# **Specifying and Verifying System Properties**

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
https://www.risc.jku.at





### 1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

### Motivation



We need a language for specifying system properties.

- A system S is a pair  $\langle I, R \rangle$ .
  - Initial states *I*, transition relation *R*.
  - More intuitive: reachability graph.



- Consider the reachability graph as an infinite computation tree.
  - Different tree nodes may denote occurrences of the same state.
    - Each occurrence of a state has a unique predecessor in the tree.
  - Every path in this tree is infinite.
    - Every finite run  $s_0 \to \ldots \to s_n$  is extended to an infinite run  $s_0 \to \ldots \to s_n \to s_n \to s_n \to s_n \to \ldots$
- Or simply consider the graph as a set of system runs.
  - Same state may occur multiple times (in one or in different runs).

Temporal logic describes such trees respectively sets of system runs.

# **Computation Trees versus System Runs**





Set of system runs:

$$[a,b] \rightarrow c \rightarrow c \rightarrow \dots$$

$$[a,b] \rightarrow [b,c] \rightarrow c \rightarrow \dots$$

$$[a,b] \rightarrow [b,c] \rightarrow [a,b] \rightarrow \dots$$
  
 $[a,b] \rightarrow [b,c] \rightarrow [a,b] \rightarrow \dots$ 

...

Figure 3.1 Computation trees.

Edmund Clarke et al: "Model Checking", 1999.

### State Formula



#### Temporal logic is based on classical logic.

- A state formula F is evaluated on a state s.
  - Any predicate logic formula is a state formula:  $p(x), \neg F, F_0 \land F_1, F_0 \lor F_1, F_0 \Rightarrow F_1, F_0 \Leftrightarrow F_1, \forall x : F, \exists x : F.$
  - In propositional temporal logic only propositional logic formulas are state formulas (no quantification):

$$p, \neg F, F_0 \land F_1, F_0 \lor F_1, F_0 \Rightarrow F_1, F_0 \Leftrightarrow F_1.$$

- Semantics:  $s \models F$  ("F holds in state s").
  - Example: semantics of conjunction.
    - $(s \models F_0 \land F_1) :\Leftrightarrow (s \models F_0) \land (s \models F_1).$
    - " $F_0 \wedge F_1$  holds in s if and only if  $F_0$  holds in s and  $F_1$  holds in s".

Classical logic reasoning on individual states.

## **Temporal Logic**



Extension of classical logic to reason about multiple states.

- Temporal logic is an instance of modal logic.
  - Logic of "multiple worlds (situations)" that are in some way related.
  - Relationship may e.g. be a temporal one.
  - Amir Pnueli, 1977: temporal logic is suited to system specifications.
  - Many variants, two fundamental classes.
- Branching Time Logic
  - Semantics defined over computation trees.

At each moment, there are multiple possible futures.

- Prominent variant: CTL.
  - Computation tree logic; a propositional branching time logic.
- Linear Time Logic
  - Semantics defined over sets of system runs.

At each moment, there is only one possible future.

- Prominent variant: PLTL.
  - A propositional linear time logic.

# **Branching Time Logic (CTL)**



We use temporal logic to specify a system property F.

- **Core question**:  $S \models F$  ("F holds in system S").
  - System  $S = \langle I, R \rangle$ , temporal logic formula F.
- Branching time logic:
  - $S \models F :\Leftrightarrow S, s_0 \models F$ , for every initial state  $s_0$  of S.
  - Property F must be evaluated on every pair of system S and initial state  $s_0$ .
  - Given a computation tree with root  $s_0$ , F is evaluated on that tree.

CTL formulas are evaluated on computation trees.

### State Formulas



We have additional state formulas.

- A state formula F is evaluated on state s of System S.
  - Every (classical) state formula f is such a state formula.
  - Let *P* denote a path formula (later).
    - Evaluated on a path (state sequence)  $p = p_0 \rightarrow p_1 \rightarrow p_2 \rightarrow \dots$  $R(p_i, p_{i+1})$  for every i;  $p_0$  need not be an initial state.
  - Then the following are state formulas:

**A** 
$$P$$
 ("in every path  $P$ "), **E**  $P$  ("in some path  $P$ ").

- Path quantifiers: A, E.
- Semantics:  $S, s \models F$  ("F holds in state s of system S").

$$S, s \models f :\Leftrightarrow s \models f.$$

 $S, s \models A P :\Leftrightarrow S, p \models P$ , for every path p of S with  $p_0 = s$ .

 $S, s \models \mathbf{E} P :\Leftrightarrow S, p \models P$ , for some path p of S with  $p_0 = s$ .

### **Path Formulas**



We have a class of formulas that are not evaluated over individual states.

- $\blacksquare$  A path formula P is evaluated on a path p of system S.
  - Let F and G denote state formulas.
  - Then the following are path formulas:

```
X F ("next time F"), G F ("always F"), F F ("eventually F"), F U G ("F until G").
```

- Temporal operators: X, G, F, U.
- Semantics:  $S, p \models P$  ("P holds in path p of system S").

```
S, p \models \mathbf{X} F :\Leftrightarrow S, p_1 \models F.

S, p \models \mathbf{G} F :\Leftrightarrow \forall i \in \mathbb{N} : S, p_i \models F.

S, p \models \mathbf{F} F :\Leftrightarrow \exists i \in \mathbb{N} : S, p_i \models F.

S, p \models F \cup G :\Leftrightarrow \exists i \in \mathbb{N} : S, p_i \models G \land \forall j \in \mathbb{N}_i : S, p_i \models F.
```

### **Path Formulas**





Thomas Kropf: "Introduction to Formal Hardware Verification", 1999.

# **Path Quantifiers and Temporal Operators**





Edmund Clarke et al: "Model Checking", 1999.

# Linear Time Logic (LTL)



We use temporal logic to specify a system property P.

- **Core question**:  $S \models P$  ("P holds in system S").
  - System  $S = \langle I, R \rangle$ , temporal logic formula P.
- Linear time logic:
  - $S \models P$  :⇔  $r \models P$ , for every run r of S.
  - Property P must be evaluated on every run r of S.
  - Given a computation tree with root  $s_0$ , P is evaluated on every path of that tree originating in  $s_0$ .
    - If P holds for every path, P holds on S.

LTL formulas are evaluated on system runs.

#### **Formulas**



No path quantifiers; all formulas are path formulas.

- Every formula is evaluated on a path *p*.
  - Also every state formula f of classical logic (see below).
  - Let F and G denote formulas.
  - Then also the following are formulas:

**X** 
$$F$$
 ("next time  $F$ "), often written  $\bigcirc F$ ,

**G** 
$$F$$
 ("always  $F$ "), often written  $\Box F$ ,

**F** 
$$F$$
 ("eventually  $F$ "), often written  $\Diamond F$ ,

$$F$$
 **U**  $G$  (" $F$  until  $G$ ").

- Semantics:  $p \models P$  ("P holds in path p").
  - $p^i := \langle p_i, p_{i+1}, \ldots \rangle.$  $p \models f :\Leftrightarrow p_0 \models f.$

$$p \models \mathbf{X} F :\Leftrightarrow p^1 \models F.$$

$$p \models \mathbf{G} F : \Leftrightarrow \forall i \in \mathbb{N} : p^i \models F.$$

$$p \models \mathbf{F} \ F : \Leftrightarrow \exists i \in \mathbb{N} : p^i \models F.$$

$$p \models F \cup G : \Leftrightarrow \exists i \in \mathbb{N} : p^i \models G \land \forall j \in \mathbb{N}_i : p^j \models F.$$

### **Formulas**





Thomas Kropf: "Introduction to Formal Hardware Verification", 1999.



We use temporal logic to specify a system property P.

- **Core question**:  $S \models P$  ("P holds in system S").
  - System  $S = \langle I, R \rangle$ , temporal logic formula P.
- Branching time logic:
  - $S \models P :\Leftrightarrow S, s_0 \models P$ , for every initial state  $s_0$  of S.
  - Property P must be evaluated on every pair  $(S, s_0)$  of system S and initial state  $s_0$ .
  - Given a computation tree with root  $s_0$ , P is evaluated on that tree.
- Linear time logic:
  - $S \models P :\Leftrightarrow r \models P$ , for every run r of s.
  - Property P must be evaluated on every run r of S.
  - Given a computation tree with root  $s_0$ , P is evaluated on every path of that tree originating in  $s_0$ .
    - If P holds for every path, P holds on S.





- B. Berard et al: "Systems and Software Verification", 2001.
- Linear time logic: both systems have the same runs.
  - Thus every formula has same truth value in both systems.
- Branching time logic: the systems have different computation trees.
  - Take formula  $AX(EX Q \land EX \neg Q)$ .
  - True for left system, false for right system.

The two variants of temporal logic have different expressive power.



17/59

Is one temporal logic variant more expressive than the other one?

- CTL formula: AG(EF F).
  - "In every run, it is at any time still possible that later F will hold".
  - Property cannot be expressed by any LTL logic formula.
- LTL formula:  $\Diamond \Box F$  (i.e. **FG** F).
  - "In every run, there is a moment from which on F holds forever.".
  - Naive translation AFG F is not a CTL formula.
    - **G** *F* is a path formula, but **F** expects a state formula!
  - Translation **AFAG** *F* expresses a stronger property (see next page).
  - Property cannot be expressed by any CTL formula.

None of the two variants is strictly more expressive than the other one; no variant can express every system property.



Thomas Kropf: "Introduction to Formal Hardware Verification", 1999.



Proof that **AFAG** F (CTL) is different from  $\Diamond \Box F$  (LTL).



In every run, there is a moment when it is guarantueed that from now on F holds forever.

In every run, there is a moment from which on F holds forever.



1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

## **Linear Time Logic**



### Why using linear time logic (LTL) for system specifications?

- LTL has many advantages:
  - LTL formulas are easier to understand.
    - Reasoning about computation paths, not computation trees.
    - No explicit path quantifiers used.
  - LTL can express most interesting system properties.
    - Invariance, guarantee, response, ... (see later).
  - LTL can express fairness constraints (see later).
    - CTL cannot do this.
    - But CTL can express that a state is reachable (which LTL cannot).
- LTL has also some disadvantages:
  - LTL is strictly less expressive than other specification languages.
    - **CTL**\* or  $\mu$ -calculus.
  - Asymptotic complexity of model checking is higher.
    - LTL: exponential in size of formula; CTL: linear in size of formula.
    - In practice the number of states dominates the checking time.

# Frequently Used LTL Patterns



In practice, most temporal formulas are instances of particular patterns.

| Pattern                                | Pronounced                       | Name       |
|----------------------------------------|----------------------------------|------------|
| $\Box F$                               | always <i>F</i>                  | invariance |
| $\Diamond F$                           | eventually $F$                   | guarantee  |
| $\Box \Diamond F$                      | F holds infinitely often         | recurrence |
| $\Diamond\Box F$                       | eventually $F$ holds permanently | stability  |
| $\Box(F\Rightarrow \Diamond G)$        | always, if $F$ holds, then       | response   |
|                                        | eventually $G$ holds             |            |
| $\Box(F\Rightarrow(G\ \mathbf{U}\ H))$ | always, if $F$ holds, then       | precedence |
|                                        | G holds until H holds            |            |

Typically, there are at most two levels of nesting of temporal operators.

# **Examples**



- Mutual exclusion:  $\Box \neg (pc_1 = C \land pc_2 = C)$ .
  - Alternatively:  $\neg \diamondsuit (pc_1 = C \land pc_2 = C)$ .
  - Never both components are simultaneously in the critical region.
- No starvation:  $\forall i : \Box(pc_i = W \Rightarrow \Diamond pc_i = R)$ .
  - Always, if component *i* waits for a response, it eventually receives it.
- No deadlock:  $\Box \neg \forall i : pc_i = W$ .
  - Never all components are simultaneously in a wait state W.
- Precedence:  $\forall i : \Box(pc_i \neq C \Rightarrow (pc_i \neq C \cup lock = i))$ .
  - Always, if component i is out of the critical region, it stays out until it receives the shared lock variable (which it eventually does).
- Partial correctness:  $\Box(pc = L \Rightarrow C)$ .
  - Always if the program reaches line *L*, the condition *C* holds.
- Termination:  $\forall i : \Diamond (pc_i = T)$ .
  - Every component eventually terminates.

## **Example**



If event a occurs, then b must occur before c can occur (a run ..., a,  $(\neg b)^*$ , c, ... is illegal).

First idea (wrong)

$$a \Rightarrow \dots$$

- Every run  $d, \ldots$  becomes legal.
- Next idea (correct)

$$\Box$$
( $a \Rightarrow ...$ )

■ First attempt (wrong)

$$\Box$$
( $a \Rightarrow (b \ \mathbf{U} \ c))$ 

- Run  $a, b, \neg b, c, \ldots$  is illegal.
- Second attempt (better)

$$\Box(a \Rightarrow (\neg c \ \mathbf{U} \ b))$$

- Run  $a, \neg c, \neg c, \neg c, \dots$  is illegal.
- Third attempt (correct)

$$\Box(a \Rightarrow ((\Box \neg c) \lor (\neg c \cup b)))$$

Specifier has to think in terms of allowed/prohibited sequences.

## **Temporal Rules**



24/59

#### Temporal operators obey a number of fairly intuitive rules.

- Extraction laws:
  - $\square F \Leftrightarrow F \land \cap \square F$
  - $\diamond F \Leftrightarrow F \lor \cap \diamond F$
  - $\blacksquare$  F  $\bigcup$  G  $\Leftrightarrow$   $G \lor (F \land \bigcirc (F \bigcup G)).$
- Negation laws:
  - $\neg \sqcap F \Leftrightarrow \Diamond \neg F$
  - $\neg \Diamond F \Leftrightarrow \Box \neg F$
  - $\neg (F \cup G) \Leftrightarrow ((\neg G) \cup (\neg F \land \neg G)) \lor \neg \Diamond G.$
- Distributivity laws:
  - $\Box (F \land G) \Leftrightarrow (\Box F) \land (\Box G).$
  - $\diamond (F \vee G) \Leftrightarrow (\diamond F) \vee (\diamond G).$
  - $\blacksquare$   $(F \land G) \cup H \Leftrightarrow (F \cup H) \land (G \cup H).$
  - $\blacksquare$   $F \cup (G \vee H) \Leftrightarrow (F \cup G) \vee (F \cup H).$
  - $\square \lozenge (F \lor G) \Leftrightarrow (\square \lozenge F) \lor (\square \lozenge G).$
  - $\Diamond \Box (F \land G) \Leftrightarrow (\Diamond \Box F) \land (\Diamond \Box G).$

## **Classes of System Properties**



There exists two important classes of system properties.

#### Safety Properties:

- A safety property is a property such that, if it is violated by a run, it is already violated by some finite prefix of the run.
  - This finite prefix cannot be extended in any way to a complete run satisfying the property.
- **Example:**  $\Box F$  (with state property F).
  - The violating run  $F \to F \to \neg F \to \dots$  has the prefix  $F \to F \to \neg F$ that cannot be extended in any way to a run satisfying  $\Box F$ .

#### Liveness Properties:

- A liveness property is a property such that every finite prefix can be extended to a complete run satisfying this property.
  - Only a complete run itself can violate that property.
- **Example:**  $\Diamond F$  (with state property F).
  - Any finite prefix p can be extended to a run  $p \to F \to \dots$  which satisfies  $\Diamond F$

# **System Properties**



Not every system property is itself a safety property or a liveness property.

- **Example:**  $P :\Leftrightarrow (\Box A) \land (\Diamond B)$  (with state properties A and B)
  - Conjunction of a safety property and a liveness property.
- Take the run  $[A, \neg B] \rightarrow [A, \neg B] \rightarrow [A, \neg B] \rightarrow \dots$  violating P.
  - Any prefix  $[A, \neg B] \to \ldots \to [A, \neg B]$  of this run can be extended to a run  $[A, \neg B] \to \ldots \to [A, \neg B] \to [A, B] \to [A, B] \to \ldots$  satisfying P.
  - Thus *P* is not a safety property.
- Take the finite prefix  $[\neg A, B]$ .
  - This prefix cannot be extended in any way to a run satisfying *P*.
  - Thus *P* is not a liveness property.

So is the distinction "safety" versus "liveness" really useful?.

# **System Properties**



The real importance of the distinction is stated by the following theorem.

#### ■ Theorem:

Every system property P is a conjunction  $S \wedge L$  of some safety property S and some liveness property L.

- If L is "true", then P itself is a safety property.
- If S is "true", then P itself is a liveness property.

#### Consequence:

- Assume we can decompose P into appropriate S and L.
- For verifying  $M \models P$ , it then suffices to verify:
  - Safety:  $M \models S$ .
  - Liveness:  $M \models L$ .
- Different strategies for verifying safety and liveness properties.

For verification, it is important to decompose a system property in its "safety part" and its "liveness part".

# **Verifying Safety**



We only consider a special case of a safety property.

- $M \models \Box F$ .
  - F is a state formula (a formula without temporal operator).
  - Verify that F is an invariant of system M.
- $M = \langle I, R \rangle$ .
  - $I(s):\Leftrightarrow \dots$
  - $R(s,s') : \Leftrightarrow R_0(s,s') \vee R_1(s,s') \vee \ldots \vee R_{n-1}(s,s').$
- Induction Proof.
  - $\forall s: I(s) \Rightarrow F(s).$ 
    - Proof that F holds in every initial state.
  - $\forall s, s' : F(s) \land R(s, s') \Rightarrow F(s').$ 
    - Proof that each transition preserves F.
    - Reduces to a number of subproofs:

$$F(s) \wedge R_0(s, s') \Rightarrow F(s')$$
  
...  
 $F(s) \wedge R_{n-1}(s, s') \Rightarrow F(s')$ 

## **Example**



```
var x := 0
                                   dool
                                                                                     dool
                                       p_0: wait x=0
                                                                                         q_0: wait x=1
                                       p_1: x := x + 1
                                                                                         a_1: x := x - 1
         State = \{p_0, p_1\} \times \{q_0, q_1\} \times \mathbb{Z}.
         I(p, a, x) : \Leftrightarrow p = p_0 \land a = a_0 \land x = 0.
         R(\langle p, q, x \rangle, \langle p', q', x' \rangle) : \Leftrightarrow P_0(\ldots) \vee P_1(\ldots) \vee Q_0(\ldots) \vee Q_1(\ldots).
         P_0(\langle p, q, x \rangle, \langle p', q', x' \rangle) : \Leftrightarrow p = p_0 \land x = 0 \land p' = p_1 \land q' = q \land x' = x.
         P_1(\langle p, q, x \rangle, \langle p', q', x' \rangle) : \Leftrightarrow p = p_1 \wedge p' = p_0 \wedge a' = a \wedge x' = x + 1.
         Q_0(\langle p, q, x \rangle, \langle p', q', x' \rangle) : \Leftrightarrow q = q_0 \land x = 1 \land p' = p \land q' = q_1 \land x' = x.
         Q_1(\langle p, q, x \rangle, \langle p', q', x' \rangle) : \Leftrightarrow q = q_1 \wedge p' = p \wedge q' = q_0 \wedge x' = x - 1.
Prove \langle I, R \rangle \models \Box (x = 0 \lor x = 1).
```

# **Inductive System Properties**



#### The induction strategy may not work for proving $\Box F$

- Problem: F is not inductive.
  - F is too weak to prove the induction step.
    - $F(s) \wedge R(s,s') \Rightarrow F(s').$
- Solution: find stronger invariant *I*.
  - If  $I \Rightarrow F$ , then  $(\Box I) \Rightarrow (\Box F)$ .
  - It thus suffices to prove  $\Box I$ .
- Rationale: I may be inductive.
  - If yes, I is strong enough to prove the induction step.
    - $I(s) \wedge R(s,s') \Rightarrow I(s').$
  - If not, find a stronger invariant I' and try again.
- Invariant I represents additional knowledge for every proof.
  - Rather than proving  $\Box P$ , prove  $\Box (I \Rightarrow P)$ .

The behavior of a system is captured by its strongest invariant.

# **Example**



- Prove  $\langle I, R \rangle \models \Box (x = 0 \lor x = 1)$ .
  - Proof attempt fails.
- Prove  $\langle I, R \rangle \models \Box G$ .

$$G:\Leftrightarrow (x = 0 \lor x = 1) \land (p = p_1 \Rightarrow x = 0) \land (q = q_1 \Rightarrow x = 1).$$

- Proof works.
- $G \Rightarrow (x = 0 \lor x = 1)$  obvious.

See the proof presented in class.

## **Verifying Liveness**



$$egin{array}{llll} \mbox{var } x := 0, y := 0 \ & \mbox{loop} & || & \mbox{loop} \ & x := x + 1 & y := y + 1 \end{array}$$

$$State = \mathbb{N} \times \mathbb{N}; Label = \{P, Q\}.$$

$$I(x, y) :\Leftrightarrow x = 0 \land y = 0.$$

$$R(I, \langle x, y \rangle, \langle x', y' \rangle) :\Leftrightarrow$$

$$(I = P \land x' = x + 1 \land y' = y) \lor (I = Q \land x' = x \land y' = y + 1).$$

- - $[x = 0, y = 0] \stackrel{Q}{\to} [x = 0, y = 1] \stackrel{Q}{\to} [x = 0, y = 2] \stackrel{Q}{\to} \dots$
  - This run violates (as the only one)  $\Diamond x = 1$ .
  - Thus the system as a whole does not satisfy  $\Diamond x = 1$ .

For verifying liveness properties, "unfair" runs have to be ruled out.

## **Enabling Condition**



When is a particular transition enabled for execution?

- $Enabled_R(I,s) : \Leftrightarrow \exists t : R(I,s,t).$ 
  - Labeled transition relation R, label I, state s.
  - Read: "Transition (with label) I is enabled in state s (w.r.t. R)".
- Example (previous slide):

```
Enabled _R(P, \langle x, y \rangle)

\Leftrightarrow \exists x', y' : R(P, \langle x, y \rangle, \langle x', y' \rangle)

\Leftrightarrow \exists x', y' :

(P = P \land x' = x + 1 \land y' = y) \lor

(P = Q \land x' = x \land y' = y + 1)

\Leftrightarrow (\exists x', y' : P = P \land x' = x + 1 \land y' = y) \lor

(\exists x', y' : P = Q \land x' = x \land y' = y + 1)

\Leftrightarrow \text{true} \lor \text{false}

\Leftrightarrow \text{true}.
```

Transition P is always enabled.

### Weak Fairness



#### Weak Fairness

- A run  $s_0 \stackrel{l_0}{\rightarrow} s_1 \stackrel{l_1}{\rightarrow} s_2 \stackrel{l_2}{\rightarrow} \dots$  is weakly fair to a transition l, if
  - if transition *I* is eventually permanently enabled in the run,
  - then transition *I* is executed infinitely often in the run.

$$(\exists i : \forall j \geq i : Enabled_R(I, s_i)) \Rightarrow (\forall i : \exists j \geq i : I_i = I).$$

- The run in the previous example was not weakly fair to transition P.
- LTL formulas may explicitly specify weak fairness constraints.
  - Let  $E_l$  denote the enabling condition of transition l.
  - Let  $X_I$  denote the predicate "transition I is executed".
  - Define  $WF_I :\Leftrightarrow (\Diamond \Box E_I) \Rightarrow (\Box \Diamond X_I)$ .

    If I is eventually enabled forever, it is executed infinitely often.
  - Prove  $\langle I, R \rangle \models (WF_I \Rightarrow F)$ .

Property F is only proved for runs that are weakly fair to I.

Alternatively, a model may also have weak fairness "built in".

## **Example**



35/59

$$\begin{aligned} \textit{State} &= \mathbb{N} \times \mathbb{N}; \textit{Label} = \{P, Q\}. \\ \textit{I}(x, y) &:\Leftrightarrow x = 0 \land y = 0. \\ \textit{R}(\textit{I}, \langle x, y \rangle, \langle x', y' \rangle) &:\Leftrightarrow \\ &(\textit{I} &= P \land x' = x + 1 \land y' = y) \lor (\textit{I} &= Q \land x' = x \land y' = y + 1). \end{aligned}$$

- $\blacksquare \langle I, R \rangle \models \mathrm{WF}_P \Rightarrow \Diamond x = 1.$ 
  - $[x = 0, y = 0] \stackrel{Q}{\to} [x = 0, y = 1] \stackrel{Q}{\to} [x = 0, y = 2] \stackrel{Q}{\to} \dots$
  - This (only) violating run is not weakly fair to transition P.
    - P is always enabled.
    - P is never executed.

System satisfies specification if weak fairness is assumed.

# **Strong Fairness**



### Strong Fairness

- A run  $s_0 \stackrel{l_0}{\rightarrow} s_1 \stackrel{l_1}{\rightarrow} s_2 \stackrel{l_2}{\rightarrow} \dots$  is strongly fair to a transition l, if
  - if I is infinitely often enabled in the run,
  - then I is also infinitely often executed the run.

$$(\forall i : \exists j \geq i : Enabled_R(I, s_i)) \Rightarrow (\forall i : \exists j \geq i : I_i = I).$$

- If r is strongly fair to I, it is also weakly fair to I (but not vice versa).
- LTL formulas may explicitly specify strong fairness constraints.
  - Let  $E_l$  denote the enabling condition of transition l.
  - Let  $X_l$  denote the predicate "transition l is executed".
  - Define  $SF_I : \Leftrightarrow (\Box \Diamond E_I) \Rightarrow (\Box \Diamond X_I)$ .

    If I is enabled infinitely often, it is executed infinitely often.
  - Prove  $\langle I, R \rangle \models (SF_I \Rightarrow F)$ .

    Property F is only proved for runs that are strongly fair to I.

A much stronger requirement to the fairness of a system.

#### **Example**



```
var x=0
                                       loop
                                           a: x := -x
                                           b : choose x := 0 \ [] \ x := 1
    State := \{a, b\} \times \mathbb{Z}; Label = \{A, B_0, B_1\}.
    I(p,x):\Leftrightarrow p=a\wedge x=0.
    R(I, \langle p, x \rangle, \langle p', x' \rangle) : \Leftrightarrow
         (I = A \land (p = a \land p' = b \land x' = -x)) \lor
         (I = B_0 \land (p = b \land p' = a \land x' = 0)) \lor
         (I = B_1 \wedge (p = b \wedge p' = a \wedge x' = 1)).
\blacksquare \langle I, R \rangle \models SF_{B_1} \Rightarrow \Diamond x = 1.
         [a, 0] \xrightarrow{A} [b, 0] \xrightarrow{B_0} [a, 0] \xrightarrow{A} [b, 0] \xrightarrow{B_0} [a, 0] \xrightarrow{A} \dots
         This (only) violating run is not strongly fair to B_1 (but weakly fair).

 B<sub>1</sub> is infinitely often enabled.
```

System satisfies specification if strong fairness is assumed.

B<sub>1</sub> is never executed.

# Weak versus Strong Fairness



In which situations is which notion of fairness appropriate?

- Process just waits to be scheduled for execution.
  - Only CPU time is required.
  - Weak fairness suffices.
- Process waits for resource that may be temporarily blocked.
  - Critical region protected by lock variable (mutex/semaphore).
  - Strong fairness is required.
- Non-deterministic choices are repeatedly made in program.
  - Simultaneous listing on multiple communication channels.
  - Strong fairness is required.

Many other notions or fairness exist.



1. The Basics of Temporal Logic

2. Specifying with Linear Time Logic

3. Verifying Safety Properties by Computer-Supported Proving

#### **A Bit Transmission Protocol**





var 
$$x, y$$
  
var  $v := 0, r := 0, a := 0$ 

S: loop  

$$0:$$
 choose  $x \in \{0,1\}$   $||$   
 $v, r := x, 1$   
 $1:$  wait  $a = 1$   
 $r := 0$ 

R: **loop**

$$0:$$
**wait**  $r = 1$ 
 $y, a := v, 1$ 
 $1:$ **wait**  $r = 0$ 
 $a := 0$ 

Transmit a sequence of bits through a wire.

2 : wait a = 0

# A (Simplified) Model of the Protocol



```
State := PC_1 \times PC_2 \times (\mathbb{N}_2)^5
I(p, q, x, y, v, r, a) :\Leftrightarrow p = q = 1 \land v = r = a = 0.
R(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) : \Leftrightarrow
   S1(...) \vee S2(...) \vee S3(...) \vee R1(...) \vee R2(...)
S1(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', v', v', r', a' \rangle) :\Leftrightarrow
   p = 0 \land p' = 1 \land v' = x' \land r' = 1 \land
   a' = a \wedge x' = x \wedge v' = v \wedge a' = a.
S2(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) :\Leftrightarrow
   p = 1 \land p' = 2 \land a = 1 \land r' = 0 \land
   q' = q \wedge x' = x \wedge y' = y \wedge y' = y \wedge a' = a.
S3(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) : \Leftrightarrow
   p = 2 \wedge p' = 0 \wedge a = 0 \wedge
   q' = q \wedge v' = v \wedge v' = v \wedge r' = r \wedge a' = a.
R1(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', v', v', r', a' \rangle) :\Leftrightarrow
   a = 0 \land a' = 1 \land r = 1 \land v' = v \land a' = 1 \land
   p' = p \wedge x' = x \wedge y' = y \wedge r' = r.
R2(\langle p, q, x, y, v, r, a \rangle, \langle p', q', x', y', v', r', a' \rangle) : \Leftrightarrow
   a = 1 \land a' = 2 \land r = 0 \land a' = 0 \land
   p' = p \land x' = x \land y' = y \land v' = v \land r' = r.
```

#### A Verification Task



$$\langle I,R \rangle \models \Box (q=1 \Rightarrow y=x)$$
  
 $Invariant(p,...) \Rightarrow (q=1 \Rightarrow y=x)$   
 $I(p,...) \Rightarrow Invariant(p,...)$   
 $R(\langle p,... \rangle, \langle p',... \rangle) \wedge Invariant(p,...) \Rightarrow Invariant(p',...)$   
 $Invariant(p,q,x,y,v,r,a) :\Leftrightarrow$   
 $(p=0 \Rightarrow q=0 \wedge r=0 \wedge a=0) \wedge$   
 $(p=1 \Rightarrow r=1 \wedge v=x) \wedge$   
 $(p=2 \Rightarrow r=0) \wedge$   
 $(q=0 \Rightarrow a=0) \wedge$   
 $(q=1 \Rightarrow (p=1 \lor p=2) \wedge a=1 \wedge v=x)$ 

The invariant captures the essence of the protocol.

#### A RISCAL Theory



```
type Bit = \mathbb{N}[1]; type PC1 = \mathbb{N}[2]; type PC2 = \mathbb{N}[1];
pred S1(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
          x0:Bit,v0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) \Leftrightarrow
  p = 0 \land p0 = 1 \land v0 = x0 \land r0 = 1 \land // x0 arbitrary
  q0 = q \wedge v0 = v \wedge a0 = a:
pred S2(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
          x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) \Leftrightarrow
  p = 1 \land p0 = 2 \land a = 1 \land r0 = 0 \land
  q0 = q \wedge x0 = x \wedge y0 = y \wedge v0 = v \wedge a0 = a;
pred S3(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
          x0:Bit,v0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) \Leftrightarrow
  p = 2 \land p0 = 0 \land a = 0 \land
  q0 = q \wedge x0 = x \wedge y0 = y \wedge v0 = v \wedge r0 = r \wedge a0 = a;
pred R1(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
          x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) \Leftrightarrow
  q = 0 \land q0 = 1 \land r = 1 \land y0 = v \land a0 = 1 \land
  p0 = p \wedge x0 = x \wedge v0 = v \wedge r0 = r;
pred R2(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
          x0:Bit,v0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) \Leftrightarrow
  q = 1 \land q0 = 0 \land r = 0 \land a0 = 0 \land
  p0 = p \wedge x0 = x \wedge y0 = y \wedge v0 = v \wedge r0 = r;
```

#### A RISCAL Theory



```
pred Init(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) 
  v = 0 \wedge r = 0 \wedge a = 0 \wedge p = 0 \wedge q = 0;
pred Invariant(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) 
  (p = 0 \Rightarrow q = 0 \land r = 0 \land a = 0) \land
  (p = 1 \Rightarrow r = 1 \land v = x) \land
  (p = 2 \Rightarrow r = 0) \land
  (q = 0 \Rightarrow a = 0) \land
  (q = 1 \Rightarrow (p = 1 \lor p = 2) \land a = 1 \land y = x);
pred Property(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) 
  q = 1 \Rightarrow v = x;
theorem VCO(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2) \Leftrightarrow
  Init(x,y,v,r,a,p,q) \Rightarrow Property(x,y,v,r,a,p,q);
theorem VC1(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
  x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) \Leftrightarrow
  Invariant(x,y,v,r,a,p,q) \land S1(x,y,v,r,a,p,q,x0,y0,v0,r0,a0,p0,q0) \Rightarrow
    Invariant(x0,y0,v0,r0,a0,p0,q0);
theorem VC5(x:Bit,y:Bit,v:Bit,r:Bit,a:Bit,p:PC1,q:PC2,
  x0:Bit,y0:Bit,v0:Bit,r0:Bit,a0:Bit,p0:PC1,q0:PC2) \Leftrightarrow
  Invariant(x,y,v,r,a,p,q) \land R2(x,y,v,r,a,p,q,x0,y0,v0,r0,a0,p0,q0) \Rightarrow
    Invariant(x0,y0,v0,r0,a0,p0,q0);
```

#### The Proofs



More instructive: proof attempts with wrong or too weak invariants (see demonstration).



```
// the types
type Bit = \mathbb{N}[1]; type PC1 = \mathbb{N}[2]; type PC2 = \mathbb{N}[1];
// an operational description of the system
shared system Bits
  // the system state
  var x:Bit; var y:Bit;
  var v:Bit = 0; var r:Bit = 0; var a:Bit = 0;
  var p:PC1 = 0; var q:PC2 = 0;
  // the correctness property
  invariant q = 1 \Rightarrow y = x;
  // the system invariants that imply the correctness property
  invariant p = 0 \Rightarrow q = 0 \land r = 0 \land a = 0;
  invariant p = 1 \Rightarrow r = 1 \land v = x;
  invariant p = 2 \Rightarrow r = 0;
  invariant q = 0 \Rightarrow a = 0;
  invariant q = 1 \Rightarrow (p = 1 \lor p = 2) \land a = 1 \land v = x;
  . . .
```



```
// the non-deterministically chosen initial state values init (x0:Bit, y0:Bit) { x := x0; y := y0; }

// the sender actions action S1(any:Bit) with p = 0; { x := any; v := x; r := 1; p := 1; } action S2() with p = 1 \land a = 1; { r := 0; p := 2; } action S3() with p = 2 \land a = 0; { p := 0; }

// the receiver actions action R1() with q = 0 \land r = 1; { p := 0; } action R2() with p = 1 \land r = 0; { p := 0; }
```

We can check that all reachable states of the system satisfy the correctness property and the invariants; we can also generate from the system model and invariants the verification conditions and check these.

#### The Verification in RISCAL





#### Both kinds of verification succeed.

### A Client/Server System



```
Client system C_i = \langle IC_i, RC_i \rangle.
State := PC \times \mathbb{N}_2 \times \mathbb{N}_2.
Int := \{R_i, S_i, C_i\}.
IC_i(pc, request, answer) :\Leftrightarrow
   pc = R \land request = 0 \land answer = 0.
RC_i(I, \langle pc, request, answer \rangle,
      \langle pc', request', answer' \rangle):
   (I = R_i \land pc = R \land request = 0 \land
      pc' = S \land request' = 1 \land answer' = answer) \lor
   (I = S_i \land pc = S \land answer \neq 0 \land
      pc' = C \land request' = request \land answer' = 0) \lor
   (I = C_i \land pc = C \land request = 0 \land
      pc' = R \land request' = 1 \land answer' = answer) \lor
```

```
Client(ident):
   param ident
begin
   loop
   ...
R: sendRequest()
S: receiveAnswer()
C: // critical region
   ...
   sendRequest()
endloop
end Client
```

## A Client/Server System (Contd)



```
Server:
Server system S = \langle IS, RS \rangle.
                                                                           local given, waiting, sender
State := (\mathbb{N}_3)^3 \times (\{1,2\} \to \mathbb{N}_2)^2.
                                                                        begin
Int := \{D1, D2, F, A1, A2, W\}.
                                                                           given := 0; waiting := 0
                                                                           1000
IS(given, waiting, sender, rbuffer, sbuffer) : \Leftrightarrow
                                                                        D: sender := receiveRequest()
  given = waiting = sender = 0 \land
                                                                              if sender = given then
   rbuffer(1) = rbuffer(2) = sbuffer(1) = sbuffer(2) = 0.
                                                                                 if waiting = 0 then
                                                                        F:
                                                                                    given := 0
RS(I, \langle given, waiting, sender, rbuffer, sbuffer \rangle,
                                                                                 else
     \langle given', waiting', sender', rbuffer', sbuffer' \rangle : \Leftrightarrow
                                                                        A1:
                                                                                    given := waiting;
  \exists i \in \{1,2\}:
                                                                                    waiting := 0
     (I = D_i \land sender = 0 \land rbuffer(i) \neq 0 \land
                                                                                    sendAnswer(given)
     sender' = i \land rbuffer'(i) = 0 \land
                                                                                 endif
     U(given, waiting, sbuffer) \land
                                                                              elsif given = 0 then
     \forall i \in \{1,2\} \setminus \{i\} : U_i(rbuffer)) \vee
                                                                        A2:
                                                                                 given := sender
                                                                                 sendAnswer(given)
                                                                              else
U(x_1,\ldots,x_n):\Leftrightarrow x_1'=x_1\wedge\ldots\wedge x_n'=x_n.
                                                                        W:
                                                                                 waiting := sender
U_i(x_1,\ldots,x_n):\Leftrightarrow \bar{x_1'}(j)=x_1(j)\wedge\ldots\wedge x_n'(j)=x_n(j).
                                                                              endif
                                                                           endloop
```

## A Client/Server System (Contd'2)



```
Server:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      local given, waiting, sender
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 begin
(I = F \land sender \neq 0 \land sender = given \land waiting = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      given := 0; waiting := 0
                  given' = 0 \land sender' = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1000
                    U(waiting, rbuffer, sbuffer)) \lor
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D: sender := receiveRequest()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        if sender = given then
 (I = A1 \land sender \neq 0 \land sbuffer(waiting) = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           if waiting = 0 then
                  sender = given \land waiting \neq 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              given := 0
                  given' = waiting \land waiting' = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           else
                    sbuffer'(waiting) = 1 \land sender' = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 A1:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              given := waiting;
                    U(rbuffer) \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              waiting := 0
                  \forall j \in \{1,2\} \setminus \{waiting\} : U_i(sbuffer) \setminus \{u_i(sbuffer)\} \setminus \{u_i(sbuffer)\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               sendAnswer(given)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           endif
 (I = A2 \land sender \neq 0 \land sbuffer(sender) = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        elsif given = 0 then
                  sender \neq given \land given = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 A2:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           given := sender
                  given' = sender \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             sendAnswer(given)
                  sbuffer'(sender) = 1 \land sender' = 0 \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        else
                    U(waiting, rbuffer) \land
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           waiting := sender
                  \forall i \in \{1,2\} \setminus \{sender\} : U_i(sbuffer) \setminus \forall i \in \{1,2\} \setminus \{sender\} : U_i(sbuffer) \setminus \{sender\} \in U_i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      endloop
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   end Server
```

# A Client/Server System (Contd'3)



```
(I = W \land sender \neq 0 \land sender \neq given \land given \neq 0 \land
   waiting' := sender \land sender' = 0 \land
  U(given, rbuffer, sbuffer)) \lor
\exists i \in \{1, 2\}:
   (I = REQ_i \land rbuffer'(i) = 1 \land
       U(given, waiting, sender, sbuffer) \land
      \forall j \in \{1,2\} \setminus \{i\} : U_i(rbuffer)) \vee
   (I = \overline{ANS_i} \land sbuffer(i) \neq 0 \land
      sbuffer'(i) = 0 \land
       U(given, waiting, sender, rbuffer) \land
      \forall j \in \{1,2\} \setminus \{i\} : U_i(sbuffer)).
```

```
Server:
  local given, waiting, sender
begin
  given := 0; waiting := 0
  1000
D: sender := receiveRequest()
    if sender = given then
      if waiting = 0 then
F:
        given := 0
      else
A1:
        given := waiting;
        waiting := 0
        sendAnswer(given)
      endif
    elsif given = 0 then
A2:
      given := sender
      sendAnswer(given)
    else
W:
      waiting := sender
    endif
  endloop
end Server
```

# A Client/Server System (Contd'4)



```
State := (\{1,2\} \to PC) \times (\{1,2\} \to \mathbb{N}_2)^2 \times (\mathbb{N}_3)^2 \times (\{1,2\} \to \mathbb{N}_2)^2
I(pc, request, answer, given, waiting, sender, rbuffer, sbuffer) : \Leftrightarrow
   \forall i \in \{1, 2\} : IC(pc_i, request_i, answer_i) \land
   IS(given, waiting, sender, rbuffer, sbuffer)
R(\langle pc, request, answer, given, waiting, sender, rbuffer, sbuffer \rangle.
   \langle pc', request', answer', given', waiting', sender', rbuffer', sbuffer' \rangle : \Leftrightarrow
   (\exists i \in \{1,2\} : RC_{local}(\langle pc_i, request_i, answer_i \rangle, \langle pc'_i, request'_i, answer'_i \rangle) \land
       \langle given, waiting, sender, rbuffer, sbuffer \rangle =
          ⟨given', waiting', sender', rbuffer', sbuffer'⟩) ∨
   (RS_{local}(\langle given, waiting, sender, rbuffer, sbuffer),
               \langle given', waiting', sender', rbuffer', sbuffer' \rangle \land \land
      \forall i \in \{1,2\} : \langle pc_i, request_i, answer_i \rangle = \langle pc'_i, request'_i, answer'_i \rangle \} \vee
   (\exists i \in \{1,2\} : External(i, \langle request_i, answer_i, rbuffer, sbuffer),
                                        \langle request'_i, answer'_i, rbuffer', sbuffer' \rangle \land \land
       pc = pc' \land \langle sender, waiting, given \rangle = \langle sender', waiting', given' \rangle
```

#### The Verification Task

 $\langle I,R\rangle \models \Box \neg (pc_1 = C \land pc_2 = C)$ 



$$\begin{split} & \textit{Invariant}(\textit{pc}, \textit{request}, \textit{answer}, \textit{sender}, \textit{given}, \textit{waiting}, \textit{rbuffer}, \textit{sbuffer}) : \Leftrightarrow \\ & \forall i \in \{1,2\} : \\ & (\textit{pc}(i) = R \Rightarrow \\ & \textit{sbuffer}(i) = 0 \land \textit{answer}(i) = 0 \land \\ & (i = \textit{given} \Leftrightarrow \textit{request}(i) = 1 \lor \textit{rbuffer}(i) = 1 \lor \textit{sender} = i) \land \\ & (\textit{request}(i) = 0 \lor \textit{rbuffer}(i) = 0)) \land \\ & (\textit{pc}(i) = S \Rightarrow \\ & (\textit{sbuffer}(i) = 1 \lor \textit{answer}(i) = 1 \Rightarrow \\ & \textit{request}(i) = 0 \land \textit{rbuffer}(i) = 0 \land \textit{sender} \neq i) \land \\ & (i \neq \textit{given} \Rightarrow \\ & \textit{request}(i) = 0 \lor \textit{rbuffer}(i) = 0)) \land \\ \end{split}$$

 $\forall i: i \neq i \Rightarrow pc(j) \neq C \land sbuffer(j) = 0 \land answer(j) = 0) \land$ 

 $request(i) = 0 \land rbuffer(i) = 0 \land sender \neq i \land$ 

 $sbuffer(i) = 0 \land answer(i) = 0) \land (pc(i) = C \lor sbuffer(i) = 1 \lor answer(i) = 1 \Rightarrow$ 

Wolfgang Schreiner

 $(pc(i) = C \Rightarrow$ 

given =  $i \land$ 

# The Verification Task (Contd)



```
(sender = 0 \land (request(i) = 1 \lor rbuffer(i) = 1) \Rightarrow
   sbuffer(i) = 0 \land answer(i) = 0) \land
(sender = i \Rightarrow
   (waiting \neq i) \land
   (sender = given \land pc(i) = R \Rightarrow
      request(i) = 0 \land rbuffer(i) = 0) \land
   (pc(i) = S \land i \neq given \Rightarrow
      request(i) = 0 \land rbuffer(i) = 0) \land
   (pc(i) = S \land i = given \Rightarrow
      request(i) = 0 \lor rbuffer(i) = 0)) \land
(waiting = i \Rightarrow
  given \neq i \land pc_i = S \land request_i = 0 \land rbuffer(i) = 0 \land
   sbuffer_i = 0 \land answer(i) = 0) \land
(sbuffer(i) = 1 \Rightarrow
   answer(i) = 0 \land request(i) = 0 \land rbuffer(i) = 0
```

The invariant has been elaborated in the course of the verification.



#### Generalized to N > 2 clients.

```
// the number of clients
val N:\mathbb{N};
type Bit = \mathbb{N}[1];
                            // messages are just signals
type Client = N[N]: // client ids 0..N-1. N: no client
type Buffer = Array[N,Bit]; // for each client a single message may be buffered
type PC = N[2]; val R = 0; val S = 1; val C = 2; // the client program counters
// the system with one server and N clients
shared system clientServer
  var pc: Arrav[N.PC] = Arrav[N.PC](R):
                                             // the state of the clients
  var request: Buffer = Array[N,Bit](0);
  var answer: Buffer = Arrav[N.Bit](0):
  var given: Client = N;
                                             // the state of the server
  var waiting: Buffer = Array[N,Bit](0);
  var sender: Client = N:
  var rbuffer: Buffer = Array[N,Bit](0);
  var sbuffer: Buffer = Array[N,Bit](0);
  // the correctness property
  invariant \neg \exists i1: Client, i2: Client with i1 \neq N \wedge i2 \neq N \wedge i1 < i2.
    pc[i1] = C \land pc[i2] = C:
```

#### Variable waiting has now to record a set of waiting clients.



57/59

```
action R(i:Client) with i \neq N \land pc[i] = R \land request[i] = 0; // the client transitions
{ pc[i] := S; request[i] := 1; }
action S(i:Client) with i \neq N \land pc[i] = S \land answer[i] \neq 0;
{ pc[i] := C; answer[i] := 0; }
action C(i:Client) with i \neq N \land pc[i] = C \land request[i] = 0;
\{ pc[i] := R: request[i] := 1: \}
action D(i:Client) with i \neq N \land sender = N \land rbuffer[i] \neq 0; // the server transitions
{ sender := i: rbuffer[i] := 0: }
action F() with sender \neq N \wedge sender = given \wedge
  \forall i:Client with i \neq N. waiting[i] = 0;
{ given := N; sender := N; }
action A1(i:Client) with i \neq N \land
  sender \neq N \wedge sender = given \wedge waiting[i] \neq 0 \wedge
  sbuffer[i] = 0:
f given := i: waiting[i] = 0: sbuffer[given] := 1: sender := N: }
action A2() with sender \neq N \wedge sender \neq given \wedge given = N \wedge
  sbuffer[sender] = 0:
f given := sender: sbuffer[given] := 1: sender := N: }
action W() with sender \neq N \wedge sender \neq given \wedge given \neq N:
{ waiting[sender] := 1 ; sender := N; }
action REQ(i:Client) with i \neq N \land request[i] \neq 0 \land rbuffer[i] = 0; // the communication subsystem
{ request[i] := 0; rbuffer[i] := 1; }
action ANS(i:Client) with i \neq N \land sbuffer[i] \neq 0 \land answer[i] = 0;
{ sbuffer[i] := 0: answer[i] := 1: }
```



```
// the correctness property
invariant \neg \exists i1: Client, i2: Client with i1 \neq N \land i2 \neq N \land i1 < i2. pc[i1] = C \land pc[i2] = C;
// the system invariants that imply the correctness property
invariant \forall i:Client with i \neq N \land pc[i] = R.
  sbuffer[i] = 0 \land answer[i] = 0 \land (request[i] = 0 \lor rbuffer[i] = 0) \land
  (i = given ⇔ request[i] = 1 ∨ rbuffer[i] = 1 ∨ sender = i);
invariant \forall i:Client with i \neq N \land pc[i] = S.
  (sbuffer[i] = 1 \lor answer[i] = 1 \Rightarrow request[i] = 0 \land rbuffer[i] = 0 \land sender \neq i) \land
  (i \neq given \Rightarrow request[i] = 0 \lor rbuffer[i] = 0):
invariant \forall i:Client with i \neq N \land pc[i] = C.
  request[i] = 0 \land rbuffer[i] = 0 \land sender \neq i \land sbuffer[i] = 0 \land answer[i] = 0;
invariant \forall i:Client with i \neq \mathbb{N} \land (pc[i] = C \lor sbuffer[i] = 1 \lor answer[i] = 1).
  given = i \land \forall j: Client with j \neq N \land j \neq i. pc[j] \neq C \land sbuffer[j] = 0 \land answer[j] = 0;
invariant sender = \mathbb{N} \Rightarrow \forall i:Client with i \neq \mathbb{N} \land (\text{request}[i] = 1 \lor \text{rbuffer}[i] = 1).
     sbuffer[i] = 0 \land answer[i] = 0;
invariant \forall i:Client with i \neq N \land sender = i.
  waiting[i] = 0:
invariant \forall i:Client with i \neq N \land sender = i \land pc[i] = R \land sender = given.
  request[i] = 0 \land rbuffer[i] = 0:
invariant \forall i:Client with i \neq N \land sender = i \land pc[i] = S \land sender \neq given.
  request[i] = 0 \land rbuffer[i] = 0:
invariant \forall i:Client with i \neq N \land sender = i \land pc[i] = S \land sender = given.
  request[i] = 0 ∨ rbuffer[i] = 0:
invariant \forall i:Client with i \neq N \land waiting[i] = 1.
  given \neq i \wedge pc[i] = S \wedge
  request[i] = 0 \land rbuffer[i] = 0 \land sbuffer[i] = 0 \land answer[i] = 0:
invariant \forall i:Client with i \neq N \land sbuffer[i] = 1.
  answer[i] = 0 \land request[i] = 0 \land rbuffer[i] = 0;
```

#### The Verification in RISCAL



|                                                                                                                                                                         | RISC Algorithm Language (RISCAL)                                                                                                 |                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Nie Edit SMT TP Help                                                                                                                                                    |                                                                                                                                  |                                                                                            |
| Plle: /usr2/schreine/courses/ss2024/forms/insamples/10-riscal/clientServerN.txt                                                                                         | Anton                                                                                                                            | Tarky                                                                                      |
| 0.6 % 8                                                                                                                                                                 | *** ** * * * *                                                                                                                   | <ul> <li>system clientServer</li> </ul>                                                    |
|                                                                                                                                                                         | Translation: @Nondeterminism Default Value: 0 Other Value: 11                                                                    | <sup>9</sup> Execute operation                                                             |
| 237 a system with one server and N clients                                                                                                                              | Decution Distort Inputs: Per Mile: Branches: Depth:                                                                              | Verify specification preconditions                                                         |
| 377 the server schedules a resource among the clients such that                                                                                                         | Visualization: Trace Tree Width: 1500 Height: 800                                                                                | Verify temperal properties                                                                 |
| 477 at most one client holds the resource at a time                                                                                                                     |                                                                                                                                  | Verify specification                                                                       |
| 4                                                                                                                                                                       | Parallelant: SMulti-Threaded Threads:4   Distributed Servers:                                                                    | 9 Does settem invariant initially hold?                                                    |
| 7// the number of clients                                                                                                                                               | Operation: D system clientServer .                                                                                               | *Does system invariant initially hold?                                                     |
| Evel H:N:                                                                                                                                                               |                                                                                                                                  | *Does system invariant initially hold?                                                     |
| 1                                                                                                                                                                       | RISC Algorithm Language 4.9.0 (July 15, 2024)                                                                                    | *Does system invariant initially hold?                                                     |
| 10.00 the types                                                                                                                                                         | https://www.risc.jku.et/research/formsl/software/RISCAL                                                                          | *Does settem invariant initially hold?                                                     |
| litype Bit = N[1]; // messages are just signals                                                                                                                         | [C] 2016-, Meseagih Institute for Symbolic Computation (MISC)                                                                    | *Does system invariant initially hold?                                                     |
| 12 type Cliest = A[M]; // client ids B. N-1, N: no client<br>13 type Buffer = Array[N.Bit]: // for each client a simple message may be buffered                         | This is free software distributed under the terms of the GMU GPL. Execute "MISCAL -h" to see the evallable command line options. | *Does system invariant initially hold?                                                     |
| 13 type duffer = Army[6,dit]; // for each client a tingle metiage may be cuffered                                                                                       | EXECUTE "RIDLAL -H" to see the available command line options.                                                                   | ©Does system invariant initially hold?                                                     |
| 15// the popuram counters of the clients                                                                                                                                | Reading file /usp2/schpeire/courses/es2824/formal/enamples/10-riscal/                                                            | *Does system invariant initially hold?                                                     |
| 16 type PC = N(21; wal 8 = 0; wal 5 = 1; wal C = 2;                                                                                                                     | (HeatSenerii, Inf.                                                                                                               | Does cettern invariant initially hold?                                                     |
|                                                                                                                                                                         | Using Net.                                                                                                                       | * Does system invariant initially hold?                                                    |
| 1837 the system with one server and H clients                                                                                                                           | Computing the value of _tbound_0                                                                                                 |                                                                                            |
| 15 shared system clientServer                                                                                                                                           | Computing the value of _tbound_1                                                                                                 | *Does system invariant initially hold?                                                     |
| 28 (                                                                                                                                                                    | Computing the value of R                                                                                                         | - action R                                                                                 |
| 21 // the state of the clients                                                                                                                                          | Computing the value of S<br>Computing the value of C                                                                             | <ul> <li>Is system invariant preserved?</li> </ul>                                         |
| 22 NRT DC: ATTROUR.PC] = ATTRY(N.PC](R);<br>23 NRT TERREST: Buffer = ATTRY(N.BST)(R);                                                                                   | Type checking and translation completed.                                                                                         | Is system invariant preserved?                                                             |
| 24 var organi: Buffer - ArrentH.Bitl(8);                                                                                                                                | Executing system clientServer.                                                                                                   | ls system invariant preserved?                                                             |
| 25                                                                                                                                                                      | Applying breadth-first-search with 4 threads                                                                                     | Is system invariant preserved?                                                             |
| 25 // the state of the server                                                                                                                                           | 3045 system states found with search depth 24.                                                                                   | b system invariant preserved?                                                              |
| 27 var given: Client = N;                                                                                                                                               | Execution completed (330 ms).                                                                                                    | • Is system invariant preserved?                                                           |
| 21 var waiting: Buffer = Array[N,Bit](0);                                                                                                                               | Parallel esecution with 4 threads (no output is shown)                                                                           | Is system invariant preserved?                                                             |
| 25 var sender: Client = N;                                                                                                                                              | Execution completed (E760 Ms. see "Frist Prover Output").                                                                        | © is system invariant preserved?                                                           |
| DE NET EMERGE: Buffer = ATTEN(H.Bit](B);<br>11 NET EMERGE: Buffer = ATTEN(H.Bit](B);                                                                                    |                                                                                                                                  | • Is senten invariant preserved?                                                           |
| 11 NAT SEATTER: BUTTER = ATTRY[H,BLT](0);                                                                                                                               |                                                                                                                                  | <ul> <li>b system invariant preserved?</li> </ul>                                          |
| 1) // the correctness acoperty                                                                                                                                          |                                                                                                                                  | *Is system invariant preserved?                                                            |
| 34 invariant "Sil:Client.i2:Client with il * N * 12 * N * 11 * 12.                                                                                                      |                                                                                                                                  | ♦ Is system invariant preserved?                                                           |
| 35 pc[33] = C A pc[32] = C;                                                                                                                                             |                                                                                                                                  | * action 5                                                                                 |
| 36                                                                                                                                                                      |                                                                                                                                  | © Is sentent invariant preserved?                                                          |
| 37 // the system invectoris that imply the correctness property                                                                                                         |                                                                                                                                  | b sestem invariant preserved?                                                              |
| <pre>invariant Vi:Client with i = N x pc[i] = R.  j</pre>                                                                                                               |                                                                                                                                  | *Is system invariant presented?                                                            |
| 3) sbuffer[i] = 0 ^ answer[i] = 0 ^ (request[i] = 0 ^ rbuffer[i] = 0) ^ 3) (i = siven = ressectii = 1 × rbuffer(i) = 1 × sender = i);                                   |                                                                                                                                  | ls system invariant preserved?                                                             |
| 4) invariant Vi:Client with 1 * N * pc[1] = 5.                                                                                                                          |                                                                                                                                  | * Is system invariant preserved?                                                           |
| 42 [sbuffer[i] = 1 × onswer[i] = 1 = request[i] = 0 × sbuffer[i] = 0 × sender                                                                                           |                                                                                                                                  | b system invariant preserved?                                                              |
| (i * given = request[i] = 0 * rbuffer[i] = 0);                                                                                                                          |                                                                                                                                  | b system invariant preserved?                                                              |
| 44 invariant Vi:Client with i = N A pc[i] = C.                                                                                                                          |                                                                                                                                  |                                                                                            |
| 45 request[i] = 0 ^ rbuffer[i] = 0 ^ sendey * i ^ sbuffer[i] = 0 ^ answer[i] =                                                                                          |                                                                                                                                  | <ul> <li>Is system invariant preserved?</li> <li>Is system invariant preserved?</li> </ul> |
| 46 invariant Vi:Client with 1 * N * [pc[1] = C * sheffer[1] = 1 * answer[1] = 1] 47 otym = 1 * VI:Client with 1 * N * 1 * 1 pc[1] * C * sheffer[1] * N * answer[1] * 1] |                                                                                                                                  |                                                                                            |
| 47 given = 1 * Yj:Client with j * N * j * 1. pc[j] * C * sbuffer[j] = 0 * arcs<br>is invariant seeder = N * Yi:Client with i * N * (request[i] = 1 * rbuffer[i] =       |                                                                                                                                  | <ul> <li>Is system invariant preserved?</li> </ul>                                         |
| ii invariant seeder = A = %:Client with 1 * A * (request[i] = 1 * ibuffer[i] = 0; ii sbuffer[i] = 0 * orower[i] = 0;                                                    |                                                                                                                                  | b system invariant preserved?                                                              |
| of invariant Victions with 1 * N * sender = 1.                                                                                                                          |                                                                                                                                  | b system invariant preserved?                                                              |
| 51 waiting(1) = 0:                                                                                                                                                      |                                                                                                                                  | <ul> <li>→ action C</li> </ul>                                                             |
| 12 Investigat VI-Citent with the N.A. sender in the refit in E.A. sender is atten-                                                                                      |                                                                                                                                  | Is system invariant preserved?                                                             |

We can (for say N=4) check that the system execution satisfies the invariants; we can also check the verification conditions generated from the system invariants; finally we can *prove* the conditions for *arbitrary N*.