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A Client/Server System

System of one server and two clients.

Three concurrently executing system components.

Server manages a resource.

An object that only one system component may use at any time.

Clients request resource and, having received an answer, use it.

Server ensures that not both clients use resource simultaneously.
Server eventually answers every request.

Set of system requirements.
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System Implementation

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

sender := receiveRequest()

if sender = given then

if waiting = 0 then

given := 0

else

given := waiting; waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

given := sender

sendAnswer(given)

else

waiting := sender

endif

endloop

end Server

Client(ident):

param ident

begin

loop

...

sendRequest()

receiveAnswer()

... // critical region

sendRequest()

endloop

end Client
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Desired System Properties

Property: mutual exclusion.
At no time, both clients are in critical region.

Critical region: program region after receiving resource from server
and before returning resource to server.

The system shall only reach states, in which mutual exclusion holds.

Property: no starvation.

Always when a client requests the resource, it eventually receives it.
Always when the system reaches a state, in which a client has
requested a resource, it shall later reach a state, in which the client
receives the resource.

Problem: each system component executes its own program.

Multiple program states exist at each moment in time.
Total system state is combination of individual program states.
Not easy to see which system states are possible or inevitable.

How can we verify that the system has the desired properties?
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System States

At each moment in time, a system is in a particular state.

A state s : Var → Val
A state s is a mapping of every system variable x to its value s(x).

Typical notation: s = [x = 0, y = 1, . . .] = [0, 1, . . .].

Var . . . the set of system variables

Program variables, program counters, . . .

Val . . . the set of variable values.

The state space State = {s | s : Var → Val}
The state space is the set of possible states.

The system variables can be viewed as the coordinates of this space.

The state space may (or may not) be finite.

If |Var | = n and |Val | = m, then |State| = mn.
A word of log2 m

n bits can represent every state.

A system execution can be described by a path s0 → s1 → s2 → . . . in
the state space.
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Deterministic Systems

In a sequential system, each state typically determines its successor state.

The system is deterministic.
We have a (possibly not total) transition function F on states.
s1 = F (s0) means “s1 is the successor of s0”.

Given an initial state s0, the execution is thus determined.
s0 → s1 = F (s0) → s2 = F (s1) → . . .

A deterministic system (model) is a pair ⟨I ,F ⟩.
A set of initial states I ⊆ State

Initial state condition I (s) :⇔ s ∈ I

A transition function F : State
partial→ State.

A run of a deterministic system ⟨I ,F ⟩ is a (finite or infinite)
sequence s0 → s1 → . . . of states such that

s0 ∈ I (respectively I (s0)).
si+1 = F (si ) (for all sequence indices i)
If s ends in a state sn, then F is not defined on sn.
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Nondeterministic Systems

In a concurrent system, each component may change its local state, thus
the successor state is not uniquely determined.

The system is nondeterministic.
We have a transition relation R on states.
R(s0, s1) means “s1 is a (possible) successor of s0”.

Given an initial state s0, the execution is not uniquely determined.
Both s0 → s1 → . . . and s0 → s ′1 → . . . are possible.

A non-deterministic system (model) is a pair ⟨I ,R⟩.
A set of initial states (initial state condition) I ⊆ State.
A transition relation R ⊆ State × State.

A run s of a nondeterministic system ⟨I ,R⟩ is a (finite or infinite)
sequence s0→s1→s2 . . . of states such that

s0 ∈ I (respectively I (s0)).
R(si , si+1) (for all sequence indices i).
If s ends in a state sn, then there is no state t such that R(sn, t).
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Derived Notions

Successor and predecessor:

State t is a (direct) successor of state s, if R(s, t).
State s is then a predecessor of t.

A finite run s0 → . . . → sn ends in a state which has no successor.

Reachability:

A state t is reachable, if there exists some run s0→s1→s2 → . . . such
that t = si (for some i).
A state t is unreachable, if it is not reachable.

Not all states are reachable (typically most are unreachable).
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Reachability Graph

The transitions of a system can be visualized by a graph.

The nodes of the graph are the reachable states of the system.
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Examples

B.Berard et al: “Systems and Software Verification”, 2001.
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Examples

A deterministic system W = (IW ,FW ) (“watch”).
State := N24 × N60.

Nn := {i ∈ N : i < n}.
IW (h,m) :⇔ h = 0 ∧m = 0.

IW := {⟨h,m⟩ : h = 0 ∧m = 0} = {⟨0, 0⟩}.
FW (h,m) :=

if m < 59 then ⟨h,m + 1⟩
else if h < 23 then ⟨h + 1, 0⟩
else ⟨0, 0⟩.

A nondeterministic system C = (IC ,RC ) (modulo 3 “counter”).

State := N3.
IC (i) :⇔ i = 0.
RC (i , i

′) :⇔ inc(i , i ′) ∨ dec(i , i ′).
inc(i , i ′) :⇔ if i < 2 then i ′ = i + 1 else i ′ = 0.
dec(i , i ′) :⇔ if i > 0 then i ′ = i − 1 else i ′ = 2.
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Composing Systems

Compose n components Si to a concurrent system S .

State space State := State0 × . . .× Staten−1.
State i is the state space of component i .
State space is Cartesian product of component state spaces.
Size of state space is product of the sizes of the component spaces.

Example: three counters with state spaces N2 and N3 and N4.

B.Berard et al: “Systems and Software Verification”, 2001.
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Initial States of Composed System

What are the initial states I of the composed system?

Set I := I0 × . . .× In−1.

Ii is the set of initial states of component i .
Set of initial states is Cartesian product of the sets of initial states of
the individual components.

Predicate I (s0, . . . , sn−1) :⇔ I0(s0) ∧ . . . ∧ In−1(sn−1).

Ii is the initial state condition of component i .
Initial state condition is conjunction of the initial state conditions of
the components on the corresponding projection of the state.

Size of initial state set is the product of the sizes of the initial state sets
of the individual components.
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Transitions of Composed System

Which transitions can the composed system perform?
Synchronized composition.

At each step, every component must perform a transition.
Ri is the transition relation of component i .

R(⟨s0, . . . , sn−1⟩, ⟨s ′0, . . . , s ′n−1⟩) :⇔
R0(s0, s

′
0) ∧ . . . ∧ Rn−1(sn−1, s

′
n−1).

Asynchronous composition.
At each moment, every component may perform a transition.

At least one component performs a transition.
Multiple simultaneous transitions are possible
With n components, 2n − 1 possibilities of (combined) transitions.

R(⟨s0, . . . , sn−1⟩, ⟨s ′0, . . . , s ′n−1⟩) :⇔
(R0(s0, s

′
0) ∧ . . . ∧ sn−1 = s ′n−1) ∨

. . .
(s0 = s ′0 ∧ . . . ∧ Rn−1(sn−1, s

′
n−1)) ∨

. . .
(R0(s0, s

′
0) ∧ . . . ∧ Rn−1(sn−1, s

′
n−1)).
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Example

System of three counters with state space N2 each.

Synchronous composition:

[0, 0, 0] ⇆ [1, 1, 1]

Asynchronous composition:

B.Berard et al: “Systems and Software Verification”, 2001.
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Interleaving Execution

Simplified view of asynchronous execution.

At each moment, only one component performs a transition.

Do not allow simultaneous transition ti |tj of two components i and j .
Transition sequences ti ; tj and tj ; ti are possible.

All possible interleavings of component transitions are considered.
Nondeterminism is used to simulate concurrency.
Essentially no change of system properties.

With n components, only n possibilities of a transition.

R(⟨s0, s1, . . . , sn−1⟩, ⟨s ′0, s ′1, . . . , s ′n−1⟩) :⇔
(R0(s0, s

′
0) ∧ s1 = s ′1 ∧ . . . ∧ sn−1 = s ′n−1) ∨

(s0 = s ′0 ∧ R1(s1, s
′
1) ∧ . . . ∧ sn−1 = s ′n−1) ∨

. . .
(s0 = s ′0 ∧ s1 = s ′1 ∧ . . . ∧ Rn−1(sn−1, s

′
n−1)).

Interleaving model (respectively a variant of it) suffices in practice.
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Example

System of three counters with state space N2 each.
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Digital Circuits

Synchronous composition of hardware components.

A modulo 8 counter C = ⟨IC ,RC ⟩.
State := N2 × N2 × N2.

IC (v0, v1, v2) :⇔ v0 = v1 = v2 = 0.

RC (⟨v0, v1, v2⟩, ⟨v ′
0, v

′
1, v

′
2⟩) :⇔

R0(v0, v
′
0) ∧

R1(v0, v1, v
′
1) ∧

R2(v0, v1, v2, v
′
2).

R0(v0, v
′
0) :⇔ v ′

0 = ¬v0.
R1(v0, v1, v

′
1) :⇔ v ′

1 = v0 ⊕ v1.
R2(v0, v1, v2, v

′
2) :⇔ v ′

2 = (v0 ∧ v1)⊕ v2.

Edmund Clarke et al: “Model Checking”, 1999.
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Concurrent Software

Asynchronous composition of software components with shared variables.

P :: l0 : while true do
NC 0 : wait turn = 0
CR0 : turn := 1

end

|| Q :: l1 : while true do
NC 1 : wait turn = 1
CR1 : turn := 0

end

A mutual exclusion program M = ⟨IM ,RM⟩.
State := PC × PC × N2. // shared variable
IM(p, q, turn) :⇔ p = l0 ∧ q = l1.
RM(⟨p, q, turn⟩, ⟨p′, q′, turn′⟩) :⇔

(P(⟨p, turn⟩, ⟨p′, turn′⟩) ∧ q′ = q) ∨ (Q(⟨q, turn⟩, ⟨q′, turn′⟩) ∧ p′ = p).
P(⟨p, turn⟩, ⟨p′, turn′⟩) :⇔

(p = l0 ∧ p′ = NC0 ∧ turn′ = turn) ∨
(p = NC0 ∧ p′ = CR0 ∧ turn = 0 ∧ turn′ = turn) ∨
(p = CR0 ∧ p′ = l0 ∧ turn′ = 1).

Q(⟨q, turn⟩, ⟨q′, turn′⟩) :⇔
(q = l1 ∧ q′ = NC1 ∧ turn′ = turn) ∨
(q = NC1 ∧ q′ = CR1 ∧ turn = 1 ∧ turn′ = turn) ∨
(q = CR1 ∧ q′ = l1 ∧ turn′ = 0).
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Concurrent Software

Edmund Clarke et al: “Model Checking”, 1999.

Model guarantees mutual exclusion.
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Modeling Commands

Transition relations are typically described in a particular form.
R(s, s ′) :⇔ P(s) ∧ s ′ = F (s).

Guard condition P on state in which transition can be performed.
If P(s) holds, then there exists some s ′ such that R(s, s ′).

Transition function F that determines the successor of s.
F is defined for all states for which P(s) holds:
F : {s ∈ State : P(s)} → State.

Examples:
Assignment: l : x := e; m : . . ..

R(⟨pc, x , y⟩, ⟨pc ′, x ′, y ′⟩) :⇔ pc = l ∧ (x ′ = e ∧ y ′ = y ∧ pc ′ = m).

Wait statement: l : wait P(x , y); m : . . ..
R(⟨pc, x , y⟩, ⟨pc ′, x ′, y ′⟩) :⇔

pc = l ∧ P(x , y) ∧ (x ′ = x ∧ y ′ = y ∧ pc ′ = m).

Guarded assignment: l : P(x , y) → x := e; m : . . ..
R(⟨pc, x , y⟩, ⟨pc ′, x ′, y ′⟩) :⇔

pc = l ∧ P(x , y) ∧ (x ′ = e ∧ y ′ = y ∧ pc ′ = m).

Most programming language commands can be translated into this form.
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Modelling Message Passing Systems

How to model an asynchronous system without shared variables where
the components communicate/synchronize by exchanging messages?

Given a label set Label = Int ∪ Ext ∪ Ext.
Disjoint sets Int and Ext of internal and external labels.

“Anonymous” label ∈ Int.

Complementary label set L := {l : l ∈ L}.
A labeled system is a pair ⟨I ,R⟩.

Initial state condition I ⊆ State.
Labeled transition relation R ⊆ Label × State × State.

A run of a labeled system ⟨I ,R⟩ is a (finite or infinite) sequence

s0
l0→ s1

l1→ . . . of states such that

s0 ∈ I .
R(li , si , si+1) (for all sequence indices i).
If s ends in a state sn, there is no label l and state t s.t. R(l , sn, t).
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Synchronization by Message Passing

Compose a set of n labeled systems ⟨Ii ,Ri ⟩ to a system ⟨I ,R⟩.
State space State := State0 × . . .× Staten−1.

Initial states I := I0 × . . .× In−1.

I (s0, . . . , sn−1) :⇔ I0(s0) ∧ . . . ∧ In−1(sn−1).

Transition relation

R(l , ⟨si ⟩i∈Nn , ⟨s ′i ⟩i∈Nn) ⇔
(l ∈ Int ∧ ∃i ∈ Nn :

Ri (l , si , s
′
i ) ∧ ∀k ∈ Nn\{i} : sk = s ′k) ∨

(l = ∧ ∃l ∈ Ext, i ∈ Nn, j ∈ Nn :
Ri (l , si , s

′
i ) ∧ Rj(l , sj , s

′
j ) ∧ ∀k ∈ Nn\{i , j} : sk = s ′k).

Either a component performs an internal transition or two components
simultaneously perform an external transition with complementary labels.
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Communication by Message Passing

0 :: loop
a0 : send(i)
a1 : i := receive()
a2 : i := i + 1

end

||

1 :: loop
b0 : j := receive()
b1 : j := j + 1
b2 : send(j)

end

Two labeled systems ⟨I0,R0⟩ and ⟨I1,R1⟩.
State0 = State1 = PC × N, Internal := {A,B},External := {M,N}.
I0(p, i) :⇔ p = a0 ∧ i ∈ N; I1(q, j) :⇔ q = b0.
R0(l , ⟨p, i⟩, ⟨p′, i ′⟩) :⇔

(l = M ∧ p = a0 ∧ p′ = a1 ∧ i ′ = i) ∨
(l = N ∧ p = a1 ∧ p′ = a2 ∧ i ′ = j) ∨ // illegal!
(l = A ∧ p = a2 ∧ p′ = a0 ∧ i ′ = i + 1).

R1(l , ⟨q, j⟩, ⟨q′, j ′⟩) :⇔
(l = M ∧ q = b0 ∧ q′ = b1 ∧ j ′ = i) ∨ // illegal!
(l = B ∧ q = b1 ∧ q′ = b2 ∧ j ′ = j + 1) ∨
(l = N ∧ q = b2 ∧ q′ = b0 ∧ j ′ = j).
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Example (Continued)

Composition of ⟨I0,R0⟩ and ⟨I1,R1⟩ to ⟨I ,R⟩.
State = (PC × N)× (PC × N).

I (p, i , q, j) :⇔ p = a0 ∧ i ∈ N ∧ q = b0.

R(l , ⟨p, i , q, j⟩, ⟨p′, i ′, q′, j ′⟩) :⇔
(l = A ∧ (p = a2 ∧ p′ = a0 ∧ i ′ = i + 1) ∧ (q′ = q ∧ j ′ = j)) ∨
(l = B ∧ (p′ = p ∧ i ′ = i) ∧ (q = b1 ∧ q′ = b2 ∧ j ′ = j + 1)) ∨
(l = ∧ (p = a0 ∧ p′ = a1 ∧ i ′ = i) ∧ (q = b0 ∧ q′ = b1 ∧ j ′ = i)) ∨
(l = ∧ (p = a1 ∧ p′ = a2 ∧ i ′ = j) ∧ (q = b2 ∧ q′ = b0 ∧ j ′ = j)).

Problem: state relation of each component refers to local variable of
other component (variables are shared).
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Example (Revised)

0 :: loop
a0 : send(i)
a1 : i := receive()
a2 : i := i + 1

end

||

1 :: loop
b0 : j := receive()
b1 : j := j + 1
b2 : send(j)

end

Two labeled systems ⟨I0,R0⟩ and ⟨I1,R1⟩.
. . .
External := {Mk : k ∈ N} ∪ {Nk : k ∈ N}.
R0(l , ⟨p, i⟩, ⟨p′, i ′⟩) :⇔

(l = Mi ∧ p = a0 ∧ p′ = a1 ∧ i ′ = i) ∨
(∃k ∈ N : l = Nk ∧ p = a1 ∧ p′ = a2 ∧ i ′ = k) ∨
(l = A ∧ p = a2 ∧ p′ = a0 ∧ i ′ = i + 1).

R1(l , ⟨q, j⟩, ⟨q′, j ′⟩) :⇔
(∃k ∈ N : l = Mk ∧ q = b0 ∧ q′ = b1 ∧ j ′ = k) ∨
(l = B ∧ q = b1 ∧ q′ = b2 ∧ j ′ = j + 1) ∨
(l = Nj ∧ q = b2 ∧ q′ = b0 ∧ j ′ = j).

Encode message value in label.
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Example (Continued)

Composition of ⟨I0,R0⟩ and ⟨I1,R1⟩ to ⟨I ,R⟩.
State = (PC × N)× (PC × N).

I (p, i , q, j) :⇔ p = a0 ∧ i ∈ N ∧ q = b0.

R(l , ⟨p, i , q, j⟩, ⟨p′, i ′, q′, j ′⟩) :⇔
(l = A ∧ (p = a2 ∧ p′ = a0 ∧ i ′ = i + 1) ∧ (q′ = q ∧ j ′ = j)) ∨
(l = B ∧ (p′ = p ∧ i ′ = i) ∧ (q = b1 ∧ q′ = b2 ∧ j ′ = j + 1)) ∨
(l = ∧ ∃k ∈ N : k = i ∧

(p = a0 ∧ p′ = a1 ∧ i ′ = i) ∧ (q = b0 ∧ q′ = b1 ∧ j ′ = k)) ∨
(l = ∧ ∃k ∈ N : k = j ∧

(p = a1 ∧ p′ = a2 ∧ i ′ = k) ∧ (q = b2 ∧ q′ = b0 ∧ j ′ = j)).

Logically equivalent to previous definition of transition relation.
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The Client/Server System

Asynchronous composition of three components Client1, Client2, Server .

Client i : State := PC × N2 × N2.
Three variables pc, request, answer .
pc represents the program counter.
request is the buffer for outgoing requests.

Filled by client, when a request is to be sent to server.

answer is the buffer for incoming answers.
Checked by client, when it waits for an answer from the server.

Server : State := (N3)
3 × ({1, 2} → N2)

2.
Variables given,waiting , sender , rbuffer , sbuffer .
No program counter.

We use the value of sender to check whether server waits for a
request (sender = 0) or answers a request (sender ̸= 0).

Variables given,waiting , sender as in program.
rbuffer(i) is the buffer for incoming requests from client i .
sbuffer(i) is the buffer for outgoing answers to client i .
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External Transitions

Ext := {REQ1,REQ2,ANS1,ANS2}.
Transition labeled REQ i transmits a request from client i to server.

Enabled when request ̸= 0 in client i .
Effect in client i : request′ = 0.
Effect in server: rbuffer ′(i) = 1.

Transition labeled ANS i transmits an answer from server to client i

Enabled when sbuffer(i) ̸= 0.
Effect in server: sbuffer ′(i) = 0.
Effect in client i : answer ′ = 1.

The external transitions correspond to system-level actions of the
communication subsystem (rather than to the user-level actions of the
client/server program).
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The Client

Client system Ci = ⟨IC i ,RC i ⟩.
State := PC × N2 × N2.
Int := {Ri , Si ,Ci}.

IC i (pc, request, answer) :⇔
pc = R ∧ request = 0 ∧ answer = 0.

RC i (l , ⟨pc, request, answer⟩,
⟨pc′, request′, answer ′⟩) :⇔

(l = Ri ∧ pc = R ∧ request = 0 ∧
pc ′ = S ∧ request′ = 1 ∧ answer ′ = answer) ∨

(l = Si ∧ pc = S ∧ answer ̸= 0 ∧
pc ′ = C ∧ request′ = request ∧ answer ′ = 0) ∨

(l = Ci ∧ pc = C ∧ request = 0 ∧
pc ′ = R ∧ request′ = 1 ∧ answer ′ = answer) ∨

(l = REQ i ∧ request ̸= 0 ∧
pc ′ = pc ∧ request′ = 0 ∧ answer ′ = answer) ∨

(l = ANS i ∧
pc ′ = pc ∧ request′ = request ∧ answer ′ = 1).

Client(ident):

param ident

begin

loop

...

R: sendRequest()

S: receiveAnswer()

C: // critical region

...

sendRequest()

endloop

end Client
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The Server

Server system S = ⟨IS ,RS⟩.
State := (N3)3 × ({1, 2} → N2)2.
Int := {D1,D2,F ,A1,A2,W }.

IS(given,waiting , sender , rbuffer , sbuffer) :⇔
given = waiting = sender = 0 ∧
rbuffer(1) = rbuffer(2) = sbuffer(1) = sbuffer(2) = 0.

RS(l , ⟨given,waiting , sender , rbuffer , sbuffer⟩,
⟨given′,waiting ′, sender ′, rbuffer ′, sbuffer ′⟩) :⇔

∃i ∈ {1, 2} :
(l = Di ∧ sender = 0 ∧ rbuffer(i) ̸= 0 ∧
sender ′ = i ∧ rbuffer ′(i) = 0 ∧
U(given,waiting , sbuffer) ∧
∀j ∈ {1, 2}\{i} : Uj (rbuffer)) ∨

. . .

U(x1, . . . , xn) :⇔ x ′1 = x1 ∧ . . . ∧ x ′n = xn.
Uj (x1, . . . , xn) :⇔ x ′1(j) = x1(j) ∧ . . . ∧ x ′n(j) = xn(j).

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

D: sender := receiveRequest()

if sender = given then

if waiting = 0 then

F: given := 0

else

A1: given := waiting;

waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

A2: given := sender

sendAnswer(given)

else

W: waiting := sender

endif

endloop

end Server
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The Server (Contd)

. . .
(l = F ∧ sender ̸= 0 ∧ sender = given ∧waiting = 0 ∧

given′ = 0 ∧ sender ′ = 0 ∧
U(waiting , rbuffer , sbuffer)) ∨

(l = A1 ∧ sender ̸= 0 ∧ sbuffer(waiting) = 0 ∧
sender = given ∧ waiting ̸= 0 ∧
given′ = waiting ∧ waiting ′ = 0 ∧
sbuffer ′(waiting) = 1 ∧ sender ′ = 0 ∧
U(rbuffer) ∧
∀j ∈ {1, 2}\{waiting} : Uj (sbuffer)) ∨

(l = A2 ∧ sender ̸= 0 ∧ sbuffer(sender) = 0 ∧
sender ̸= given ∧ given = 0 ∧
given′ = sender ∧
sbuffer ′(sender) = 1 ∧ sender ′ = 0 ∧
U(waiting , rbuffer) ∧
∀j ∈ {1, 2}\{sender} : Uj (sbuffer)) ∨

. . .

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

D: sender := receiveRequest()

if sender = given then

if waiting = 0 then

F: given := 0

else

A1: given := waiting;

waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

A2: given := sender

sendAnswer(given)

else

W: waiting := sender

endif

endloop

end Server
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The Server (Contd’2)

. . .
(l = W ∧ sender ̸= 0 ∧ sender ̸= given ∧ given ̸= 0 ∧

waiting ′ := sender ∧ sender ′ = 0 ∧
U(given, rbuffer , sbuffer)) ∨

∃i ∈ {1, 2} :

(l = REQ i ∧ rbuffer ′(i) = 1 ∧
U(given,waiting , sender , sbuffer) ∧
∀j ∈ {1, 2}\{i} : Uj (rbuffer)) ∨

(l = ANS i ∧ sbuffer(i) ̸= 0 ∧
sbuffer ′(i) = 0 ∧
U(given,waiting , sender , rbuffer) ∧
∀j ∈ {1, 2}\{i} : Uj (sbuffer)).

Server:

local given, waiting, sender

begin

given := 0; waiting := 0

loop

D: sender := receiveRequest()

if sender = given then

if waiting = 0 then

F: given := 0

else

A1: given := waiting;

waiting := 0

sendAnswer(given)

endif

elsif given = 0 then

A2: given := sender

sendAnswer(given)

else

W: waiting := sender

endif

endloop

end Server
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Communication Channels

We also model the communication medium between components.

Bounded channel Channeli ,j = (ICH,RCHi ,j).
Transfers message from component with address i to component j .

May hold at most N messages at a time (for some N).

State := Value∗.
Sequence of values of type Value.

Ext := {SEND i,j(m) : m ∈ Value} ∪ {RECEIVE i,j(m) : m ∈ Value}.
By SEND i,j(m), channel receives from sender i a message m destined
for receiver j ; by RECEIVE i,j(m), channel forwards that message.

ICH(queue) :⇔ queue = ⟨⟩.
RCHi,j(l , queue, queue

′) :⇔
∃m ∈ Value :

(l = SEND i,j(m) ∧ |queue| < N ∧ queue′ = queue ◦ ⟨m⟩) ∨
(l = RECEIVE i,j(m) ∧ |queue| > 0 ∧ queue = ⟨m⟩ ◦ queue′).
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Client/Server Example with Channels

Server receives address 0.

Label REQ i is renamed to RECEIVE i,0(R).

Label ANS i is renamed to SEND0,i (A).

Client i receives address i (i ∈ {1, 2}).
Label REQ i is renamed to SEND i,0(R).
Label ANS i is renamed to RECEIVE 0,i (A).

System is composed of seven components:

Server , Client1, Client2.
Channel0,1,Channel1,0.
Channel0,2,Channel2,0.

Also channels are active system components.
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Summary

A system is described by
its (finite or infinite) state space,
the initial state condition (set of input states),
the transition relation on states.

State space of composed system is product of component spaces.
Variable shared among components occurs only once in product.

System composition can be
synchronous: conjunction of individual transition relations.

Suitable for digital hardware.

asynchronous: disjunction of relations.
Interleaving model: each relation conjoins the transition relation of
one component with the identity relations of all other components.
Suitable for concurrent software.

Message passing systems may be modeled by using labels:
Synchronize transitions of sender and receiver.
Carry values to be transmitted from sender to receiver.
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