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Sources

What is the core problem solved by ML and what is the basic solution strategy?
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The ML Problem
Automatically generate a program that solves a problem specified by (input, output) examples.

• Given: a sequence 𝑇 ∈ Pr∗ ⊆ (𝐼 ×𝑂)∗ of (input, output) examples
◦ Pr : the problem, i.e., the set of all legal (input, output) pairs from domains 𝐼 and 𝑂

* such that
◦ 𝑇 (the training set) is “representative” for Pr .

• Find: a model 𝑀
◦ A finitary representation of a function J𝑀K : 𝐼 → 𝑂

such that 𝑀 makes “good” predictions for the inputs in 𝑇 , i.e., we have

𝑃(𝑀∗ (𝑇)) > 𝑝.

◦ 𝑃 : (𝑂 ×𝑂)∗ → R: the performance measure, 𝑝 ∈ R: the desired performance
◦ 𝑀∗ (𝑇) := [(𝑦, 𝑦) | (𝑥, 𝑦) ← 𝑇, 𝑦 = J𝑀K(𝑥)]

𝑥: the input, 𝑦: the output (target), 𝑦: the prediction.

• Test: for candidate 𝑀, choose test set U ∈ Pr∗ “disjoint” from 𝑇 and check 𝑃(𝑀∗ (𝑈)) > 𝑝:
◦ If the check succeeds, then 𝑀 “generalizes” to the test set and is accepted.
◦ If not, then 𝑀 “overfits” the training set and is rejected.

If the model generalizes to the test set, it may also generalize to the full problem.
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The ML Meta-Problem

To solve the ML problem, we typically have to solve the following “meta-problem”.

• Given: 𝑇 ∈ Pr∗ ⊆ (𝐼 ×𝑂)∗.

• Find: a model (template) MThp [𝜃], values hp and 𝜃 for its hyperparameters and parameters.

◦ hp ∈ HP∗: the model hyperparameters.
◦ 𝜃 ∈ R∗: the (numerical) model parameters (weights).

such that we have 𝑃(𝑀∗ (𝑇)) > 𝑝 where

◦ MT [𝜃] = MThp [𝜃]
◦ 𝑀 = MT [𝜃]

We have to find a suitable model (template), suitable values for its
hyperparameters, and suitable values for its parameters.
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The ML Meta-Problem (Refined)

The problem of finding suitable values for the model parameters can be framed as
a problem of numerical optimization.

• Given: 𝑇 ∈ Pr∗ ⊆ (𝐼 ×𝑂)∗.

• Find: a model (template) MThp [𝜃], values hp for its hyperparameters, and a loss function 𝐿.

◦ L : (𝑂 ×𝑂)∗ → R: maps a list of pairs (𝑦, 𝑦) to a numerical loss (cost, error ).
◦ Strongly correlated (but not necessarily identical) to the negation of 𝑃.

such that we have 𝑃(𝑀∗ (𝑇)) > 𝑝 where

◦ MT [𝜃] = MThp [𝜃]
◦ 𝜃 is a value for 𝜃 that minimizes 𝐿 [(𝑦, 𝑦) | (𝑥, 𝑦) ← 𝑇, 𝑦 = JMT [𝜃]K(𝑥)]
◦ 𝑀 = MT [𝜃]

We have to select a suitable loss function and minimize it.
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The ML Meta-Problem (Training/Model Fitting)

But then we also have to decide how to solve the minimization problem.

• Given: 𝑇 ∈ Pr∗ ⊆ (𝐼 ×𝑂)∗.

• Find: a model (template) MThpm [𝜃], values hpm for its hyperparameters, a loss function 𝐿, a
training algorithm (“optimizer”) TAhpt , and values hpt for its hyperparameters

◦ TAhpt : a function that (approximately) solves the minimization problem.

such that we have 𝑃(𝑀∗ (𝑇)) > 𝑝 where

◦ MT [𝜃] = MThpm [𝜃]
◦ 𝜃 = TAhpt (MT [𝜃], 𝐿, 𝑇) (“training the model”)
◦ 𝑀 = MT [𝜃]

We have to select an appropriate algorithm for solving the minimization problem
and suitable values for its hyperparameters.
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The ML Meta-Problem (Validation/Hyperparameter Tuning)
It remains to choose suitable values hpm , hpt , . . . such that the resulting model most likely
generalizes well to the test set (and the full problem). . .

• Given: 𝑇 ∈ Pr ∗ ⊆ (𝐼 ×𝑂)∗

• Find: model 𝑀 such that 𝑃(𝑀∗ (𝑇)) > 𝑝

◦ Let 𝑉 be some “part” of 𝑇 and let 𝑇 ′ be 𝑇 “without” 𝑉 .
𝑉 : the validation set.

◦ Choose as hpm , hpt , . . . values for hpm , hpt , . . . (from a set of candidates) that maximize

𝑃[(𝑦, 𝑦) | (𝑥, 𝑦) ← 𝑉, 𝑦 = JMT [𝜃]K(𝑥)] (validating the model on 𝑉)
where

MT [𝜃] = MThpm [𝜃]
𝜃 = TAhpt (MT [𝜃], 𝐿, 𝑇 ′) (training the model on 𝑇 ′)

◦ Let 𝑀 = MT [𝜃]
𝑀𝑇 and 𝜃 are determined by hpm , hpt , . . ..

We generate from the training set models for various hyperparameter combinations (“grid/
randomized search”) and select the one that generalizes best to the validation set. 6/8



Evaluating the Model Performance

When training the model, the optimizer runs over the training set a certain number of times
(“epochs”); how do we know when the the model is adequate or can/should be further
improved my more training?
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Learning curves can be used to judge the adequacy of the model.
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Summary

To develop an adequate machine learning model, we have to

• choose a model template,
• an optimizer,
• hyperparameters for model and optimizer,
• a loss function;
• train the model using the optimizer and loss function;
• evaluate the performance of the trained model;
• repeat the process until we have a model that neither underfits nor overfits.

Many other topics: collection and preparation of data, labeling data, model types,
neural networks (architectures and training), reuse of models (transfer learning),
reinforcement learning, . . . .
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