
Extended Static Checking with ESC/Java2

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

https://www.risc.jku.at

Wolfgang Schreiner https://www.risc.jku.at 1/46

1. Overview

2. Examples

3. Handling of Loops

4. Internal Operation

Wolfgang Schreiner https://www.risc.jku.at 2/46

ESC/Java2

Latest outcome of a series of projects.

Compaq: ESC/Modula-3 (–1996), ESC/Java (–2000).
Univ. Nijmegen (–2005), Univ. College Dublin (2005–): ESC/Java2.
https://github.com/GaloisInc/ESCJava2

Extended Static Checking for Java.
Find programming errors by automated reasoning techniques.

Simplified variant of Hoare/weakest precondition calculus.

Full Java 1.4 (much of Java 1.5), fully automatic.

Feels like type-checking.

Uses JML for specification annotations (ESC/Java2).

ESC/Modula-3 and ESC/Java had their own annotation language.

Based on the Simplify prover.

Greg Nelson et al, written in Modula-3 for ESC/Modula-3.

Finding errors in a program rather than verifying it.

Wolfgang Schreiner https://www.risc.jku.at 3/46

Theoretical Limitations

ESC/Java2 is not sound.
Soundness: if {P}c{Q} does not hold, it cannot be proved.

ESC/Java2 may not produce warning on wrong {P}c{Q}.
Sources of unsoundness:

Loops are handled by unrolling, arithmetic is on Z.
JML annotation assume adds unverified knowledge.
Object invariants are not verified on all existing objects.

ESC/Java2 is not complete.
Completeness: if {P}c{Q} cannot be proved, it does not hold.

ESC/Java2 may produce superfluous warnings.

Sources of incompleteness:

Simplify’s limited reasononing capabilities (arithmetic, quantifiers).

JML annotation nowarn to turn off warnings.

Potentially not sound.

Not every error is detected, not every warning actually denotes an error.

Wolfgang Schreiner https://www.risc.jku.at 4/46

Practical Usefulness

ESC/Java2 detects many (most) programming errors.

Array index bound violations.
Division by zero.
Null-pointer dereferences.
Violation of properties depending on linear arithmetic.
. . .

Forces programmer to write method contracts.

Especially method preconditions.
Better documented and better maintainable code.

A useful extension of compiler type checking.

Wolfgang Schreiner https://www.risc.jku.at 5/46

1. Overview

2. Examples

3. Handling of Loops

4. Internal Operation

Wolfgang Schreiner https://www.risc.jku.at 6/46

Tutorial Program

class Bag {

int[] a; int n;

Bag(int[] input) {

n = input.length; a = new int[n];

System.arraycopy(input, 0, a, 0, n);

}

int extractMin() {

int m = Integer.MAX_VALUE;

int mindex = 0;

for (int i = 1; i <= n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; }

}

n--;

a[mindex] = a[n];

return m;

}

}

> escjava2 Bag.java
Wolfgang Schreiner https://www.risc.jku.at 7/46

Tutorial Program: Assumptions

class Bag {

/*@ non_null @*/ int[] a;

int n; /*@ invariant 0 <= n && n <= a.length; @*/

/*@ requires input != null; @*/

Bag(int[] input) {

...

}

/*@ requires n>0; @*/

int extractMin() {

...

}

Invariants and preconditions have to be added to pass the checking.

Wolfgang Schreiner https://www.risc.jku.at 8/46

Tutorial Program: Guarantees

/*@ requires n>0;

@ ensures n == \old(n)-1;

@ ensures (\forall int i; 0 <= i && i < \old(n);

@ \result <= \old(a[i]));

@*/

int extractMin() {

...

}

Postconditions may be added (and are checked to some extent).

Wolfgang Schreiner https://www.risc.jku.at 9/46

Tutorial Program: Wrong Guarantees

/*@ requires n>0;

@ ensures n == \old(n)-1;

@ ensures (\forall int i; 0 <= i && i < \old(n);

@ \result <= \old(a[i])); @*/

int extractMin() {

int m = Integer.MAX_VALUE;

int mindex = 0;

for (int i = 0; i < n; i++) {

if (a[i] < m) {

mindex = i;

m = a[0]; // ERROR: a[0] rather than a[i]

}

}

n--;

a[mindex] = a[n];

return m;

}

But also this program passes the check!

Wolfgang Schreiner https://www.risc.jku.at 10/46

Example Program: Arithmetic1

//@ ensures \result == i;

static int f2(int i)

{

int j = i+1;

int k = 3*j;

return k-2*i-3;

}

//@ requires i < j;

//@ ensures \result >= 1;

static int f4(int i, int j)

{

return 2*j-2*i-1;

}

Masters linear integer arithmetic with inequalities.

Wolfgang Schreiner https://www.risc.jku.at 11/46

Example Program: Conditional

/*@ ensures (\result == i || \result == j || \result == k)

@ && (\result <= i && \result <= j && \result <= k); @*/

static int min(int i, int j, int k)

{

int m = i;

if (j < m) m = j;

if (k < m) m = k;

return m;

}

Masters conditionals.

Wolfgang Schreiner https://www.risc.jku.at 12/46

Example Program: Sort

/*@ requires a != null;

@ ensures (\forall int i; 0 <= i && i < a.length-1; a[i] <= a[i+1]);

@*/

static void insertSort(int[] a)

{

int n = a.length;

for (int i = 1; i < n; i++) {

int x = a[i];

int j = i-1;

while (j >= 0 && a[j] > x) {

a[j+1] = a[j];

j = j-1;

}

a[j+1] = x;

}

}

Detects many errors in array-based programs.
Wolfgang Schreiner https://www.risc.jku.at 13/46

Example Program: Arithmetic2

//@ ensures \result == i*i;

static int f1(int i)

{

return i*(i+1)-i;

} //@ nowarn Post;

//@ ensures \result >= 0;

static int f2(int i)

{

return i*i;

} //@ nowarn Post;

Does not master non-linear arithmetic.

Wolfgang Schreiner https://www.risc.jku.at 14/46

Example Program: Loop

//@requires n >= 0;

static void loop(final int n)

{

int i=0;

while (i < n)

{

i = i+1;

}

//@ assert i==n;

//@ assert i<3;

}

Does only partially master post-conditions of programs with loops.

Wolfgang Schreiner https://www.risc.jku.at 15/46

1. Overview

2. Examples

3. Handling of Loops

4. Internal Operation

Wolfgang Schreiner https://www.risc.jku.at 16/46

Loop Unrolling

We will now use a high-level description of the ESC/Java2 handling of
loops by loop unrolling.

Original program.

while (e) c ;

Unrolling the loop once.

if (e) { c ; while (e) c ; }
Unrolling the loop twice.

if (e) { c ; if (e) { c ; while (e) c ; } }
Faithful loop unrolling preserves the meaning of a program.

Wolfgang Schreiner https://www.risc.jku.at 17/46

Verification of Unrolled Program

Let us consider how verification is affected by loop unrolling.

Original: {P} while(e) c {Q}
P ⇒ wp(while(e) c ,Q) (0)

Unrolled: {P} if (e) {c ; if (e) {c ; while (e) c}} {Q}
(P ∧ ¬e) ⇒ Q (1)

{P ∧ e} c ; if (e) {c ; while (e) c} {Q}
{P ∧ e} c {¬e ⇒ Q} (2)
{P ∧ e} c {e ⇒ wp(c; while (e) c,Q)} (3)

Three obligations (1-3) equivalent to original obligation (0).

Wolfgang Schreiner https://www.risc.jku.at 18/46

ESC/Java2 Loop Unrolling

Faithful unrolling

{P} if(e) {c ; if(e) {c ; while (e) c}} {Q}
ESC/Java2 default unrolling

{P} if(e) {c ; if(e) { assume false; }} {Q}
Not unrolled execution of loop is replaced by “assume false”.
assume false: from false, everything can be concluded.
No more verification takes place in this branch.

Only simplified program is verified by ESC/Java2.

Wolfgang Schreiner https://www.risc.jku.at 19/46

Verification of Unrolled Program

Let us consider the simplified verification problem.

{P} if(e) {c ; if(e) { assume false}} {Q}
(P ∧ ¬e) ⇒ Q (1)

{P ∧ e} c ; if(e) { assume false}} {Q}
{P ∧ e} c {¬e ⇒ Q} (2)
{P ∧ e} c {e ∧ false ⇒ Q}
⇔ {P ∧ e} c {true}
⇔ true

Proof obligation (3) of the original problem is dropped.

Wolfgang Schreiner https://www.risc.jku.at 20/46

Expressive Power of Simplified Verification

Checked proof obligations
(P ∧ ¬e) ⇒ Q

Postcondition holds, if loop terminates after zero iterations.

{P ∧ e} c {¬e ⇒ Q}
Postcondition holds, if loop terminates after one iteration.

Unchecked proof obligation
{P ∧ e} c {e ⇒ wp(c ; while (e) c ,Q)}

Postcondition holds, if loop terminates after more than one iteration.

Only partial verification of loops in ESC/Java 2.

Wolfgang Schreiner https://www.risc.jku.at 21/46

Expressive Power of Simplified Verification

What does this mean for the whole verification process?

Example program:

while (e) { c1 } c2

Verified program:

if (e) { c1; if (e) { assume false } } c2
if (e) { c1; if (e) { assume false } c2 } else c2
if (e) { c1; if (e) { assume false; c2 } else c2 } else c2
if (e) { c1; if (e) skip else c2 } else c2
if (e) { c1; if (¬e) c2 } else c2

In verified program, only runs are considered where

loop terminates after at most one iteration, i.e.
execution of c2 is only considered in such program runs.

After a loop, only special contexts are considered for verification.

Wolfgang Schreiner https://www.risc.jku.at 22/46

Control of Loop Unrolling

ESC/Java2 control of loop unrolling

escjava2 -loop n.5

Loop is unrolled n times (default n = 1).
.5: also loop condition after n-th unrolling is checked.

Preconditions.

All preconditions are checked that arise from the loop expression and
the loop body in the first n iterations.

Postconditions.

It is checked whether the postcondition of the loop holds in all
executions that require at most n iterations.

All program paths with more than n iterations are “cut off”.

Wolfgang Schreiner https://www.risc.jku.at 23/46

Unsoundness of Loop Unrolling

Unsoundness of strategy can be easily shown.

int i=0;

while (i < 1000)

i = i+1;

//@ assert i < 2;

For unrolling with n < 1000, this postcondition is true.

For any execution, that terminates after at most n iterations (i.e.
none), the postcondition is true.

For true verification of loop programs, reasoning about a loop invariant is
required.

Wolfgang Schreiner https://www.risc.jku.at 24/46

1. Overview

2. Examples

3. Handling of Loops

4. Internal Operation

Wolfgang Schreiner https://www.risc.jku.at 25/46

Internal Operation

From Leino et al (2002): Extended Static Checking for Java.
Wolfgang Schreiner https://www.risc.jku.at 26/46

Guarded Commands

Java program is first translated into a much simpler language.

Variant of Dijkstra’s guarded command (GC) language.
cmd ::= variable = expr | skip | raise | assert expr | assume expr |

var variable+ in cmd end | cmd ; cmd | cmd ! cmd | cmd [] cmd.

Actually, first a sugared version of the language.
cmd ::= . . . |

check expr | call p(expr*) | loop { invariant expr } cmd end.

Then desugar program, i.e. translate it into core language.

Various desugaring strategies possible.

Then generate verification conditions for program in core language.

Verification conditions are forwarded to theorem prover.

We first discuss the semantics of the core language and then the
translation process Java → sugared GC → core GC.

Wolfgang Schreiner https://www.risc.jku.at 27/46

Monitoring the Translation

Print guarded command version of language.

escjava2 -pgc Simple.java

Java program.

int y; if (x >= 0) y = x; else y = -x;

Guarded command program (simplified).

VAR int y IN
{

ASSUME integralGE(x, 0); y = x;
[]

ASSUME boolNot(integralGE(x,0)); y = -x;
}
END

Low-level program; only necessary for understanding details.

Wolfgang Schreiner https://www.risc.jku.at 28/46

Core Language Semantics

Defined by weakest preconditions.

wp(cmd ,N,X)

Weakest condition on state in which cmd may be executed such that

either cmd terminates normally in a state in which N holds,
or cmd terminates exceptionally in a state in which X holds.

All commands in the core language terminate.

No distinction to weakest liberal precondition.

Relationship to total correctness.

{P} c {Q} ⇔ (P ⇒ wp(c ,Q, false)))

Two ways how a command may terminate.

Wolfgang Schreiner https://www.risc.jku.at 29/46

Core Language Semantics

wp(x = e,N,X) ⇔ N[e/x]
wp(skip,N,X) ⇔ N
wp(raise,N,X) ⇔ X
wp(assert e,N,X) ⇔ (e ⇒ N) ∧ (¬e ⇒ X)
wp(assume e,N,X) ⇔ (e ⇒ N)
wp(var x1, . . . xn in c ,N,X) ⇔ ∀x1, . . . , xn : wp(c ,N,X)
wp(c1; c2,N,X) ⇔ wp(c1,wp(c2,N,X),X)
wp(c1!c2,N,X) ⇔ wp(c1,N,wp(c2,N,X))
wp(c1[]c2,N,X) ⇔ wp(c1,N,X) ∧ wp(c2,N,X)

Tuple of postconditions has to be considered.

Wolfgang Schreiner https://www.risc.jku.at 30/46

Core Language Semantics

wp(skip,N,X) ⇔ N
wp(c1; c2,N,X) ⇔ wp(c1,wp(c2,N,X),X)

Interpretation of skip rule

The command terminates normally but not exceptionally.
Thus the normal postcondition N must hold before the call.

Interpretation of command compositon rule (;).

If c1 terminates exceptionally, the exceptional postcondition X must
hold (because c2 is not executed).
If c1 terminates normally, it must be in a state such that the
execution of c2 ensures the required postconditions N and X .

Slight generalization of the basic rule of the weakest precondition of
command composition.

Wolfgang Schreiner https://www.risc.jku.at 31/46

Core Language Semantics

wp(raise,N,X) ⇔ X
wp(c1!c2,N,X) ⇔ wp(c1,N,wp(c2,N,X))

Interpretation of raise rule

The command terminates not normally but exceptionally.
Thus the exceptional postcondition X must hold before the call.

Interpretation of signal handling rule (!).

If c1 terminates normally, the normal postcondition N must hold
(because c2 is not executed).
If c1 terminates exceptionally, it must be in a state such that the
execution of c2 ensures the required postconditions N and X .

Note the symmetry of command composition and exception handling.

Wolfgang Schreiner https://www.risc.jku.at 32/46

Example

What is the weakest preconditon such that

(x = x + 1; x = x − 2) ! x = x + 2

normally terminates in a state with x = 3?

wp(((x = x + 1; x = x − 2) ! x = x + 2), x = 3, false)
⇔ wp((x = x + 1; x = x − 2), x = 3,wp(x = x + 2, x = 3, false))
⇔ wp((x = x + 1; x = x − 2), x = 3, x + 2 = 3)
⇔ wp((x = x + 1; x = x − 2), x = 3, x = 1)
⇔ wp(x = x + 1,wp(x = x − 2, x = 3, x = 1), x = 1)
⇔ wp(x = x + 1, x − 2 = 3, x = 1)
⇔ wp(x = x + 1, x = 5, x = 1)
⇔ x + 1 = 5
x = 4

Wolfgang Schreiner https://www.risc.jku.at 33/46

Example

What is the weakest preconditon such that

(x = x + 1; raise; x = x − 2) ! x = x + 2

normally terminates in a state with x = 3?

wp(((x = x + 1; raise; x = x − 2) ! x = x + 2), x = 3, false)
⇔ wp((x = x+1; raise; x = x−2), x = 3,wp(x = x+2, x = 3, false))
⇔ wp((x = x + 1; raise; x = x − 2), x = 3, x + 2 = 3)
⇔ wp((x = x + 1; raise; x = x − 2), x = 3, x = 1)
⇔ wp(x = x + 1,wp((raise; x = x − 2), x = 3, x = 1), x = 1)
⇔ wp(x = x+1,wp(raise; wp(x = x−2, x = 3, x = 1), x = 1), x = 1)
⇔ wp(x = x + 1, x = 1, x = 1)
⇔ x + 1 = 1
⇔ x = 0

Wolfgang Schreiner https://www.risc.jku.at 34/46

Translation of Java Loops

The guarded command language does not have while loops.

Translation of while (e) { c1 } c2
loop if (¬e) raise; c1 end ! c2

Construct loop runs forever.

Loop is terminated by signalling an exception in the body.
Exception is caught and c2 is executed.

Replacement of while loops by core loop and exceptions.

Wolfgang Schreiner https://www.risc.jku.at 35/46

Translation of Java Conditionals

The guarded command language also does not have conditionals.

Translation of if (e) c1 else c2.

(assume e ; c1) [] (assume ¬e ; c2)

Translation of if (e) c .

(assume e ; c) [] (assume ¬e ; skip)

Non-deterministic selection of two commands.

One of two branches is exexecuted.
Each branch is guarded by a condition which can be assumed to be
true in that branch
Conditions are mutually exclusive, thus actually only one branch can
be executed.

Replacement of conditionals by guarded selection of commands.

Wolfgang Schreiner https://www.risc.jku.at 36/46

Checking Expressions

Handling of preconditions.

check expr;

Occurs e.g. in translation of object dereferencing v = o.f

check o != null; v = select(o, f)

Possible translation of check expr.

1. Treat violation as error.

assert expr

2. Ignore violation (user has switched warning off).

assume expr

3. Treat violation as runtime exception.

if (!expr) raise

Translation partially controlled by nowarn annotations.

Wolfgang Schreiner https://www.risc.jku.at 37/46

Procedure Calls

Call of a procedure r that is allowed to modify a variable x .

call r(e0, e1)

Translation (simplified):
var p0 p1 in

p0 = e0; p1 = e1;
check precondition (involves p0, p1);
var x0 in

x0 = x;
modify x ;
assume postconditions (involves p0, p1, x0, x);

end
end

modify x desugars to
var x’ in x = x’ end

Reduce complex procedure call rule to simpler constructs.
Wolfgang Schreiner https://www.risc.jku.at 38/46

Loops

Execution of a core loop.

loop { invariant expr } cmd end

Handling by loop unrolling.

check expr; cmd;
check expr; cmd;
. . .
check expr; assume false.

By default, loops are unrolled just once.

escjava2 -loop 1.5

We have already investigated the consequence of this.

Wolfgang Schreiner https://www.risc.jku.at 39/46

Verification Conditions

For program in core language, verification conditions are generated.

Pretty-print generated verification conditions.

escjava2 -v -ppvc Simple.java

...

(OR

(AND (>= |x| 0) (EQ |@true| |@true|))

(AND

(NOT (>= |x| 0))

(EQ |@true| |@true|)

)

(EQ |y| (- 0 |x|))

...

)

...

Hardly readable, only for understanding details.
Wolfgang Schreiner https://www.risc.jku.at 40/46

Simplify

Simplify(1)

NAME

Simplify -- attempt to prove first-order formulas.

SYNTAX

Simplify [-print] [-ax axfile] [-nosc] [-noprune]

[-help] [-version] [file]

DESCRIPTION

Simplify accepts a sequence of first order formulas as input, and

attempts to prove each one. *Simplify* does not implement a decision

procedure for its inputs: it can sometimes fail to prove a valid

formula. But it is conservative in that it never claims that an

invalid formula is valid.

...

Wolfgang Schreiner https://www.risc.jku.at 41/46

Formula Syntax

| formula ::= "(" (AND | OR) { formula } ")" |

| "(" NOT formula ")" |

| "(" IMPLIES formula formula ")" |

| "(" IFF formula formula ")" |

| "(" FORALL "(" var* ")" formula ")" |

| "(" EXISTS "(" var* ")" formula ")" |

| "(" PROOF formula* ")" |

| literal

|

| literal ::= "(" ("EQ" | "NEQ" | "<" | "<=" | ">" | ">=")

| term term ")" |

"(" "DISTINCT" term term+ ")" |

| "TRUE" | "FALSE" | <propVar>

|

| term ::= var | integer | "(" func { term } ")"

Wolfgang Schreiner https://www.risc.jku.at 42/46

Formula Syntax

The formula

| (DISTINCT term1 ... termN)

represents a conjunction of distinctions between all pairs of terms in

the list.

The formula

| (PROOF form1 ... formN)

is sugar for

| (AND (IMPLIES form1 form2)

| (IMPLIES (AND form1 form2) form3)

| ...

| (IMPLIES (AND form1 ... formN-1) formN))

"func"’s are uninterpreted, except for "+", "-", and "*", which

represent the obvious operations on integers.

Wolfgang Schreiner https://www.risc.jku.at 43/46

Default Axioms

(FORALL (a i x k)

(EQ (select (store a i x) i k) x))

(FORALL (a i n)

(EQ (len (subMap a i n)) n))

(FORALL (a i n j k)

(EQ (select (subMap a i n) j k) (select a (+ i j) k)))

(FORALL (a i x)

(EQ (len (store a i x)) (len a)))

(FORALL (a i n b)

(EQ (len (storeSub a i n b)) (len a)))

(FORALL (v i)

(EQ (select (mapFill v) i) v)

(FORALL (i j a x k)

(OR (EQ i j) (EQ (select (store a i x) j k) (select a j k))))

(FORALL (j i a n b k)

(OR (AND (OR (< j i) (>= j (+ i n)))

(EQ (select (storeSub a i n b) j k) (select a j k)))

(AND (>= j i)

(< j (+ i n))

(EQ (select (storeSub a i n b) j k) (select b (- j i) k)))))

Wolfgang Schreiner https://www.risc.jku.at 44/46

Power of Simplify

Simplify can be used as a “pocket calculator for reasoning”.

Prover for first-order logic with equality and integer arithmetic.

For proving formula F , the satisfiability of ¬F is checked.
If ¬F is not satisfiable, the prover returns “valid”.
If ¬F is satisfiable, the prover returns a counterexample context.

Conjunction of literals (atomic formulas, plain or negated) that is
believed to satisfy ¬F .

Proving strategy is sound.

If F is reported “valid”, this is the case.

Proving strategy is not complete.

A reported counterexample context may be wrong.

Sound, not complete, highly optimized.

Wolfgang Schreiner https://www.risc.jku.at 45/46

Conclusions

ESC/Java2 is a good tool for finding program errors.

Reports many/most common programming errors.
Forces programmer to write method preconditions/assertions.
Stable, acceptably fast.

ESC/Java2 is not a verification environment.

Postconditions of methods with loops are not appropriately verified.
Arithmetic is treated as arbitrary size, not finite.

Resources:

Surveys: Extended Static Checking for Java (2002); ESC/Java2:
Uniting ESC/Java and JML (2004).
Manual: ESC/Java User Manual (2000), ESC/Java2 Implementation
Notes (2004).
Guarded Commands: Checking Java Programs via Guarded
Commands (1999).
Simplify: A Theorem Prover for Program Checking (2003).

Wolfgang Schreiner https://www.risc.jku.at 46/46

