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Overview

Quantitative equational theories: equality is replaced by its
quantitative approximation.

Quantitative reasoning techniques:

� solving: matching, unification

� computing: rewriting, narrowing

� proving: completion, resolution
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Quantitative equational theories

Equalities are relaxed to its quantitative approximation.

A very abstract notion of proximity between two terms,
expressed using an element of a quantale.

The approach to quantitative equational theories introduced in

F. Gavazzo, C. Di Florio: Elements of Quantitative
Rewriting. Proc. ACM Program. Lang. 7(POPL),
1832–1863 (2023).
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Quantales

A quantale 
 = (Ω,-,⊗, κ): an algebraic structure, where

� (Ω, κ,⊗) is a monoid,

� (Ω,-) is a complete lattice (with join ∨ and meet ∧),

� the following distributivity laws are satisfied:
δ ⊗

(∨
i∈I εi

)
=
∨

i∈I(δ ⊗ εi) and(∨
i∈I εi

)
⊗ δ =

∨
i∈I(εi ⊗ δ).

Terminology:

� Ω: carrier set

� -: order

� κ: unit

� ⊗: tensor
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Quantale examples

Correspondence between quantales 
 (generic), 2 (Boolean),
I (fuzzy), L (Lawvere), Lmax (strong Lawvere).


 2 I L Lmax

Carrier Ω {0, 1} [0, 1] [0,∞] [0,∞]

Order - 6 6 > >

Unit κ 1 1 0 0

Tensor ⊗ ∧ left-cont. + max
T-norm

Join ∨ sup sup inf inf

Meet ∧ inf inf sup sup
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Quantales: terminology

>, ⊥: the top and bottom elements of a quantale.

� integral quantale: κ = >
� commutative quantale: ⊗ is commutative

� nontrivial quantale: κ 6= ⊥
� cointegral quantale: ε⊗ δ = ⊥ implies ε = ⊥ or δ = ⊥
� idempotent element: ε ∈ Ω such that ε⊗ ε = ε

� idempotent quantale: every element is idempotent
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Quantales: terminology

Lawvereian quantales: integral, commutative, nontrivial, and
cointegral quantales.

2, L, and Lmax are Lawvereian quantales.

I is Lawvereian for min and product t-norms, but not for
Łukasiewicz t-norm.

2 and Lmax are idempotent quantales.

I is idempotent for the min t-norm, but not for the product and
Łukasiewicz t-norms.

L is not an idempotent quantale.

Only Lawvereian quantales are considered.
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Quantitative equational theory

Given:

� a quantale 
 = (Ω,-, κ,⊗),

� a set of terms T ,

� a set of triples E ⊆ T × Ω× T (
-equalities).

Notation: ε 
 t ≈E s for (t, ε, s) ∈ E.

Intuition: E is a set of axioms that induces an equational theory.

Quantitative equational theory induced by E (wrt 
): a ternary
relation =E ⊆ T × Ω× T defined by the rules on the next slide.

Informally, ε 
 t =E s is read as

� “t and s are at most ε-apart modulo E” or

� “t and s are equal modulo E with degree ε”.
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Quantitative equational theory: rules

The rules define a non-expansive quantitative equational theory.

(Ax)
ε 
 t ≈E s

ε 
 t =E s

(Refl)
κ
 t =E t

(Sym)
ε 
 t =E s

ε 
 s =E t
(Trans)

ε 
 t =E s δ 
 s =E r

ε⊗ δ 
 t =E r

(NExp)
ε1 
 t1 =E s1 · · · εn 
 tn =E sn
⊗n

i=1εi 
 f(t1, . . . , tn) =E f(s1, . . . , sn)
(Subst)

ε 
 t =E s

ε 
 tσ =E sσ

(Ord)
ε 
 t =E s δ - ε

δ 
 t =E s
(Join)

ε1 
 t =E s · · · εn 
 t =E s

∨ni=1εi 
 t =E s

(Arch)
∀δ � ε. δ 
 t =E s

ε 
 t =E s
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SOLVING



Quantitative unification and matching

Given: A quantale 
, ε ∈ Ω (the threshold) with ε 6= ⊥,
a set of 
-equalities E, and two terms t and s.

Find: A substitution σ such that
� ε 
 tσ =E sσ (unification problem),
� ε 
 tσ =E s (matching problem).
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Quantitative unification and matching

Solvability of unification and matching problems depends on E.

We started from the simplest case: E is a set of quantitative
equations of the form

ε 
 f(x1, . . . , xn) ≈ g(x1, . . . , xn), f 6= g, n ≥ 0.
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Quantitative unification: examples

Example
Take


 = L (Lawvere quantale),

E = {1 
 a ≈ b, 1 
 b ≈ c, 1 
 c ≈ d},

and the unification problem
1 
 f(x, b) =?

E f(c, x).

Solutions: σ = {x 7→ b}, ϑ = {x 7→ c}.

� f(x, b)σ = f(b, b), f(c, x)σ = f(c, b) and 1 
 f(b, b) =E f(c, b),

� f(x, b)ϑ = f(c, b), f(c, x)ϑ = f(c, c) and 1 
 f(c, b) =E f(c, c).

Neither {x 7→ a} nor {x 7→ d} is an (E, 1)-unifier of f(x, b) and f(c, x)

(but they are their (E, 3)-unifiers).
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Quantitative unification: examples

Example
Take


 = L (Lawvere quantale),

E = {1 
 a ≈ b, 1 
 b ≈ c, 1 
 f(x1, x2) ≈ g(x1, x2)},

and the unification problem
5 
 f(y, g(x, x)) =?

E g(f(c, a), y).

It has multiple “incomparable” solutions, among them
σ = {y 7→ f(b, a), x 7→ a} (with degree 4)

f(y, g(x, x))σ = f(f(b, a), g(a, a))

g(f(c, a), y)σ = g(f(c, a), f(b, a))

4 
 f(f(b, a), g(a, a)) =E g(f(c, a), f(b, a)).
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Quantitative unification: examples

Example
Take 
 = L, E = {1 
 f(x) ≈ g(x)} and the unification problem

2 
 x =?
E f(y).

One of its solutions is given by a pair (σ, {eq}), where
σ = {x 7→ g(z)}, where z is fresh,

eq = γ 
 z =E y with the constraint γ 6 1.

Then

xσ = g(z), f(y)σ = f(y)

and σϑ for any solution ϑ of eq is a unifier of the original problem.

σϑ = {x 7→ g(a), y 7→ a, z 7→ a}, degree 1,

σϑ = {x 7→ g(f(a)), y 7→ g(a), z 7→ f(a)}, degree 2.
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Quantitative unification and matching

Ongoing and future work:

� Increase expressiveness without violating “good”
computational behavior, e.g., by considering shallow
regular theories such as
E = {1 
 a ≈ b, 2 
 f(x, y, h(a)) ≈ g(y, y, c, x)}.

� Efficient special cases: idempotent quantales, linear
solutions, . . . .

� Specialized algorithms for matching.

� Generalizing results from non-expansive to graded
equational theories.

14 / 22



COMPUTING



Quantitative abstract rewriting

Given a Lawverean quantale 
, a quantitative abstract rewriting
system (wrt 
) is a pair (A,R), where R is a function
A×A −→ Ω.

Terminology:

� For a, b ∈ A, a rewrites to b if R(a, b) 6= ⊥.

� R(a, b): the distance, the degree, the cost, or the resource
of reduction.

The notions of Diamond property, confluence, Church-Rosser,
local confluence, termination, etc. are extended from standard
to quantitative rewriting systems.
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Quantitative abstract rewriting

Quantitative counterparts of the standard properties of abstract
rewriting hold.
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Quantitative term rewriting

Non-expansive quantitative TRSs: reducing terms inside contexts
non-expansively propagates distances.

If t reduces to s with distance ε, then C[t] reduces to C[s] with
distance ε too.

Nonlinear rules break non-expansiveness: distance amplification.
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Quantitative term rewriting

Given:

� a quantale 
 = (Ω,-, κ,⊗),

� a set of terms T ,

� a set of triples R ⊆ T × Ω× T (
-rewrite rules).

Notation: ε 
 t 7→R s for (t, ε, s) ∈ R.

Intuition: R is a set of rewrite rules that induces a rewrite relation.

A (nonexpansive) rewrite relation induced by R (wrt 
): a ternary
relation→R ⊆ T × Ω× T defined by the rules on the next slide.
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Non-expansive rewrite relation

ε 
 t 7→R s

ε 
 C[tσ]→R C[sσ]

ε 
 t→R s δ - ε
δ 
 t→R s

ε1 
 t→R s · · · εn 
 t→R s

∨ni=1εi 
 t→R s

(Arch)
∀δ � ε. δ 
 t→R s

ε 
 t→R s
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Quantitative rewriting

Future work:

� Non-expansive quantitative rewriting modulo equational
theories:

ε 
 t 7→R s δ 
 tσ =E r

ε⊗ δ 
 C[r]→R,E C[sσ]

� Non-expansive quantitative narrowing:

ε 
 t 7→R s tσ = rσ

ε 
 C[r] ;R Cσ[sσ]

� Extending these non-expansive techniques to their graded
counterparts.

� Quantitative version(s) of rewriting logic.
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PROVING



Quantitative completion

Unfailing completion is a popular equational proving method.

Its quantitative counterpart can play a similar role for proving
quantitative equalities.

First steps towards quantitative completion: for special shallow
regular theories.

Future work: unfailing completion procedure for non-expansive
and graded variants of quantitative rewrite systems.
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Quantitative resolution

Has been studied in the context of logic programming with fuzzy
similarity and proximity relations (Sessa, Julian Iranzo et al).

Can be extended to arbitrary quantales.

Semantics of such extended logic programming languages has
to be investigated.

Related work: Weber et al. NLProlog: Reasoning with Weak
Unification for Question Answering in Natural Language. ACL
2019.
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