma \implies P\{x \mapsto t\}; \delta; \sigma\{x \mapsto t\}, \\ \mathsf{if} \ P \cup \{x = \overset{?}{t}\} \ \mathsf{does} \ \mathsf{not} \ \mathsf{contain} \ \mathsf{occurrence} \ \mathsf{cycles} \end{array}$

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion
00000	00	00000000	0

 $\ensuremath{\mathbf{Q}}\xspace$: Why cannot we use a simpler eager substitution rule instead of L-Sub?

Example

$$\Omega = \mathbb{L}, \ E = \{1 \Vdash a \approx d, \ 1 \Vdash b \approx d, \ 1 \Vdash c \approx d\}.$$
Solve

$$f(x,x,x) =_{E,3}^{?} f(a,b,c).$$

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion
00000	00	00000000	0

 $\ensuremath{\mathbf{Q}}\xspace$: Why cannot we use a simpler eager substitution rule instead of L-Sub?

Example

$$\Omega = \mathbb{L}, \ E = \{1 \Vdash a \approx d, \ 1 \Vdash b \approx d, \ 1 \Vdash c \approx d\}.$$
Solve

$$f(x,x,x) =_{E,3}^{?} f(a,b,c).$$

The only solution $\{x \mapsto d\}$ cannot be found by E-Sub.

 $\binom{c}{1}$

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion
00000	00	000000000	0

 $\ensuremath{\mathbf{Q}}\xspace$: Why cannot we use a simpler eager substitution rule instead of L-Sub?

Example

$$\mathbb{\Omega} = \mathbb{L}, \ E = \{1 \Vdash a \approx d, \ 1 \Vdash b \approx d, \ 1 \Vdash c \approx d\}.$$
Solve

$$f(x, x, x) =_{E,3}^{?} f(a, b, c).$$

The only solution $\{x \mapsto d\}$ cannot be found by E-Sub.

Eager substitution ignores the quantitative aspect!

 $\binom{c}{1}$

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion
	ດດ	00000●0000	O
Results			

Theorem (Soundness and Completeness)

Soundness: If QUNIFY- π yields a terminal configuration, then any "solution" of this configuration is an (E, ε) -unifier of t and s.

Completeness: If σ is an (E, ε) -unifier of t and s, then there exists a run of QUNIFY- π that yields a terminal configuration for which σ is a "solution"

Quantitative Equational Reasoning	Unification Problems ດດ	Unification Method	Conclusion ဂ
Results			

Theorem (Soundness and Completeness)

Soundness: If QUNIFY- π yields a terminal configuration, then any "solution" of this configuration is an (E, ε) -unifier of t and s.

Completeness: If σ is an (E, ε) -unifier of t and s, then there exists a run of QUNIFY- π that yields a terminal configuration for which σ is a "solution"

Theorem (Termination)

Any run of $QUNIFY-\pi$ terminates, provided that L-Sub is not used as long as Dec or Cla can be applied.

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion O
<u> </u>			

Termination

Termination is not straight-forward:

Example

Consider the configuration

$${x = {}^{?} f(a, y), y = {}^{?} f(g(z), b), z = {}^{?} b}; \delta; Id$$

Apply L-Sub, via $\{y \mapsto f(y_1, y_2)\}$:

$$\implies \{x = {}^{?} f(a, f(y_1, y_2)), y_1 = {}^{?} g(z), y_2 = {}^{?} b, z = {}^{?} b\}; \\ \delta; \{y \mapsto f(y_1, y_2)\}$$

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion O
<u> </u>			

Termination

Termination is not straight-forward:

Example

Consider the configuration

$$\{x = {}^{?} f(a, y), y = {}^{?} f(g(z), b), z = {}^{?} b\}; \delta; Id$$

Apply L-Sub, via $\{y \mapsto f(y_1, y_2)\}$:

$$\implies \{x = {}^{?} f(a, f(y_1, y_2)), y_1 = {}^{?} g(z), y_2 = {}^{?} b, z = {}^{?} b\}; \\ \delta; \{y \mapsto f(y_1, y_2)\}$$

L-Sub increases the total size of the problem as well as the number of variables!

Quantitative Equational Reasoning	Unification Problems ດດ	Unification Method	Conclusion O
<u> </u>			

Termination

Termination is not straight-forward:

Example

Consider the configuration

$$\{x = {}^{?} f(a, y), y = {}^{?} f(g(z), b), z = {}^{?} b\}; \delta; Id$$

Apply L-Sub, via $\{y \mapsto f(y_1, y_2)\}$:

$$\implies \{x = {}^{?} f(a, f(y_1, y_2)), y_1 = {}^{?} g(z), y_2 = {}^{?} b, z = {}^{?} b\}; \\ \delta; \{y \mapsto f(y_1, y_2)\}$$

L-Sub increases the total size of the problem as well as the number of variables!

 \rightsquigarrow We also need to measure the dependencies between variables!

Quantitative Equational Reasoning	Unification Problems ດດ	Unification Method	Conclusion O
Termination (cont.)			

Dependency graph of a configuration P; δ ; σ :

- Nodes: $var(P) \cup \{G\}$
- Edges:
 - $x \rightarrow_d y$ whenever $x = \frac{?}{2} t[y]_p \in P$, where d = |p|;
 - $x \rightarrow_d G$ whenever $x = t[c]_p \in P$, where c is a constant and d = |p| + 1.

Quantitative Equational Reasoning	Unification Problems ດດ	Unification Method	Conclusion O
Termination (cont.)		

× /

Dependency graph of a configuration $P; \delta; \sigma$:

- Nodes: $var(P) \cup \{G\}$
- Edges:

•
$$x \rightarrow_d y$$
 whenever $x = \frac{?}{2} t[y]_p \in P$, where $d = |p|$;

• $x \rightarrow_d G$ whenever $x = t[c]_p \in P$, where c is a constant and d = |p| + 1.

Example

Dependency graph corresponding to the configuration

$${x = {}^{?} f(a, y), y = {}^{?} f(g(z), b), z = {}^{?} b}; \delta; Id:$$

Example

$$\{x = {}^{?} f(a, y), y = {}^{?} f(g(z), b), z = {}^{?} b\}; \delta; \mathrm{Id} \implies \{x = {}^{?} f(a, f(y_1, y_2)), y_1 = {}^{?} g(z), y_2 = {}^{?} b, z = {}^{?} b\}; \delta; \{y \mapsto f(y_1, y_2)\}$$

For each configuration, consider now the multiset of the maximal lengths of walks in the dependency graph starting from each variable:

 $\{4,3,1\}>\{4,1,2,1\}.$

Quantitative Equational Reasoning	Unification Problems ດດ	Unification Method	Conclusion O

Computing degrees

Input : A simply permutative theory E_{π} **Output:** The values of $\mathfrak{d}_{E_{\pi}}(f, g, \pi)$ for any f, g of arity n and $\pi \in \mathfrak{S}_n$. Initialization:

•
$$\mathfrak{d}_0(f, f, \mathrm{Id}) \leftarrow \kappa$$

•
$$\mathfrak{d}_0(f, g, \pi) \leftarrow \bigvee \{ \varepsilon \mid \varepsilon \Vdash f(x_1, \ldots, x_n) \stackrel{\cdot}{\approx} g(x_{\pi(1)}, \ldots, x_{\pi(n)}) \in E_\pi \}$$

• $n \leftarrow 0$

while true do

for
$$f, g$$
 of arity $n, \pi \in \mathfrak{S}_n$ do

$$\begin{vmatrix} \mathfrak{d}_{N+1}(f, g, \pi) \leftarrow \mathfrak{d}_N(f, g, \pi) \lor \bigvee_{\substack{h \in \mathcal{F}, \\ \rho \circ \sigma = \pi}} \mathfrak{d}_N(f, h, \rho) \otimes \mathfrak{d}_N(h, g, \sigma) \\ \\ end \\ if \mathfrak{d}_{N+1} \neq \mathfrak{d}_N \text{ then} \\ \mid N \leftarrow N+1 \\ else \\ \mid return \mathfrak{d}_N; \\ end \\ end \\ end \\ \end{aligned}$$

Conclusion/Outlook

So far:

• Solved quantitative unification over a general quantale for a specific class of shallow theories

Future research directions:

- Quantitative unification over more general classes of theories: Some approaches for special classes of syntactic theories might allow for an adaptation to the quantitative setting
 - Hubert Comon, Marianne Haberstrau, and Jean-Pierre Jouannaud (1994). "Syntacticness, Cycle-Syntacticness, and Shallow Theories". In: Inf. Comput. 111.1, pp. 154–191
 - Christopher Lynch and Barbara Morawska (2002). "Basic Syntactic Mutation". In: *Automated Deduction—CADE-18*. Berlin, Germany: Springer, pp. 471–485
- Quantitative matching and anti-unification