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Quantitative Equational Reasoning Unification Problems Unification Method Conclusion

(Quantitative) Equational Theories

Fix a signature F and a set of variables X .

“Classical” setting:
Equations s = t between terms s, t ∈ T (F ,X ).

Equations can be true or false (modulo a given theory E): either
s =E t, or s ̸=E t.
=E is reflexive, transitive, symmetric, stable under substitutions and
compatible with F-operations

Quantitative setting:
Similarity/proximity rather than strict equality!
⇝ Equip equations s = t with some element ε that measures the
“degree to which they hold true”.
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Quantales

General notion of proximity requires a general notion of distances.

Definition (Quantale)

Quantale: Ω = (Ω,≾,⊗, κ) such that

(Ω,≾) is a complete lattice (poset where every subset has a
supremum and infimum, denoted ∨ and ∧)
(Ω,⊗, κ) is a monoid

satisfying the following distributivity laws:

δ ⊗

(∨
i∈I

εi

)
=
∨
i∈I

(δ ⊗ εi ),

(∨
i∈I

εi

)
⊗ δ =

∨
i∈I

(εi ⊗ δ).

Example

I = ([0, 1],⩽,min, 1) “Fuzzy quantale”

L = ([0,∞],⩾,+, 0) “Lawvere quantale”

2 = ({0, 1},⩽, ·, 1) “Boolean quantale”
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Assume that we are working with Lawverean quantales.

Definition

A quantale Ω = (Ω,≾,⊗, κ) is called Lawverean if

⊗ is commutative

Ω is integral: κ = ⊤ (where ⊤ is the top element)

Ω is co-integral: if ε⊗ δ = ⊥, then either ε = ⊥ or δ = ⊥
(where ⊥ is the bottom element)

Ω is non-trivial: κ ̸= ⊥
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Inference rules for quantitative equational logic
(Gavazzo and Di Florio 2023)

ε ⊩ t ≈ s ∈ E
(Ax)

ε ⊩ t =E s
(Refl)

ε ⊩ t =E t
ε ⊩ t =E s

(Sym)
ε ⊩ s =E t

ε ⊩ t =E s δ ⊩ s =E r
(Trans)

ε⊗ δ ⊩ t =E r

ε1 ⊩ t1 =E s1 · · · εn ⊩ tn =E sn
(NExp)

ε1 ⊗ · · · ⊗ εn ⊩ f (t1, . . . , tn) =E f (s1, . . . , sn)

ε ⊩ t =E s
(Subst)

ε ⊩ tσ =E sσ

ε1 ⊩ t =E s · · · εn ⊩ t =E s
(Join)

ε1 ∨ · · · ∨ εn ⊩ t =E s

ε ⊩ t =E s δ ≾ ε
(Ord)

δ ⊩ t =E s

∀δ ≪ ε. δ ⊩ t =E s
(Arch)

ε ⊩ t =E s
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Example

Ω = 2 = ({0, 1},⩽, ·, 1):
Classical equational reasoning (read 1 ⊩ s =E t as s =E t)

Ω = I = ([0, 1],⩽,min, 1):
Fuzzy reasoning

Ω = L = ([0,∞],⩾,+, 0):
quantitative algebraic theories in the sense of Mardare, Panangaden,
and Plotkin 2016 (with slightly modified (NExp) rule)
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Unification Problems

Let s, t ∈ T (F ,X ) be terms, E a set of equations.

(Classical) Unification problem: s=?
E t

Find a substitution σ such that sσ =E tσ.

Let s, t ∈ T (F ,X ) be terms, E a set of Ω-equations, ε ∈ Ω.

Quantitative unification problem: s=?
E ,εt

Find a substitution σ such that ε ⊩ sσ =E tσ.

Main contents of the paper:

Quantitative analogues of central concepts in equational unification
(instantiation preorder, minimal complete sets of unifiers)

Unification algorithm for a simple subcase
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Ω = L, E = {1 ⊩ a ≈ b, 1 ⊩ b ≈ c , 1 ⊩ c ≈ d}.
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has solutions {x 7→ a}, {x 7→ b}, {x 7→ c}.
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Assumption

Consider a special class of quantitative theories:

Let Eπ be a finite set of quantitative equations of the form

ε ⊩ f (x1, . . . , xn) ≈ g(xπ(1) . . . xπ(n)),

where x1, . . . , xn are distinct variable symbols and π ∈ Sn is a
permutation.

(Previously: only ε ⊩ f (x1, . . . , xn) ≈ g(x1, . . . , xn) was allowed)

Example

Near-commutativity: Eπ = {ε ⊩ f (x , y) ≈ f (y , x)}.

Degrees:

dE (f , g , π) :=
∨
{ε ∈ Ω : ε ⊩ f (x1, . . . , xn) =E g(xπ(1), . . . , xπ(n))}
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The calculus

Configurations: Triples P; δ;σ, where

P is a set of unification problems (the remainder of the problem)
δ ∈ Ω (the current approximation degree)
σ is a substitution (the solution computed so far)

Initial configuration for s =?
E ,ε t:

{s =? t};κ; Id
Unification algorithm Qunify-π:
Construct initial configuration and apply unification rules as long as
possible. Return terminal configuration(s).
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Unification rules

TriEπ
: Trivial

{t =? t} ⊎ P; δ;σ =⇒ P; δ;σ

DecEπ
: Decompose

{f (t1, . . . , tn) =? g(s1, . . . , sn)} ⊎ P; δ; σ =⇒
{tπ(1) =? s1, . . . , tπ(n) =

? sn} ∪ P; δ ⊗ dEπ
(f , g , π); σ,

where f and g are n-ary function symbols, π ∈ Sn and δ⊗dEπ
(f , g , π) ≿ ε.

ClaEπ
: Clash

{f (t1, . . . , tn) =? g(s1, . . . , sm)} ⊎ P; δ; σ =⇒ F,

if δ ⊗ dEπ
(f , g , π) ̸≿ ε for all π ∈ Sn.
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Unification rules (cont.)

L-SubEπ
: Substitute (lazy)

{x =? f (t1, . . . , tn)} ⊎ P; δ; σ =⇒
{xπ(1) =? t1, . . . , xπ(n) =

? tn} ∪ Pρ; δ ⊗ dEπ
(f , g , π); σρ,

where x does not appear in an occurrence cycle in {x =? f (t1, . . . , tn)}∪P,
and ρ = {x 7→ g(x1, . . . , xn)} with x1, . . . , xn being fresh variables and
δ ⊗ dEπ (f , g , π) ≿ ε.

CChEπ : Cycle check

P; δ; σ =⇒ F,

if P contains an occurrence cycle.

OriEπ
: Orient

{t =? x} ⊎ P; δ;σ =⇒ {x =? t} ∪ P; δ;σ,

where x is a variable and t is a non-variable term.
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Example

Example

Ω = L, Eπ = {1 ⊩ f (x , y) ≈ f (y , x)}.
Solve

f (f (z , a), x) =?
Eπ,2 f (c , f (y , b)).

We have dEπ
(f , f , Id) = 0 and dEπ

(f , f , (1 2)) = 1.

Initial config.: {f (f (z , a), x) =? f (c , f (y , b))}; 0; Id
=⇒ Dec(1 2)

{x =? c , f (z , a) =? f (y , b)}; 1; Id
=⇒ L-Subx 7→c {f (z , a) =? f (y , b)}; 1; {x 7→ c}
=⇒ Dec(1 2)

{a =? y , z =? b}; 2; {x 7→ c}
=⇒ L-Subz 7→b

{a =? y}; 2; {x 7→ c , z 7→ b}
=⇒ Ori {y =? a}; 2; {x 7→ c , z 7→ b}
=⇒ L-Sub ∅; 2; {x 7→ c , z 7→ b, y 7→ a}

⇝ obtain the solution {x 7→ c , y 7→ a, z 7→ b}
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Why lazy substitution?

Q: Why cannot we use a simpler eager substitution rule instead of
L-Sub?

E-SubEπ : Substitute (eager)

{x =? t} ⊎ P; δ;σ =⇒ P{x 7→ t}; δ;σ{x 7→ t},
if P ∪ {x =? t} does not contain occurrence cycles

Example

Ω = L, E = {1 ⊩ a ≈ d , 1 ⊩ b ≈ d , 1 ⊩ c ≈ d}.
Solve

f (x , x , x) =?
E ,3 f (a, b, c).

The only solution {x 7→ d} cannot be found by E-Sub. a b

c

d1

1

1

Eager substitution ignores the quantitative aspect!
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Results

Theorem (Soundness and Completeness)

Soundness: If Qunify-π yields a terminal configuration, then any
“solution” of this configuration is an (E , ε)-unifier of t
and s.

Completeness: If σ is an (E , ε)-unifier of t and s, then there exists a run
of Qunify-π that yields a terminal configuration for
which σ is a “solution”

Theorem (Termination)

Any run of Qunify-π terminates, provided that L-Sub is not used as
long as Dec or Cla can be applied.
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Termination

Termination is not straight-forward:

Example

Consider the configuration

{x =? f (a, y), y =? f (g(z), b), z =? b}; δ; Id

Apply L-Sub, via {y 7→ f (y1, y2)}:

=⇒ {x =? f (a, f (y1, y2)), y1 =
? g(z), y2 =

? b, z =? b};
δ; {y 7→ f (y1, y2)}

L-Sub increases the total size of the problem as well as the number of
variables!

⇝ We also need to measure the dependencies between variables!
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Termination (cont.)

Dependency graph of a configuration P; δ;σ:

Nodes: var(P) ∪ {G}
Edges:

x →d y whenever x =? t[y ]p ∈ P, where d = |p|;
x →d G whenever x =? t[c]p ∈ P, where c is a constant and
d = |p|+ 1.

Example

Dependency graph corresponding to the configuration

{x =? f (a, y), y =? f (g(z), b), z =? b}; δ; Id :

x

y

zG

1

2
2

2

1
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Example

{x =? f (a, y), y =? f (g(z), b), z =? b}; δ; Id =⇒
{x =? f (a, f (y1, y2)), y1 =

? g(z), y2 =
? b, z =? b}; δ; {y 7→ f (y1, y2)}

x

y

zG

1

2
2

2

1

x

y1 y2

zG

2
2

2

1 1

1

For each configuration, consider now the multiset of the maximal lengths
of walks in the dependency graph starting from each variable:

{4, 3, 1} > {4, 1, 2, 1}.
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Computing degrees

Input : A simply permutative theory Eπ

Output: The values of dEπ
(f , g , π) for any f , g of arity n and π ∈ Sn.

Initialization:
d0(f , f , Id)← κ

d0(f , g , π)←
∨
{ε | ε ⊩ f (x1, . . . , xn)

.
≈ g(xπ(1), . . . , xπ(n)) ∈ Eπ}

n← 0

while true do
for f , g of arity n, π ∈ Sn do

dN+1(f , g , π)← dN(f , g , π) ∨
∨

h∈F,
ρ◦σ=π

dN(f , h, ρ)⊗ dN(h, g , σ)

end
if dN+1 ̸= dN then

N ← N + 1
else

return dN ;
end

end
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Conclusion/Outlook

So far:

Solved quantitative unification over a general quantale for a specific
class of shallow theories

Future research directions:

Quantitative unification over more general classes of theories:
Some approaches for special classes of syntactic theories might allow
for an adaptation to the quantitative setting

Hubert Comon, Marianne Haberstrau, and Jean-Pierre Jouannaud
(1994). “Syntacticness, Cycle-Syntacticness, and Shallow Theories”.
In: Inf. Comput. 111.1, pp. 154–191
Christopher Lynch and Barbara Morawska (2002). “Basic Syntactic
Mutation”. In: Automated Deduction—CADE-18. Berlin, Germany:
Springer, pp. 471–485

Quantitative matching and anti-unification
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