
Formal Methods in Software Development
Assignment 4 (December 9)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course as a
.zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• a section for each part of the exercise with the requested deliverables and optionally any
explanations or comments you would like to make;

2. the RISCAL specification (.txt) file(s) used in the exercise.

Email submissions are not accepted.

1



Assignment 4: Specifying and Verifying Procedures

Consider the following problem: given an array a of length N, compute an array b of length N and a
value n ≤ N such that:

• all the elements of b at the first n positions are different.

• every element that occurs in a occurs in b at some of the first n positions.

• every element that occurs in b at the first n positions occurs in a.

Thus b represents a “compacted” version of a in which no duplicates occur; n represents the number of
distinct elements in a.

In the attached RISCAL file you find a procedure toset(a,n) whose result is a record where
result.a is the compacted version of a and result.n is the number of distinct elements. This pro-
cedure calls an auxiliary procedure has(a,n,x) that returns true if and only if value x occurs amont
the first n elements of array a.

For each procedure has and toset perform the following tasks:

1. Specify the procedure by pre-and post-conditions. Validate the specification by executing the
procedure for all legal inputs.

Please note that procedure has essentially implements a linear search in a; take this as the inspi-
ration for its specification.

2. Validate the specification by checking (for small values of array length N and maximum element
size M) the tasks under header “verify specification preconditions” and “validate specification”
(make sure to switch off option “Silent” when investigating the output of “Execute specifica-
tion”). For checking the theorems you may use “Apply SMT solver”.

3. Annotate the loop in the procedure by invariants and termination measures. Validate the annota-
tions by running the procedure again, thus demonstrating that they are not too strong.

In the loop invariant of procedure toset, specify (along with all necessary range conditions on
variables ia and ib), appropriate generalizations of the three output conditions given above by
considering which part of the array has been already processed before the current loop iteration.
As for the loop invariant of procedure has, take the corresponding loop invariants for linear
search as an inspiration.

4. Check all verification conditions related to the correctness of the implementation (“verify speci-
fication preconditions”, “verify implementation preconditions”, “is result correct?”, “verify iter-
ation and recursion”), thus demonstrating that the annotations are strong enough.

5. Prove all verification conditions related to the correctness of the implementation with both meth-
ods SMT and MESON, thus demonstrating the correctness of the procedure for arbitrary values
of N and M.

In some MESON proofs related to has, it may be necessary to switch off in the prover GUI the
option “single goal” (or alternatively switch off the option “use type bounds”); in some MESON
proofs related to toset, it may be necesssary to switch off the option “use type bounds” (and
potentially also increase the “timeout” value to 60s or so).

For both proof method SMT and proof method MESON, it should be possible to prove all
(sub)problems related to method has However, probably neither proof method is able to prove

2



all (sub)problems releated to procedure toset; please report which could not be proved (SMT
probably leaves one problem open, MESON probably 2–4, all related to the preservation of some
quantified invariant).

The deliverables of this assignment consist of

1. a nicely formatted copy of the RISCAL specifications (included as text, not as screenshots);

2. for both procedures, screenshots of the RISCAL user interface showing the results of all tasks
after checking (should be all blue);

3. explicit statements whether the checks of all verification conditions succeeded, whether their
proofs succeeded with method SMT, and whether their proofs succeeded with method MESON.

4. for procedure toset and one subproblem of type Is invariant preserved that could not be solved
by automatic decomposition but by proof search, a reasonably detailed explanation of the deriva-
tion of this subproblem and its proof (with both options “SMT: Med” and “SMT: Max”).

3


