
Formal Methods in Software Development
Assignment 1 (October 28)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• a section for each part of the exercise with the requested deliverables and optionally
any explanations or comments you would like to make;

2. the RISCAL specification (.txt) file(s) used in the exercise.

Email submissions are not accepted.

1



Assignment 1: Validating and Checking Program Specifications

We consider the following two problems:

1. Given an array 𝑎 and a positive integer 𝑛, find the maximum of the first 𝑛 elements of 𝑎
(which are assumed to be non-negative), i.e., that element 𝑚 that occurs at some of the
first 𝑛 positions of 𝑎 and that is greater than or equal all elements at these positions.

2. Given an array 𝑎 and a positive integer 𝑛, find an index of the maximum of the first 𝑛
elements of 𝑎 (which are assumed to be non-negative), i.e., a non-negative integer 𝑝 less
than 𝑛 such that the element of 𝑎 at 𝑝 is that maximum.

In the RISCAL specification file maximum.txt you find two procedures maximumElement and
maximumIndex that are supposed to solve these problems, respectively (but one procedure may
contain a bug). The specification is based on two integer types int and elem that bound the
domain of possible array indices and elements by constants 𝑁 and 𝑀 , respectively.

For each of the procedures perform the following tasks (the definitions already given in the
specification file must not be modified unless explicitly noted):

(a) Formalize the procedure’s precondition and postcondition as predicates.

Here do not use the arithmetic quantifier max but only the predicate logic quantifiers ∀ and
∃ (translate above specification from natural language to logic). Hint: a formula (∀𝑣:𝑇
with 𝐹. 𝐺) is equivalent to (∀𝑣:𝑇. 𝐹 ⇒ 𝐺) and a formula (∃𝑣:𝑇 with 𝐹. 𝐺) is
equivalent to (∃𝑣:𝑇. 𝐹 ∧ 𝐺); you may use either notation.

(b) Use the precondition and postcondition to implicitly define a function and check whether
the computed results are as desired.

(c) Formulate a theorem that states that some input satisfies the precondition and check this
theorem.

(d) Formulate a theorem that states that not every input satisfies the precondition and check
this theorem.

(e) Formulate a theorem that states that, for every input that satisfies the precondition, there
exists some output that satisfies the postcondition, and check that theorem.

(f) Formulate a theorem that states that, for every input that satisfies the precondition, not
every output satisfies the postcondition, and check that theorem.

(g) Formulate a theorem that states that, for every input that satisfies the precondition, the
output is uniquely defined by the postcondition, and check that theorem.

(h) Annotate the procedure with preconditions and postconditions and check the correctness
of the procedure for every possible array 𝑎 and integer 𝑛; if a condition is a conjunction, it
is recommended to use multiple annotation clauses (requires and/or ensures).

Perform all checks with some small 𝑁 ≥ 3 and 𝑀 ≥ 2.

2



Perform the function execution (b) with translation option “Nondeterminism” selected and display
option “Silent” not selected; all other checks may be performed with option “Nondeterminism”
not selected but option “Silent” selected.

If a theorem is not valid, give an explanation of why the theorem is not valid and whether this
indicates an error in your specification or not. For this purpose, select the visualization option
“Tree” and investigate the evaluation of the theorem (if the tree layout is unsatisfactory, choose
larger visualization width/heigth and/or smaller values of 𝑁 and 𝑀).

If the execution of a procedure gives an error, give an explanation of why this is the case and
whether this indicates an error in the procedure or not. To investigate the error, you may use
the procedure main to call the procedure with the input that exhibits the error and use the
visualization option “Trace” (alternatively, you may annotate the body of the procedure body
with print statements). If the error indicates a bug in the procedure, fix this bug.

The deliverables for this exercise consists of the following items:

1. a nicely formatted copy of the extended specification (included as text, not as a screenshot);

2. for each check, a selection of the output of reasonable size (included as text, not as
screenshots);

3. if the check of a theorem gives an error, a screenshot of the visualization exhibiting that
error, an explanation of the error, and an explanation whether this indicates an error in
your specification;

4. if the check of a procedure gives an error, the output that exhibits that error, an explanation
of the error, and an explanation whether this indicates an error in your specification or
procedure;

5. if you fixed a bug in a procedure, a clear indication and explanation of that fix.

3


