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Quantitative Equational Reasoning
@0000

(Quantitative) Equational Theories

Fix a signature F and a set of variables X.

o “Classical”" setting:
Equations s = t between terms s, t € T(F, X).
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Quantitative Equational Reasoning
@0000

(Quantitative) Equational Theories

Fix a signature F and a set of variables X.
o “Classical”" setting:
Equations s = t between terms s, t € T(F, X).
o Equations can be true or false (modulo a given theory E): either

s=gt,ors#gt.
o =g is reflexive, transitive, symmetric, stable under substitutions and

compatible with F-operations
@ Quantitative setting:

Similarity /proximity rather than strict equality!
~ Equip equations s = t with some element ¢ that measures the

“degree to which they hold true”.
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Quantitative Equational Reasoning

0e000

Quantales

General notion of proximity requires a general notion of distances.

Definition (Quantale)

Quantale: = (Q, 3, ®, k) such that

T~
o (Q,3) is a complete lattice (poset where every subset has a
supremum and infimum, denoted V and A)

e (2,®,k) is a monoid

satisfying the following distributivity laws:

5§ ® (\/ g,-> =\(®e), (\/s;) ®6=\/(c;®9).

i€l i€l i€l i€l
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Quantitative Equational Reasoning

0e000

Quantales

General notion of proximity requires a general notion of distances.

Definition (Quantale)

Quantale: = (Q, 3, ®, k) such that

T~
o (Q,3) is a complete lattice (poset where every subset has a
supremum and infimum, denoted V and A)

e (2,®,k) is a monoid

satisfying the following distributivity laws:

5§ ® (\/ a,-) =\(®e), <\/s,~> ®6=\/(c;®9).

i€l i€l i€l i€l

.

o | = ([0,1], <, min, 1) “Fuzzy quantale”
e L =([0,00],>,+,0) “Lawvere quantale”
e 2=({0,1},<,-,1) “Boolean quantale”
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Quantitative Equational Reasoning
[e]e] lele]

Assume that we are working with Lawverean quantales.

Definition

A quantale = (Q,3,®,k) is called Lawverean if

Y~
@ ® is commutative
e s integral: k = T (where T is the top element)

e is co-integral: if e ® = L, then eithere = L ord = |
(where L is the bottom element)

e is non-trivial: kK # L
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Quantitative Equational Reasoning
[e]e]e] o)

Inference rules for quantitative equational logic

(Gavazzo and Di Florio 2023)

(A%) clFt~secE

cel-t=s
Ref) ——
Py — FOri=rt O st
(Trans) elbt=gs dlFs=gr
eROIFt=r
(NExp) aalFti=gs1 -+ enlkt,=gs,
e1® - ®eplkf(tr,...,tn) = f(s1,-..,5n)
(Subst) elb-t=fs (Join) e1lFt=gs - e,lFt=fs
el to =g so

e1V---Veplbt=fs

elbt=gs 63¢

Or Arch
o) Tt = s (Areh)

VigedlFt=s
el-t=fs

[
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Quantitative Equational Reasoning
[e]ee]e] )

o =2=({0,1},<,-,1):
Classical equational reasoning (read 11 s =g t as s =¢ t)
e =1=([0,1], <, min,1):
Fuzzy reasoning
o =L=([0,00],>,+,0):
quantitative algebraic theories in the sense of Mardare, Panangaden,
and Plotkin 2016 (with slightly modified (NExp) rule)
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Unification Problems

Unification Problems

Let s, t € T(F, X) be terms, E a set of equations.

(Classical) Unification problem: s=[t

Find a substitution o such that soc = to.
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Unification Problems

[ le}

Unification Problems

Let s, t € T(F, X) be terms, E a set of equations.

(Classical) Unification problem: s=Lt

Find a substitution o such that soc = to.

E={f(xy)~fly,x)}.
The problem
f(g(x), f(b,a)) =k f(f(x,b),y)

has the solution o = {x — a,y — g(a)}.
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Unification Problems

Unification Problems

Let s,t € T(F, X) be terms, E a set of equations.

(Classical) Unification problem: s=Lt

Find a substitution o such that soc = to.

Let s,t € T(F, X) be terms, E a set of -equations, ¢ € Q.

Quantitative unification problem: s=7 _t

Find a substitution o such that ¢ IF so = to.

=L E={llFambllFb=xcllFc=~d}.
The problem
f(X, X) :?E,2 f(av C)

has solutions {x — a}, {x — b}, {x — c}.
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Unification Problems

Assumption

o Consider a special class of quantitative theories:

Let E; be a finite set of quantitative equations of the form
el-fxt,. ., xn) = g(Xe(1) - - - X))

where x, ..., x, are distinct variable symbols and 7 € &, is a
permutation.

(Previously: only e IF f(x1,...,x,) = g(x1, - - ., Xn) was allowed)
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Unification Problems

Assumption

o Consider a special class of quantitative theories:

Let E; be a finite set of quantitative equations of the form

el-fxt,. ., xn) = g(Xe(1) - - - X))

where x, ..., x, are distinct variable symbols and 7 € &, is a
permutation.

(Previously: only e IF f(x1,...,x,) = g(x1, - - ., Xn) was allowed)

Near-commutativity: E, = {e Ik f(x,y) = f(y,x)}.

o Degrees:

oe(fgm) = \/{e€Qielkfixa,...,x0) =6 8(Xe()s -+ Xn(m)}
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Unification Method
@000000000

The calculus

o Configurations: Triples P;§; o, where
e P is a set of unification problems (the remainder of the problem)
o § € Q (the current approximation degree)
e o is a substitution (the solution computed so far)
o Initial configuration for s = _ t:
{s =7 t}; k; Id
@ Unification algorithm QUNIFY-7:
Construct initial configuration and apply unification rules as long as
possible. Return terminal configuration(s).
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Unification Method
0®00000000

Unification rules

Trig, : Trivial
{t="t}wP;6;0 = P50

Decg,: Decompose
{f(tr,...,t)) ="g(s1,...,8,) 0 P; 0; 0 =
{tz(1) ="s,..., tr(n) ="s,JUP; §® o (f,g,7); o,
where f and g are n-ary function symbols, 7 € &, and @0, (f,g,7) 7 €.

~

Clag,: Clash

{f(t1y...,tn) =’ g(si,...,sm)}WP; 6, 0 = F,
if 0 @0g, (f,g,m) Zeforall me &,
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Unification Method
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Unification rules (cont.)

L-Subg, : Substitute (lazy)
{x="f(ty,...,t)}WP;, 6 0 =
{Xﬂ'(l) =7 ty,... y Xre(n) =7 tn} U Pp' 5®DEn(fag77T); ap,

where x does not appear in an occurrence cycle in {x =’ f(ty,..., t,)}UP,
and p = {x — g(x1,...,X,)} with xq,...,x, being fresh variables and
6®0E7r(f7gv7r) i €.

CChg,: Cycle check
P; 0; 0 = F,

if P contains an occurrence cycle.

Orig, : Orient
{t="x}wP; 60 = {x="t}UP;6;0,

where x is a variable and t is a non-variable term.
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Unification Method
0008000000

Example

=L, E;={1IFf(x,y) = f(y,x)}.

Solve
f(f(z,a),x) =g, 2 f(c, f(y, ))
We have dg_(f,f,Id) = 0 and dg_(f,7,(1 2)) =
Initial config.: {f(f(z,a),x) =" f(c, f(y, b))}; 0;1d

— Dec(; 2) {X = c, (Z, a) ! f(ya )}' 1'Id
— L-Suby ¢ {f(z a) ! f(y, )} {X = C}
= Decqis {a="y, z="b};2;{x+ c}
= L-Sub,,s {a="y}:2{x—c,z— b}
—> @i {y="a}h2{x—c,zm b}
= L.Sub 0;2;{x+ c,z+— b,y > a}

~~ obtain the solution {x — ¢,y — a,z — b}
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Why lazy substitution?

Unification Method
0000800000

Q: Why cannot we use a simpler eager substitution rule instead of

L-Sub?

E-Subg,: Substitute (eager)
(x="tlWP; 60 —

if PU{x =" t} does not contain occurrence cycles

P{x — t};6;0{x — t},

[
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Unification Method
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Why lazy substitution?

Q: Why cannot we use a simpler eager substitution rule instead of
L-Sub?

E-Subg,: Substitute (eager)
(x="t}wP; 6,0 = P{x—t};60{xm t},

if PU{x =" t} does not contain occurrence cycles

=L, E={llFa~d, lIFb~d, 1IFc~d}.
Solve

f(x,x,x) :2—’3 f(a, b, c).
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Unification Method
0000800000

Why lazy substitution?

Q: Why cannot we use a simpler eager substitution rule instead of
L-Sub?

E-Subg,: Substitute (eager)
(x="t}wP; 6,0 = P{x—t};60{xm t},

if PU{x =" t} does not contain occurrence cycles

=L, E={lFta=d, 1IFb~d, 1IFc~d}.
Solve ¢
f(x,x,x) :2—’3 f(a, b, c). ‘ 1
1. d
The only solution {x — d} cannot be found by E-Sub. 3 - $ b

Eager substitution ignores the quantitative aspect!
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Unification Method
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Results

Soundness and Completeness)

Soundness: If QUNIFY-7 yields a terminal configuration, then any
“solution” of this configuration is an (E,)-unifier of t
and s.

Completeness: If o is an (E,€)-unifier of t and's, then there exists a run
of QUNIFY-7 that yields a terminal configuration for
which o is a “solution”
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Unification Method
0000080000

Results

Theorem (Soundness and Completeness)
Soundness: If QUNIFY-7 yields a terminal configuration, then any
“solution” of this configuration is an (E,)-unifier of t
and s.
Completeness: If o is an (E,€)-unifier of t and's, then there exists a run
of QUNIFY-7 that yields a terminal configuration for
which o is a “solution” )

Theorem (Termination)

Any run of QUNIFY-T terminates, provided that L-Sub is not used as
long as Dec or Cla can be applied.

14 /19
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Unification Method

0000008000

Termination

Termination is not straight-forward:

Consider the configuration

{X — f(av}/)v y = f(g(Z),b),Z = b}'(S'Id

Apply L-Sub, via {y — f(y1, y2)}:

= {x="f(a,f(y1,y2)); 01 =" &(2),y2 =" b,z =" b};
S {y = f(y1,¥2)}
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0000008000

Termination

Termination is not straight-forward:

Consider the configuration

{X — f(av}/)v y = f(g(Z),b),Z = b}'(S'Id

Apply L-Sub, via {y — f(y1, y2)}:

= {x="f(a,f(y1,y2)); 01 =" &(2),y2 =" b,z =" b};
S {y = f(y1,¥2)}

L-Sub increases the total size of the problem as well as the number of
variables!
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0000008000

Termination

Termination is not straight-forward:

Consider the configuration

{X =" f(av}/)v y =" f(g(Z),b),Z = b}'(S'Id
Apply L-Sub, via {y — f(y1, y2)}:

= {x="f(a,f(y1,y2)); 01 =" &(2),y2 =" b,z =" b};
S {y = f(y1,¥2)}

L-Sub increases the total size of the problem as well as the number of
variables!

~> We also need to measure the dependencies between variables!
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Unification Method
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Termination (cont.)

Dependency graph of a configuration P;J; o:

o Nodes: var(P)U{G}
o Edges:

o X —4 y whenever x =’ t[y], € P, where d = |p|;
o x —4 G whenever x =’ t[c], € P, where c is a constant and
d=|p|+1.
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Termination (cont.)

Dependency graph of a configuration P;J; o:

o Nodes: var(P)U{G}
o Edges:

o X —4 y whenever x =’ t[y], € P, where d = |p|;
o x —4 G whenever x =’ t[c], € P, where c is a constant and
d=|p|+1.

X
Dependency graph corresponding to the configuration 5 Y
\2
G z

~
{x="f(a,y), y =" f(g(2),b),z =" b}; 6;1d : /
1
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Unification Method
0000000080

{X = f(aay)7 y = f(g(z)vb)vz —{ b},(S,Id =
{x="f(a.f(n.y2)n =" 8(2).y2 =" b,z =" b} 6 {y = F(y1.2)}

b i

yi oy
4
1 e 1 z

For each configuration, consider now the multiset of the maximal lengths
of walks in the dependency graph starting from each variable:

{4,3,1} > {4,1,2,1}.
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Unification Method
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Computing degrees

Input : A simply permutative theory E,
Output: The values of 9g_(f, g, ) for any f, g of arity nand m € &,,.
Initialization:
e 0o(f,f,Id) «+ &
° 00(f>guﬂ—) — \/{E | el- f(X17 v >Xn) ~ g(Xﬂ'(l)7 v 7X7r(n)) € Eﬂ'}
oen+20
while true do

for f,g ofarity n, m € G, do
onia(f,g,m) < on(f,g,m) v \/ on(f,hp)@on(h g, 0)
heF,
end poo’:w
if 9y41 # Op then
| N« N+1
else
| return oy;
end
end
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Conclusion
)

Conclusion/Outlook

So far:
@ Solved quantitative unification over a general quantale for a specific
class of shallow theories

Future research directions:

@ Quantitative unification over more general classes of theories:
Some approaches for special classes of syntactic theories might allow
for an adaptation to the quantitative setting
o Hubert Comon, Marianne Haberstrau, and Jean-Pierre Jouannaud
(1994). “Syntacticness, Cycle-Syntacticness, and Shallow Theories”.
In: Inf. Comput. 111.1, pp. 154-191
o Christopher Lynch and Barbara Morawska (2002). “Basic Syntactic
Mutation”. In: Automated Deduction—CADE-18. Berlin, Germany:
Springer, pp. 471-485

@ Quantitative matching and anti-unification

19/19
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