Quantitative unification over "simply permutative" theories

Georg Ehling

Formal Methods & Automated Reasoning Seminar

November 4th, 2024

Fix a signature F and a set of variables X .

• "Classical" setting:

Equations $s = t$ between terms $s, t \in \mathcal{T}(\mathcal{F}, X)$.

Fix a signature F and a set of variables X.

• "Classical" setting:

Equations $s = t$ between terms $s, t \in \mathcal{T}(\mathcal{F}, X)$.

- Equations can be true or false (modulo a given theory E): either $s = F t$, or $s \neq F t$.
- $\bullet =_{\mathsf{E}}$ is reflexive, transitive, symmetric, stable under substitutions and compatible with F -operations

Fix a signature F and a set of variables X.

• "Classical" setting:

Equations $s = t$ between terms $s, t \in \mathcal{T}(\mathcal{F}, X)$.

- Equations can be true or false (modulo a given theory E): either $s = \varepsilon t$, or $s \neq \varepsilon t$.
- $\bullet =_{\mathsf{E}}$ is reflexive, transitive, symmetric, stable under substitutions and compatible with F -operations
- Quantitative setting:

Similarity/proximity rather than strict equality!

Fix a signature F and a set of variables X.

• "Classical" setting:

Equations $s = t$ between terms $s, t \in \mathcal{T}(\mathcal{F}, X)$.

- Equations can be true or false (modulo a given theory E): either $s = \varepsilon t$, or $s \neq \varepsilon t$.
- $\bullet =_{\mathsf{E}}$ is reflexive, transitive, symmetric, stable under substitutions and compatible with F -operations
- Quantitative setting:

Similarity/proximity rather than strict equality!

 \rightsquigarrow Equip equations $s = t$ with some element ε that measures the "degree to which they hold true".

Quantales

General notion of proximity requires a general notion of distances.

Definition (Quantale)

Quantale: $\Omega = (\Omega, \preceq, \otimes, \kappa)$ such that

- \bullet (Ω , \preceq) is a complete lattice (poset where every subset has a supremum and infimum, denoted \vee and \wedge)
- \bullet $(\Omega, \otimes, \kappa)$ is a monoid

satisfying the following distributivity laws:

$$
\delta \otimes \left(\bigvee_{i \in I} \varepsilon_i\right) = \bigvee_{i \in I} (\delta \otimes \varepsilon_i), \qquad \left(\bigvee_{i \in I} \varepsilon_i\right) \otimes \delta = \bigvee_{i \in I} (\varepsilon_i \otimes \delta).
$$

Quantales

General notion of proximity requires a general notion of distances.

Definition (Quantale)

Quantale: $\Omega = (\Omega, \preceq, \otimes, \kappa)$ such that

- \bullet (Ω , \preceq) is a complete lattice (poset where every subset has a supremum and infimum, denoted \vee and \wedge)
- \bullet $(\Omega, \otimes, \kappa)$ is a monoid

satisfying the following distributivity laws:

$$
\delta \otimes \left(\bigvee_{i \in I} \varepsilon_i\right) = \bigvee_{i \in I} (\delta \otimes \varepsilon_i), \qquad \left(\bigvee_{i \in I} \varepsilon_i\right) \otimes \delta = \bigvee_{i \in I} (\varepsilon_i \otimes \delta).
$$

Example

- \bullet $\mathbb{I} = ([0,1], \leqslant, \min, 1)$ "Fuzzy quantale"
- $\bullet \mathbb{L} = ([0, \infty], \geqslant, +, 0)$ "Lawvere quantale"
- $2 = (\{0, 1\}, \leqslant, \cdot, 1)$ "Boolean quantale"

Assume that we are working with Lawverean quantales.

Definition A quantale $\Omega = (\Omega, \preceq, \otimes, \kappa)$ is called *Lawverean* if ⊗ is commutative **•** Ω is *integral:* $\kappa = \top$ (where \top is the top element) **•** Ω is *co-integral*: if $\varepsilon \otimes \delta = \bot$, then either $\varepsilon = \bot$ or $\delta = \bot$ (where \perp is the bottom element) \circ Ω is non-trivial: $\kappa \neq \bot$

[Quantitative Equational Reasoning](#page-1-0) [Unification Problems](#page-10-0) [Unification Method](#page-17-0) [Conclusion](#page-34-0)

Inference rules for quantitative equational logic (Gavazzo and Di Florio [2023\)](#page-0-1)

$$
(Ax) \frac{\varepsilon \Vdash t \approx s \in E}{\varepsilon \Vdash t =_{E} s} \qquad (Refl) \frac{\varepsilon \Vdash t =_{E} t}{\varepsilon \Vdash t =_{E} t} \qquad (Sym) \frac{\varepsilon \Vdash t =_{E} s}{\varepsilon \Vdash s =_{E} t}
$$
\n
$$
(Trans) \frac{\varepsilon \Vdash t =_{E} s \quad \delta \Vdash s =_{E} r}{\varepsilon \otimes \delta \Vdash t =_{E} r}
$$
\n
$$
(NExp) \frac{\varepsilon_{1} \Vdash t_{1} =_{E} s_{1} \quad \cdots \quad \varepsilon_{n} \Vdash t_{n} =_{E} s_{n}}{\varepsilon_{1} \otimes \cdots \otimes \varepsilon_{n} \Vdash f(t_{1}, \ldots, t_{n}) =_{E} f(s_{1}, \ldots, s_{n})}
$$
\n
$$
(Subst) \frac{\varepsilon \Vdash t =_{E} s}{\varepsilon \Vdash t \sigma =_{E} s \sigma} \qquad (Join) \frac{\varepsilon_{1} \Vdash t =_{E} s \quad \cdots \quad \varepsilon_{n} \Vdash t =_{E} s}{\varepsilon_{1} \vee \cdots \vee \varepsilon_{n} \Vdash t =_{E} s}
$$
\n
$$
(Ord) \frac{\varepsilon \Vdash t =_{E} s \quad \delta \preceq \varepsilon}{\delta \Vdash t =_{F} s} \qquad (Arch) \frac{\forall \delta \ll \varepsilon \cdot \delta \Vdash t =_{E} s}{\varepsilon \Vdash t =_{E} s}
$$

Example

- $\Omega = 2 = (\{0, 1\}, \leqslant, \cdot, 1)$: Classical equational reasoning (read $1 \Vdash s =_E t$ as $s =_E t$)
- $\bullet \ \Omega = \mathbb{I} = ([0,1], \leqslant, \min, 1)$: Fuzzy reasoning
- $\Omega = \mathbb{L} = ([0, \infty], \geq, +, 0)$:

quantitative algebraic theories in the sense of Mardare, Panangaden, and Plotkin [2016](#page-0-1) (with slightly modified (NExp) rule)

(Classical) Unification problem: $s = \frac{7}{5}t$

Find a substitution σ such that $s\sigma =_F t\sigma$.

(Classical) Unification problem: $s = \frac{7}{5}t$

Find a substitution σ such that $s\sigma =_F t\sigma$.

Example

$$
E = \{f(x, y) \approx f(y, x)\}.
$$

The problem

$$
f(g(x), f(b, a)) = \frac{2}{E} f(f(x, b), y)
$$

has the solution $\sigma = \{x \mapsto a, y \mapsto g(a)\}.$

(Classical) Unification problem: $s = \frac{7}{5}t$

Find a substitution σ such that $s\sigma =_F t\sigma$.

Let $s, t \in \mathcal{T}(\mathcal{F}, X)$ be terms, E a set of Ω -equations, $\varepsilon \in \Omega$.

Quantitative unification problem: $s{=}\frac{?}{E,\varepsilon}t$

Find a substitution σ such that $\varepsilon \Vdash s\sigma =_{E} t\sigma$.

(Classical) Unification problem: $s = \frac{7}{5}t$

Find a substitution σ such that $s\sigma =_F t\sigma$.

Let $s, t \in \mathcal{T}(\mathcal{F}, X)$ be terms, E a set of Ω -equations, $\varepsilon \in \Omega$.

Quantitative unification problem: $s{=}\frac{?}{E,\varepsilon}t$

Find a substitution σ such that $\varepsilon \Vdash s\sigma =_{E} t\sigma$.

Example

$$
\Omega = \mathbb{L}, E = \{1 \Vdash a \approx b, 1 \Vdash b \approx c, 1 \Vdash c \approx d\}.
$$

The problem

$$
f(x,x) =_{E,2}^{?} f(a,c)
$$

has solutions $\{x \mapsto a\}, \{x \mapsto b\}, \{x \mapsto c\}.$

Consider a special class of quantitative theories:

Let E_{π} be a finite set of quantitative equations of the form

$$
\varepsilon \Vdash f(x_1,\ldots,x_n) \approx g(x_{\pi(1)}\ldots x_{\pi(n)}),
$$

where x_1, \ldots, x_n are distinct variable symbols and $\pi \in \mathfrak{S}_n$ is a permutation.

(Previously: only $\varepsilon \Vdash f(x_1, \ldots, x_n) \approx g(x_1, \ldots, x_n)$ was allowed)

Consider a special class of quantitative theories:

Let E_{π} be a finite set of quantitative equations of the form

$$
\varepsilon \Vdash f(x_1,\ldots,x_n) \approx g(x_{\pi(1)}\ldots x_{\pi(n)}),
$$

where x_1, \ldots, x_n are distinct variable symbols and $\pi \in \mathfrak{S}_n$ is a permutation.

(Previously: only $\varepsilon \Vdash f(x_1, \ldots, x_n) \approx g(x_1, \ldots, x_n)$ was allowed)

Example

Near-commutativity: $E_{\pi} = \{ \varepsilon \Vdash f(x, y) \approx f(y, x) \}.$

Consider a special class of quantitative theories:

Let E_{π} be a finite set of quantitative equations of the form

$$
\varepsilon \Vdash f(x_1,\ldots,x_n) \approx g(x_{\pi(1)}\ldots x_{\pi(n)}),
$$

where x_1, \ldots, x_n are distinct variable symbols and $\pi \in \mathfrak{S}_n$ is a permutation.

(Previously: only $\varepsilon \Vdash f(x_1, \ldots, x_n) \approx g(x_1, \ldots, x_n)$ was allowed)

Example

Near-commutativity: $E_{\pi} = \{ \varepsilon \Vdash f(x, y) \approx f(y, x) \}.$

• Degrees:

$$
\mathfrak{d}_{\mathsf{E}}(f,g,\pi) \coloneqq \bigvee \{\varepsilon \in \Omega : \varepsilon \Vdash f(x_1,\ldots,x_n) =_E g(x_{\pi(1)},\ldots,x_{\pi(n)})\}
$$

• Configurations: Triples $P: \delta: \sigma$, where

- \bullet P is a set of unification problems (the remainder of the problem)
- $\bullet \ \delta \in \Omega$ (the current approximation degree)
- \bullet σ is a substitution (the solution computed so far)
- **Initial configuration** for $s =_{E,\varepsilon}^?$ t: $\{s = ? t\}; \kappa; \text{Id}$

• Unification algorithm $\text{QuNIFY-}\pi$:

Construct initial configuration and apply unification rules as long as possible. Return terminal configuration(s).

Tri $_{E_{\pi}}$: **Trivial** $\{t =^? t\}$ \uplus $P; \delta; \sigma \implies P; \delta; \sigma$

$\mathsf{Dec}_{E_{\pi}}$: Decompose

$$
\{f(t_1,\ldots,t_n) = \begin{cases} g(s_1,\ldots,s_n) \} \oplus P; & \delta; \sigma \implies \\ t_{\pi(1)} = \begin{cases} s_1,\ldots,t_{\pi(n)} = \begin{cases} s_n \end{cases} \cup P; & \delta \otimes \mathfrak{d}_{E_{\pi}}(f,g,\pi); & \sigma, \end{cases}
$$
\nwhere f and σ are a real function symbols $\pi \in \mathcal{C}$ and $\delta \otimes \mathfrak{d}_{E_{\pi}}(f,\sigma,\pi) \succeq \mathfrak{d}_{E_{\pi}}(f,\sigma,\pi) \succeq \mathfrak{d}_{E_{\pi}}(f,\sigma,\pi)$.

where f and g are n -ary function symbols, $\pi\in \mathfrak{S}_n$ and $\delta\otimes \mathfrak{d}_{E_\pi}\big(f,g,\pi\big)\succsim \varepsilon.$

$\mathsf{Cla}_{E_\pi}\colon \mathsf{Clash}$

$$
\{f(t_1,\ldots,t_n)=^?g(s_1,\ldots,s_m)\}\uplus P;\ \delta;\ \sigma\implies \mathsf{F},
$$

if $\delta\otimes \mathfrak{d}_{\mathsf{E}_{\pi}}(f,g,\pi)\not\succsim \varepsilon$ for all $\pi\in\mathfrak{S}_n$.

L-Sub<sub>$$
\pi
$$</sub>: Substitute (lazy)
\n{ $x =$ ² $f(t_1,..., t_n)$ } $\# P$; δ ; $\sigma \implies$
\n{ $x_{\pi(1)} =$ ² $t_1,..., x_{\pi(n)} =$ ² t_n } $\cup P \rho$; $\delta \otimes \mathfrak{d}_{E_{\pi}}(f, g, \pi)$; $\sigma \rho$,
\nwhere x does not appear in an occurrence cycle in { $x =$ ² $f(t_1,..., t_n)$

where x does not appear in an occurrence cycle in $\{x =^?~f(t_1,\ldots,t_n)\} \cup P$, and $\rho \,=\, \{x \,\mapsto\, g(x_1, \dots, x_n)\}$ with x_1, \dots, x_n being fresh variables and $\delta \otimes \mathfrak{d}_{\mathsf{E}_\pi}(f,g,\pi) \succsim \varepsilon.$

$\mathsf{CCh}_{E_\pi}\colon \mathsf{Cycle}$ check

$$
P;\ \delta;\ \sigma\ \Longrightarrow\ \textsf{F},
$$

if P contains an occurrence cycle.

$\mathsf{Ori}_{E_{\pi}} \colon \mathsf{Orient}$

$$
\{t = x^? \times \} \oplus P; \delta; \sigma \implies \{x = x^? t\} \cup P; \delta; \sigma,
$$

where x is a variable and t is a non-variable term.

Example

$$
\Omega = \mathbb{L}, E_{\pi} = \{1 \mid F(x, y) \approx f(y, x)\}.
$$

Solve
\n
$$
f(f(z, a), x) = \frac{2}{E_{\pi}, 2} f(c, f(y, b)).
$$

We have $\mathfrak{d}_{E_{\pi}}(f, f, \text{Id}) = 0$ and $\mathfrak{d}_{E_{\pi}}(f, f, (1, 2)) = 1.$
\nInitial config.:
$$
\{f(f(z, a), x) = \frac{2}{f(c, f(y, b))}\}; 0; \text{Id}
$$

$$
\implies \text{Dec}_{(1, 2)} \qquad \{x = \frac{2}{f(c, a)}\} = \frac{2}{f(y, b)}\}; 1; \text{Id}
$$

$$
\implies \text{L-Sub}_{x \mapsto c} \qquad \{f(z, a) = \frac{2}{f(y, b)}\}; 1; \{x \mapsto c\}
$$

$$
\implies \text{Dec}_{(1, 2)} \qquad \{a = \frac{2}{f(y, b)}\}; 2; \{x \mapsto c, z \mapsto b\}
$$

$$
\implies \text{L-Sub} \qquad \{a = \frac{2}{f(y, b)}\}; 2; \{x \mapsto c, z \mapsto b\}
$$

$$
\implies \text{L-Sub} \qquad \{y = \frac{2}{f(y, b)}\}; 2; \{x \mapsto c, z \mapsto b\}
$$

$$
\implies \text{L-Sub} \qquad \{y = \frac{2}{f(y, b)}\}; 2; \{x \mapsto c, z \mapsto b\}
$$

 \rightsquigarrow obtain the solution $\{x \mapsto c, y \mapsto a, z \mapsto b\}$

Q: Why cannot we use a simpler eager substitution rule instead of L-Sub?

> E-Sub $_{E_{\pi}}$: **Substitute (eager)** $\{x = \n\begin{cases} \n\cdot & \text{if } t \in P; \delta; \sigma \quad \implies \quad P\{x \mapsto t\}; \delta; \sigma\{x \mapsto t\},\n\end{cases}$ if $P\cup\{x=^?t\}$ does not contain occurrence cycles

Q: Why cannot we use a simpler eager substitution rule instead of L-Sub?

> E-Sub $_{E_{\pi}}$: **Substitute (eager)** $\{x = \n\begin{cases} \n\cdot & \text{if } t \in P; \delta; \sigma \quad \implies \quad P\{x \mapsto t\}; \delta; \sigma\{x \mapsto t\},\n\end{cases}$ if $P\cup\{x=^?t\}$ does not contain occurrence cycles

Example

$$
\Omega = \mathbb{L}, E = \{1 \Vdash a \approx d, 1 \Vdash b \approx d, 1 \Vdash c \approx d\}.
$$

Solve

$$
f(x, x, x) =_{E,3}^{?} f(a, b, c).
$$

Q: Why cannot we use a simpler eager substitution rule instead of L-Sub?

> E-Sub $_{E_{\pi}}$: **Substitute (eager)** $\{x = \n\begin{cases} \n\cdot & \text{if } t \in P; \delta; \sigma \quad \implies \quad P\{x \mapsto t\}; \delta; \sigma\{x \mapsto t\},\n\end{cases}$ if $P\cup\{x=^?t\}$ does not contain occurrence cycles

Example

$$
\Omega = \mathbb{L}, E = \{1 \Vdash a \approx d, 1 \Vdash b \approx d, 1 \Vdash c \approx d\}.
$$

Solve

$$
f(x, x, x) =_{E,3}^{?} f(a, b, c).
$$

The only solution $\{x \mapsto d\}$ cannot be found by E-Sub.

 ϵ

1

1

 1 d

Q: Why cannot we use a simpler eager substitution rule instead of L-Sub?

> E-Sub $_{E_{\pi}}$: **Substitute (eager)** $\{x = \n\begin{cases} \n\cdot & \text{if } t \in P; \delta; \sigma \quad \implies \quad P\{x \mapsto t\}; \delta; \sigma\{x \mapsto t\},\n\end{cases}$ if $P\cup\{x=^?t\}$ does not contain occurrence cycles

Example

$$
\Omega = \mathbb{L}, E = \{1 \Vdash a \approx d, 1 \Vdash b \approx d, 1 \Vdash c \approx d\}.
$$
 Solve

$$
f(x, x, x) =_{E,3}^{?} f(a, b, c).
$$

The only solution $\{x \mapsto d\}$ cannot be found by E-Sub.

Eager substitution ignores the quantitative aspect!

 ϵ

1

1

 1 d

Theorem (Soundness and Completeness)

Soundness: If QUNIFY- π yields a terminal configuration, then any "solution" of this configuration is an (E, ε) -unifier of t and s.

Completeness: If σ is an (E, ε) -unifier of t and s, then there exists a run of $QUNIFY-\pi$ that yields a terminal configuration for which σ is a "solution"

Theorem (Soundness and Completeness)

Soundness: If $\mathrm{Qu}\times\pi$ yields a terminal configuration, then any "solution" of this configuration is an (E, ε) -unifier of t and s.

Completeness: If σ is an (E, ε) -unifier of t and s, then there exists a run of $QUNIFY-\pi$ that yields a terminal configuration for which σ is a "solution"

Theorem (Termination)

Any run of $QUNIFY-\pi$ terminates, provided that L-Sub is not used as long as Dec or Cla can be applied.

Termination is not straight-forward:

Example

Consider the configuration

$$
\{x = f(a, y), y = f(g(z), b), z = f(b); \delta; \mathrm{Id}
$$

Apply L-Sub, via $\{y \mapsto f(y_1, y_2)\}$:

$$
\implies \{x = ^7 f(a, f(y_1, y_2)), y_1 = ^7 g(z), y_2 = ^7 b, z = ^7 b\};
$$

$$
\delta; \{y \mapsto f(y_1, y_2)\}
$$

Termination is not straight-forward:

Example

Consider the configuration

$$
\{x = f(a, y), y = f(g(z), b), z = f(b); \delta; \mathrm{Id}
$$

Apply L-Sub, via $\{y \mapsto f(y_1, y_2)\}$:

$$
\implies \{x = ^7 f(a, f(y_1, y_2)), y_1 = ^7 g(z), y_2 = ^7 b, z = ^7 b\};
$$

$$
\delta; \{y \mapsto f(y_1, y_2)\}
$$

L-Sub increases the total size of the problem as well as the number of variables!

Termination is not straight-forward:

Example

Consider the configuration

$$
\{x = f(a, y), y = f(g(z), b), z = f(b); \delta; \mathrm{Id}
$$

Apply L-Sub, via $\{y \mapsto f(y_1, y_2)\}$:

$$
\implies \{x = ^7 f(a, f(y_1, y_2)), y_1 = ^7 g(z), y_2 = ^7 b, z = ^7 b\};
$$

$$
\delta; \{y \mapsto f(y_1, y_2)\}
$$

L-Sub increases the total size of the problem as well as the number of variables!

 \rightsquigarrow We also need to measure the dependencies between variables!

Dependency graph of a configuration $P: \delta$; σ :

- Nodes: $var(P) \cup \{G\}$
- Edges:
	- $\{x \rightarrow_d y \text{ whenever } x =^? t[y]_p \in P, \text{ where } d = |p|;$
	- $\alpha \rightarrow_d G$ whenever $\alpha={}^?$ $t[\begin{matrix}c\end{matrix}]_\rho \in P$, where c is a constant and $d = |p| + 1.$

Dependency graph of a configuration $P; \delta; \sigma$:

- Nodes: $var(P) \cup \{G\}$
- Edges:

•
$$
x \rightarrow_d y
$$
 whenever $x = \int_0^2 t[y]_p \in P$, where $d = |p|$;

 $\alpha \rightarrow_d G$ whenever $\alpha={}^?$ $t[\begin{matrix}c\end{matrix}]_\rho \in P$, where c is a constant and $d = |p| + 1.$

Example

Dependency graph corresponding to the configuration

$$
\{x = f(a, y), y = f(g(z), b), z = f(b); \delta; \mathrm{Id} :
$$

Example

$$
\{x = ^7 f(a,y), y = ^7 f(g(z),b), z = ^7 b\}; \delta; \mathrm{Id} \implies
$$

$$
\{x = ^7 f(a, f(y_1, y_2)), y_1 = ^7 g(z), y_2 = ^7 b, z = ^7 b\}; \delta; \{y \mapsto f(y_1, y_2)\}
$$

For each configuration, consider now the multiset of the maximal lengths of walks in the dependency graph starting from each variable:

 $\{4, 3, 1\} > \{4, 1, 2, 1\}.$

Computing degrees

Input : A simply permutative theory E_{π} **Output:** The values of $\mathfrak{d}_{E_{\pi}}(f,g,\pi)$ for any f,g of arity n and $\pi \in \mathfrak{S}_n$. Initialization:

$$
\bullet \ \mathfrak{d}_0(f,f,\mathrm{Id}) \leftarrow \kappa
$$

\n- \n
$$
\mathfrak{d}_0(f, g, \pi) \leftarrow \bigvee \{ \varepsilon \mid \varepsilon \Vdash f(x_1, \ldots, x_n) \approx g(x_{\pi(1)}, \ldots, x_{\pi(n)}) \in E_\pi \}
$$
\n
\n- \n $n \leftarrow 0$ \n
\n

while true do

$$
\begin{array}{lcl} & \textbf{for} \; f, g \; \textit{of} \; \textit{arity} \; n, \; \pi \in \mathfrak{S}_n \; \textbf{do} \\ & & \; \mathfrak{d}_{N+1}(f, g, \pi) \leftarrow \mathfrak{d}_N(f, g, \pi) \vee \; \bigvee_{\substack{h \in \mathcal{F}, \\ \rho \circ \sigma = \pi}} \mathfrak{d}_N(h, \rho) \otimes \mathfrak{d}_N(h, g, \sigma) \\ & & \; \textbf{if} \; \mathfrak{d}_{N+1} \neq \mathfrak{d}_N \; \textbf{then} \\ & & \; \; N \leftarrow N+1 \\ & & \; \textbf{else} \\ & & \; \; \textbf{return} \; \mathfrak{d}_N; \\ & & \; \textbf{end} \end{array}
$$

Conclusion/Outlook

So far:

Solved quantitative unification over a general quantale for a specific class of shallow theories

Future research directions:

- Quantitative unification over more general classes of theories: Some approaches for special classes of syntactic theories might allow for an adaptation to the quantitative setting
	- Hubert Comon, Marianne Haberstrau, and Jean-Pierre Jouannaud (1994). "Syntacticness, Cycle-Syntacticness, and Shallow Theories". In: Inf. Comput. 111.1, pp. 154–191
	- Christopher Lynch and Barbara Morawska (2002). "Basic Syntactic Mutation". In: Automated Deduction—CADE-18. Berlin, Germany: Springer, pp. 471–485
- Quantitative matching and anti-unification