
The Java Modeling Language (Part 2)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

https://www.risc.jku.at

Wolfgang Schreiner https://www.risc.jku.at 1/58

JML Class Specifications

Object invariants and history constraints.

non null, invariant, constraint.

Public versus private behavior.

private normal behavior.

Model fields and model representations.

model, represents.

Data groups.

in, maps ...\into.
Class refinements.

refines.

Support for programming in the large.

Wolfgang Schreiner https://www.risc.jku.at 2/58

1. Basic Class Specifications

2. Classes for Modeling

3. Model-based Class Specifications

4. Rounding Things Up

Wolfgang Schreiner https://www.risc.jku.at 3/58

A Java Class

class IntStack

{

int[] stack;

int number;

final int N = 10;

IntStack()

{

stack = new int[N];

number = 0;

}

boolean isempty()

{

return number == 0;

}

void push(int e)

{ if (number == stack.length)

resize();

stack[number] = e;

number = number+1;

}

int pop()

{ number = number-1;

return stack[number];

}

void resize()

{ int s[] = new int[2*stack.length+1];

for (int i=0; i<stack.length; i++)

s[i] = stack[i];

stack = s;

}

}

Wolfgang Schreiner https://www.risc.jku.at 4/58

Object Invariants

class IntStack

{

/*@ non_null @*/ int[] stack;

int number;

//@ invariant 0 <= number && number <= stack.length;

...

}

A object invariant must hold before and after each method call.

Variable annotated by non null must not be null.
Clause invariant specifies a general object invariant.
Private /*@ helper @*/ method need not maintain invariant.

Every object invariant is automatically added to the pre- and to the
postcondition of every (non-helper) method.

Wolfgang Schreiner https://www.risc.jku.at 5/58

History Constraints

class IntStack

{

...

// no method touches elements below the top of stack

/*@ constraint (\forall int i; 0 <= i && i < number-1;

@ stack[i] == \old(stack[i])); @*/

...

}

A history constraint must hold for the pre/post-state pair of every
method call.

A constraint condition may use \old to refer to the pre-state.

Every history constraint is added to the post-condition of every method.

Wolfgang Schreiner https://www.risc.jku.at 6/58

Light-Weight Specification

class IntStack // V1

{

...

final int N = 10;

/*@ ensures stack.length == N

@ && number == 0; @*/

IntStack()

{ stack = new int[N];

number = 0;

}

/*@ ensures \result <==>

@ number == 0; @*/

boolean isempty()

{ return number == 0;

}

/*@ ensures number == \old(number)+1

@ && stack[number-1] == e; @*/

void push(int e)

{ if (number == stack.length)

resize();

stack[number] = e;

number = number+1;

}

/*@ requires number > 0;

@ ensures number == \old(number)-1

@ && \result == stack[number]; @*/

int pop()

{ number = number-1;

return stack[number];

}

...

Wolfgang Schreiner https://www.risc.jku.at 7/58

Light-Weight Specification (Contd)

...

/*@ ensures stack.length > \old(stack.length)

@ && number == \old(number)

@ && (\forall int i;

@ 0 <= i && i < number;

@ stack[i] == \old(stack[i])); @*/

void resize()

{ int s[] =

new int[2*stack.length+1];

for (int i=0; i<stack.length; i++)

s[i] = stack[i];

stack = s;

}

}

Problem: stack implementation is externally visible.

Wolfgang Schreiner https://www.risc.jku.at 8/58

Private Implementation vs Public Interface

class IntStack

{

private int stack[];

private int number;

private final int N = 10;

public IntStack() { ... }

public boolean isempty() { ... }

public void push(int e) { ... }

public int pop() { ... }

private void resize() { ... }

}

Only selected methods should belong to the public interface.

Wolfgang Schreiner https://www.risc.jku.at 9/58

Problem with Light-Weight Specification

class IntStack

{

private int stack[];

private int number;

private final int N = 10;

/*@ ensures stack.length == N

@ && number == 0; @*/

public IntStack() { ... }

...

}

jml -Q IntStack.java

...

Field "stack" (private visibility) can not be referenced in a

specification context of "package" visibility [JML]

Wolfgang Schreiner https://www.risc.jku.at 10/58

Visibility of Specifications

Every JML specification has a visibility level.
Analogous to Java visibility levels.

Default, private, protected, public.

Light-weight specifications: default visibility.

Similar to public but restricted to package level.

A specification may only access fields within its visibility.

Only private specifications may access private fields.
Hack: mark private field as /* spec public */.

Heavy-weight specifications: visibility explicitly specified.

public normal behavior, private normal behavior.

Need to use heavy-weight specifications.

Wolfgang Schreiner https://www.risc.jku.at 11/58

Heavy-Weight Specification

class IntStack // V2

{

private /*@ non_null @*/ int[] stack;

private int number;

/*@ private invariant 0 <= number

@ && number <= stack.length; @*/

/*@ private constraint

@ (\forall int i;

@ 0 <= i && i < number-1;

@ stack[i] == \old(stack[i]));

@*/

private final int N = 10;

/*@ private normal_behavior

@ assignable stack, number;

@ ensures stack.length == N

@ && number == 0; @*/

public IntStack()

{ stack = new int[N];

number = 0;

}

/*@ private normal_behavior

@ assignable \nothing;

@ ensures \result <==>

@ number == 0; @*/

public /*@ pure @*/

boolean isempty()

{ return number == 0;

}

...

Wolfgang Schreiner https://www.risc.jku.at 12/58

Heavy-Weight Specification (Contd)

...

/*@ private normal_behavior

@ assignable stack, stack[*], number;

@ ensures number == \old(number)+1

@ && stack[number-1] == e; @*/

public void push(int e)

{ if (number == stack.length)

resize();

stack[number] = e;

number = number+1;

}

/*@ private normal_behavior

@ requires number > 0;

@ assignable number;

@ ensures number == \old(number)-1

@ && \result == stack[number]; @*/

public int pop()

{ number = number-1;

return stack[number];

}

/*@ private normal_behavior

@ assignable stack;

@ ensures \fresh(stack)

@ && stack.length >

@ \old(stack.length)

@ && number == \old(number)

@ && (\forall int i;

@ 0 <= i && i < number;

@ stack[i] == \old(stack[i])); @*/

private void resize()

{

int s[] =

new int[2*stack.length+1];

for (int i=0; i<stack.length; i++)

s[i] = stack[i];

stack = s;

}

}

Wolfgang Schreiner https://www.risc.jku.at 13/58

Heavy-Weight Specification: Considerations

Visibility of invariants and history constraints.

private invariant, private constraint.

Explicit frame conditions recommended: assignable.

Default: assignable \everything.
New predicate: \fresh(stack).

stack is newly allocated after resize().
Thus assignment stack[number] == ... in push is legal.

Otherwise possible that stack refers after resize() to existing array.
Rule: assignment to location is legal in method if location appears in
method assignable clause or if location is newly allocated in method.

Wolfgang Schreiner https://www.risc.jku.at 14/58

Private versus Public Specifications

Let us assess the current situation.

We have constructed a private specification.

Refers to the private variables of the class.
Can be used in the context of the class implementation.
Cannot be used as a contract between the user and the implementor
of the class.

For use as a contract, we need a public specification.

May refer only to public class interface.
But this interface may be too restricted to express the desired
behavior of the class.

We need a possibility to extend the public class interface for the purpose
of specifying the behavior of the class.

Wolfgang Schreiner https://www.risc.jku.at 15/58

1. Basic Class Specifications

2. Classes for Modeling

3. Model-based Class Specifications

4. Rounding Things Up

Wolfgang Schreiner https://www.risc.jku.at 16/58

Model Fields

class C

{

//@ model T x;

//@ represents x <- E;

...

}

interface I

{

//@ instance model T x;

//@ represents x <- E;

...

}

A model field is a specification-only field.

Considered as a normal field for the purpose of reasoning.
Actually not provided by the implementation.
In an interface, an instance model field, is considered a field of
every class implementing the interface.

A represents clause associates the model field to an
implementation expression.

Describes how model field can be computed from actual fields.

Wolfgang Schreiner https://www.risc.jku.at 17/58

Example

class IntStack

{

private /*@ non_null @*/ int[] stack;

private int number;

//@ model int len;

//@ represents len <- stack.length;

//@ invariant 0 <= number && number <= len;

/*@ ensures len == N && number == 0; @*/

IntStack()

{ stack = new int[N];

number = 0;

}

...

}

Wolfgang Schreiner https://www.risc.jku.at 18/58

Class Specifications and Abstract Datatypes

How to specify the public behavior of a class (concrete datatype) C?

First mathematically axiomatize an abstract datatype.

Type name A and names of operations on A.
Laws (“axioms”) that the operations must obey.

Then define C and an abstraction function a : C → A
Maps a program object of type C to a mathematical object A.

Has as its inverse a concretization relation c ⊆ A× C .

∀x ∈ C : c(a(x), x) ∧ ∀y ∈ A : c(y , x) ⇒ x = a(y).

Specify the methods of C in terms of the operations of A.

Instead of variable x of type C use term a(x) of type A.

Thus C becomes related to the well understood A.

Must prove that the methods satisfy the laws of the operations of A.

C.A.R. Hoare, 1972: Proof of Correctness of Data Representations.

Wolfgang Schreiner https://www.risc.jku.at 19/58

An Abstract Datatype

The abstract datatype “integer stack”.

Sort S .

Operations

empty : S , push : Z× S → S , isempty : S → B,
top : S → Z, pop : S → S .

∀s, s ′ ∈ S , x , x ′ ∈ Z :

empty ̸= push(x , s);
push(x , s) = push(x ′, s ′) ⇒ x = x ′ ∧ s = s ′;
isempty(empty) = true,
isempty(push(x , s)) = false;
top(push(x , s)) = x ;
pop(push(x , s)) = s.

Wolfgang Schreiner https://www.risc.jku.at 20/58

A Method Specification

Assume concrete type Stack and abstraction function a : Stack → S .

Input s : Stack.

Input condition: isempty(a(s)) = false.

Output s ′ : Stack.

Output condition: a(s ′) = pop(a(s)).

The concrete method behaves like the abstract operation pop.

Wolfgang Schreiner https://www.risc.jku.at 21/58

An Abstract Datatype in JML

public /*@ pure @*/ class IntStackModel

{

// IntStackModel() is default constructor

//@ public model boolean isempty();

//@ public model IntStackModel push(int e);

//@ public model int top();

//@ public model IntStackModel pop();

/*@ axiom

@ (\forall IntStackModel s, s2; s != null && s2 != null;

@ (\forall int e, e2; ;

@ !new IntStackModel().equals(s.push(e)) &&

@ (s.push(e).equals(s2.push(e2)) ==> s.equals(s2) && e == e2) &&

@ new IntStackModel().isempty() &&

@ !s.push(e).isempty() &&

@ e == s.push(e).top() &&

@ s.equals(s.push(e).pop())));

@*/

}

Wolfgang Schreiner https://www.risc.jku.at 22/58

An Abstract Datatype in JML (Contd)

A class tagged as pure contains only pure methods.

Convenient shortcut for classes describing abstract datatypes.

A model method is a specification-only method.

Just for reasoning, no implementation provided.
Typically pure (but need not be).
Behavior described by axioms (or by model programs).

IntStackModel is a “class for modeling”.

Intended for supporting specifications.
May use model methods without implementations.

Just for reasoning, no runtime checking possible.

May also provide method implementations.

Also runtime checking possible.

The JML tool suite comes with a library of pre-defined classes for
modeling (but also for executing).

Wolfgang Schreiner https://www.risc.jku.at 23/58

JML Classes for Modeling

Package org.jmlspecs.models.*.

Directory /zvol/formal/JML/org/jmlspecs/models.
Container types:

JMLObjectSet, JMLObjectBag, JMLObjectSequence, . . .

Numerical types:

JMLInfiniteIntegerClass, JMLFiniteIntegerClass, . . .

Most classes contain method implementations.

Useful for runtime checking.

Usage primarily by model import.

Not linked to classes when compiled with javac.

//@ model import org.jmlspecs.models.*;

For examples, see “Leavens et al, 2004: Preliminary Design of JML”.

Wolfgang Schreiner https://www.risc.jku.at 24/58

JML Model Classes

// file "IntStackModel.jml"

/*@ public pure model class IntStackModel

@ {

@ public model IntStackModel();

@ public model boolean isempty();

@ public model IntStackModel push(int e);

@ public model int top();

@ public model IntStackModel pop();

@

@ public axiom ...

@ }

@*/

A model class is a specification-only class.

Just for reasoning, no implementation provided.

Wolfgang Schreiner https://www.risc.jku.at 25/58

1. Basic Class Specifications

2. Classes for Modeling

3. Model-based Class Specifications

4. Rounding Things Up

Wolfgang Schreiner https://www.risc.jku.at 26/58

Specifying the Public Behavior of a Class

There are different styles to specify the public behavior of a class.

Specify the public behavior in the class itself.

Class adds the public behavior to its private behavior.

Specify the public behavior in an abstract class.

Class inherits from this abstract class.

Specify the public behavior in an interface.

Class implements this interface.

Specify the public behavior in an JML specification file.

Class refines this specification.

We will investigate these alternatives in turn.

Wolfgang Schreiner https://www.risc.jku.at 27/58

Public Behavior in Class

class IntStack // V3

{

... // private int[] stack, int number;

/*@ private invariant

@ 0 <= number

@ && number <= stack.length;

/*@ private constraint

@ (\forall int i;

@ 0 <= i && i < number-1;

@ stack[i] == \old(stack[i])); @*/

/*@ public model

@ non_null IntStackModel stackM;

@ represents stackM <- toModel();

@ public model

@ pure IntStackModel toModel(); @*/

/*@ public normal_behavior

@ assignable stackM;

@ ensures stackM.isempty();

@ also private normal_behavior

@ assignable stack, number;

@ ensures stack.length == N

@ && number == 0;

@*/

public IntStack()

{

stack = new int[N];

number = 0;

} //@ nowarn Post;

...

Wolfgang Schreiner https://www.risc.jku.at 28/58

Public Behavior in Class: Considerations

model pure IntstackModel toModel()

Pure function to convert this object to IntStackModel.
Implementation remains unspecified (later).

also ...

Combine public behavior and private behavior.
Method must satisfy each behavior.
Problem with assignable clause of public behavior (later).

nowarn Post

Since implementation of toModel is unspecified, ESC/Java2 cannot
check postcondition of public behavior.
Unfortunately this also prevents checking of private behavior.

Wolfgang Schreiner https://www.risc.jku.at 29/58

Public Behavior in Class (Contd)

...

/*@ public normal_behavior

@ assignable \nothing;

@ ensures \result <==>

@ stackM.isempty();

@ also private normal_behavior

@ assignable \nothing;

@ ensures \result <==>

@ number == 0;

@*/

public /*@ pure @*/ boolean isempty()

{

return number == 0;

} //@ nowarn Post;

/*@ public normal_behavior

@ assignable stackM;

@ ensures stackM ==

@ \old(stackM.push(e));

@ also private normal_behavior

@ assignable

@ stack, stack[*], number;

@ ensures number ==

@ \old(number)+1

@ && stack[number-1] == e;

@*/

public void push(int e)

{

if (number == stack.length)

resize();

stack[number] = e;

number = number+1;

} //@ nowarn Post;

...

Wolfgang Schreiner https://www.risc.jku.at 30/58

Public Behavior in Class (Contd’2)

...

/*@ public normal_behavior

@ requires !stackM.isempty();

@ assignable stackM;

@ ensures

@ \result == \old(stackM.top())

@ && stackM == \old(stackM.pop());

@ also private normal_behavior

@ requires number > 0;

@ assignable number;

@ ensures number == \old(number)-1

@ && \result == stack[number];

@*/

public int pop()

{

//@ assume number > 0;

number = number-1;

return stack[number];

} //@ nowarn Post;

/*@ private normal_behavior

@ assignable stack;

@ ensures \fresh(stack)

@ && stack.length >

@ \old(stack.length)

@ && number == \old(number)

@ && (\forall int i;

@ 0 <= i && i < number;

@ stack[i] ==

@ \old(stack[i])); @*/

private void resize()

{

int s[] =

new int[2*stack.length+1];

for (int i=0; i<stack.length; i++)

s[i] = stack[i];

stack = s;

}

}

Wolfgang Schreiner https://www.risc.jku.at 31/58

Public Behavior in Class: Considerations

assume number > 0in pop()

ESC/Java2 complains.
Due to the lack of the implementation of abstraction function, this
cannot be deduced from the precondition of the public behavior.

No separation of public and private behavior.

Both mixed in same file.

A messy solution.

Wolfgang Schreiner https://www.risc.jku.at 32/58

Frame Condition of Public Behavior

/*@ public normal_behavior

@ assignable stackM;

@ ensures stackM.isempty();

@ also private normal_behavior

@ ...

@*/

public IntStack()

{

stack = new int[N];

number = 0;

} //@ nowarn Post;

assignable stackM

Frame condition says that only model field stackM may be changed.
But actually concrete fields stack and number are changed.
ESC/Java2 complains.

Need to relate model fields to concrete fields.

Wolfgang Schreiner https://www.risc.jku.at 33/58

Data Groups

private /*@ non_null @*/ int[] stack; //@ in stackM;

//@ maps stack[*] \into stackM;

private int number; //@ in stackM;

Declaration of field stackM also introduces a data group stackM.

A data group is a set of storage locations.
Initially, only the location of the declared variable is in data group.

An assignable clause actually refers to data groups.

All storage locations in referenced data group may be changed.

A data group may be extended.

in stackM adds declared variable to data group stackM.
maps stack[*] \into stackM adds all elements of array stack.

By incorporation into the data group stackM, the variable stack, all
elements of stack and number may change, when stackM may change.

Wolfgang Schreiner https://www.risc.jku.at 34/58

Implementation of Abstraction Function

We have not yet defined the abstraction function toModel().

/*@ public pure model IntStackModel toModel()

@ {

@ IntStackModel m = new IntStackModel();

@ for (int i = 0; i < number; i++)

@ m = m.push(stack[i]);

@ return m;

@ } @*/

Practically useful for runtime checking.

Any reference to model variable stackM is replaced by toModel().
Requires an implementation of (the methods of) IntStackModel.

Principially useful for verification.

Requires a specification of toModel which uniquely determines
stackM from stack and number.
Reasoner must be strong enough (ESC/Java2 is not).

Wolfgang Schreiner https://www.risc.jku.at 35/58

Specification of Abstraction Function

/*@ also private normal_behavior

@ ensures \result != null

@ && \result.length() == number

@ && (\forall int i; 0 <= i && i < number;

@ \result.elemAt(i) == stack[number-i-1]);

@ public pure model IntStackModel toModel()

@ {

@ IntStackModel m = new IntStackModel();

@ for (int i = 0; i < number; i++)

@ m = m.push(stack[i]);

@ return m;

@ }

@*/

Relates the elements of stackM to those of stack.

Wolfgang Schreiner https://www.risc.jku.at 36/58

Generalization of Model Type

class IntStackModel

{

...

//@ public model int length();

//@ public model int elemAt(int i);

/*@ public axiom

@ (\forall IntStackModel s; s!= null;

@ (\forall int e, i; ;

@ new IntStackModel().length() == 0 &&

@ s.push(e).length() == 1+s.length() &&

@ s.elemAt(0) == s.top() &&

@ s.elemAt(i+1) == s.pop().elemAt(i)));

@*/

}

Recursive definition of length and of elemAt.

Wolfgang Schreiner https://www.risc.jku.at 37/58

Public Behavior in Abstract Class

public abstract class IntStackBase // V4

{

/*@ public model

@ non_null IntStackModel stackM;

@ represents stackM <- toModel();

@ public model

@ pure IntStackModel toModel();

@*/

/*@ public normal_behavior

@ assignable stackM;

@ ensures stackM.isempty();

@*/

public IntStackBase ()

{

} //@ nowarn Post, Invariant;

// called by subclass constructor

/*@ public normal_behavior

@ ensures \result <==>

@ stackM.isempty(); @*/

public abstract /*@ pure @*/

boolean isempty();

/*@ public normal_behavior

@ assignable stackM;

@ ensures stackM ==

@ \old(stackM.push(e)); @*/

public abstract void push(int e);

/*@ public normal_behavior

@ requires !isempty();

@ assignable stackM;

@ ensures \result ==

@ \old(stackM.top())

@ && stackM ==

@ \old(stackM.pop()); @*/

public abstract int pop();

}

Wolfgang Schreiner https://www.risc.jku.at 38/58

Public Behavior in Abstract Class (Contd)

class IntStack extends IntStackBase

{

private /*@ non_null @*/

int[] stack; //@ in stackM;

//@ maps stack[*] \into stackM;

private int number; //@ in stackM;

/*@ private invariant

@ 0 <= number

@ && number <= stack.length; @*/

/*@ private constraint

@ (\forall int i;

@ 0 <= i && i < number-1;

@ stack[i] == \old(stack[i]));

@*/

private final int N = 10;

/*@ private normal_behavior

@ assignable stackM,

@ stack, number;

@ ensures stack.length == N

@ && number == 0;

@ also public normal_behavior

@ assignable stackM;

@ ensures stackM.isempty(); @*/

public IntStack()

{ stack = new int[N];

number = 0;

} //@ nowarn Post, Invariant;

...

Wolfgang Schreiner https://www.risc.jku.at 39/58

Public Behavior in Abstract Class (Contd’2)

...

/*@ also private normal_behavior

@ assignable \nothing;

@ ensures \result <==> number == 0; @*/

public /*@ pure @*/ boolean isempty()

{ return number == 0;

} //@ nowarn Post, Invariant;

/*@ also private normal_behavior

@ assignable stack, stack[*], number;

@ ensures number ==

@ \old(number)+1

@ && stack[number-1] == e; @*/

public void push(int e)

{

if (number == stack.length)

resize();

stack[number] = e;

number = number+1;

} //@ nowarn Post, Invariant;

/*@ also private normal_behavior

@ requires number > 0;

@ assignable number;

@ ensures number ==

@ \old(number)-1

@ && \result ==

@ stack[number];

@*/

public int pop()

{

//@ assume number > 0;

number = number-1;

return stack[number];

} //@ nowarn Post, Invariant;

...

Wolfgang Schreiner https://www.risc.jku.at 40/58

Public Behavior in Abstract Class (Contd’3)

...

/*@ private normal_behavior

@ assignable stack;

@ ensures \fresh(stack)

@ && stack.length > \old(stack.length)

@ && number == \old(number)

@ && (\forall int i;

@ 0 <= i && i < number;

@ stack[i] == \old(stack[i])); @*/

private void resize()

{

int s[] = new int[2*stack.length+1];

for (int i=0; i<stack.length; i++)

s[i] = stack[i];

stack = s;

}

}

Wolfgang Schreiner https://www.risc.jku.at 41/58

Public Behavior in Abs.Class: Considerations

Clear separation of behaviors.

Public behavior in abstract superclass.
Private behavior in concrete subclass.

model stackM

Model field inherited by any subclass of abstract class.

Constructor must be specified in abstract class.

Abstract class always has default constructor.

also private normal behavior

Extension of public behavior by private behavior.

assignable stackM, ... in constructor IntStack()

Frame condition of private behavior!
Constructor IntStack() calls constructor InstStackBase().

Quite clean solution.

Wolfgang Schreiner https://www.risc.jku.at 42/58

Public Behavior in Interface

public interface IntStackInterface // V5

{

/*@

@ public instance model

@ non_null IntStackModel stackM;

@ represents stackM <- toModel();

@ public model

@ pure IntStackModel toModel();

@*/

/*@ public normal_behavior

@ assignable \nothing;

@ ensures \result <==>

@ stackM.isempty();

@*/

public /*@ pure @*/ boolean isempty();

/*@ public normal_behavior

@ assignable stackM;

@ ensures stackM ==

@ \old(stackM.push(e));

@*/

public void push(int e);

/*@ public normal_behavior

@ requires !stackM.isempty();

@ assignable stackM;

@ ensures \result ==

@ \old(stackM.top())

@ && stackM ==

@ \old(stackM.pop());

@*/

public int pop();

}

Wolfgang Schreiner https://www.risc.jku.at 43/58

Public Behavior in Interface (Contd)

class IntStack implements IntStackInterface

{

private /*@ non_null @*/ int[] stack;

//@ in stackM;

//@ maps stack[*] \into stackM;

private int number; //@ in stackM;

/*@ private invariant 0 <= number

@ && number <= stack.length; */

/*@ private constraint

@ (\forall int i;

@ 0 <= i && i < number-1;

@ stack[i] == \old(stack[i]));

@*/

private final int N = 10;

/*@ private normal_behavior

@ assignable stack, number;

@ ensures stack.length == N

@ && number == 0;

@ also public normal_behavior

@ assignable stackM;

@ ensures stackM.isempty();

@*/

public IntStack()

{

stack = new int[N];

number = 0;

} //@ nowarn Post, Invariant;

...

Wolfgang Schreiner https://www.risc.jku.at 44/58

Public Behavior in Interface (Contd’2)

...

/*@ also private normal_behavior

@ assignable \nothing;

@ ensures \result <==> number == 0;

@*/

public /*@ pure @*/ boolean isempty()

{ return number == 0;

} //@ nowarn Post, Invariant;

/*@ also private normal_behavior

@ assignable stack, stack[*], number;

@ ensures number == \old(number)+1

@ && stack[number-1] == e; @*/

public void push(int e)

{ if (number == stack.length)2

resize();

stack[number] = e;

number = number+1;

} //@ nowarn Post, Invariant;

/*@ also private normal_behavior

@ requires number > 0;

@ assignable number;

@ ensures number ==

@ \old(number)-1

@ && \result == stack[number];

@*/

public int pop()

{

//@ assume number > 0;

number = number-1;

return stack[number];

} //@ nowarn Post, Invariant;

...

Wolfgang Schreiner https://www.risc.jku.at 45/58

Public Behavior in Interface (Contd’3)

...

/*@ private normal_behavior

@ assignable stack;

@ ensures \fresh(stack)

@ && stack.length > \old(stack.length)

@ && number == \old(number)

@ && (\forall int i;

@ 0 <= i && i < number;

@ stack[i] == \old(stack[i])); @*/

private void resize()

{ int s[] = new int[2*stack.length+1];

for (int i=0; i<stack.length; i++)

s[i] = stack[i];

stack = s;

}

}

Wolfgang Schreiner https://www.risc.jku.at 46/58

Public Behavior in Interface: Considerations

Clear separation of behaviors.

Public behavior in interface.
Private behavior in class.

instance model stackM

Model field of any class implementing the interface.

No constructor in interface possible.

Both public and private behavior of constructor specified in class.

also private normal behavior

Extension of public behavior specified in interface by private behavior.

Rather clean solution.

Wolfgang Schreiner https://www.risc.jku.at 47/58

Public Behavior in JML Specification File

// V6, file "IntStack.jml"

public class IntStack

{

/*@ public model

@ non_null IntStackModel stackM;

@ represents stackM <- toModel();

@ public model

@ pure IntStackModel toModel(); @*/

/*@ public normal_behavior

@ assignable stackM;

@ ensures stackM.isempty(); @*/

public IntStack();

/*@ public normal_behavior

@ assignable \nothing;

@ ensures \result <==> stackM.isempty(); @*/

public /*@ pure @*/ boolean isempty();

/*@ public normal_behavior

@ assignable stackM;

@ ensures stackM ==

@ \old(stackM.push(e)); @*/

public void push(int e);

/*@ public normal_behavior

@ requires !stackM.isempty();

@ assignable stackM;

@ ensures \result ==

@ \old(stackM.top())

@ && stackM ==

@ \old(stackM.pop()); @*/

public int pop();

}

Wolfgang Schreiner https://www.risc.jku.at 48/58

Public Behavior in JML Spec. File (Contd)

//@ refine "IntStack.jml";

class IntStack

{

private /*@ non_null @*/

int[] stack; //@ in stackM;

//@ maps stack[*] \into stackM;

private int number; //@ in stackM;

/*@ private invariant 0 <= number

@ && number <= stack.length; @*/

/*@ private constraint

@ (\forall int i;

@ 0 <= i && i < number-1;

@ stack[i] == \old(stack[i])); @*/

private final int N = 10;

/*@ also private normal_behavior

@ assignable stack, number;

@ ensures stack.length == N

@ && number == 0; @*/

public IntStack()

{

stack = new int[N];

number = 0;

} //@ nowarn Post, Invariant;

/*@ also private normal_behavior

@ assignable \nothing;

@ ensures \result <==>

@ number == 0; @*/

public /*@ pure @*/

boolean isempty()

{

return number == 0;

} //@ nowarn Post, Invariant;

...

Wolfgang Schreiner https://www.risc.jku.at 49/58

Public Behavior in JML Spec. File (Contd’2)

/*@ also private normal_behavior

@ assignable stack, stack[*], number;

@ ensures number == \old(number)+1

@ && stack[number-1] == e; @*/

public void push(int e)

{ if (number == stack.length)

resize();

stack[number] = e;

number = number+1;

} //@ nowarn Post, Invariant;

/*@ also private normal_behavior

@ requires number > 0;

@ assignable number;

@ ensures number == \old(number)-1

@ && \result == stack[number]; @*/

public int pop()

{ //@ assume number>0;

number = number-1;

return stack[number];

} //@ nowarn Post, Invariant;

/*@ private normal_behavior

@ assignable stack;

@ ensures \fresh(stack)

@ && stack.length >

@ \old(stack.length)

@ && number == \old(number)

@ && (\forall int i;

@ 0 <= i && i < number;

@ stack[i] == \old(stack[i])); @*/

private void resize()

{

int s[] =

new int[2*stack.length+1];

for (int i=0; i<stack.length; i++)

s[i] = stack[i];

stack = s;

}

}

Wolfgang Schreiner https://www.risc.jku.at 50/58

Public Behavior in JML File: Considerations

Clear separation of behaviors.

Public behavior in JML specification file.
Private behavior in Java implementation file.

model stackM

Model field of any class refining the specification.

Also constructor specification in JML file.

Only private behavior of constructor in implementation file.

refine "IntStack.jml¨

All entities specified in specification file “IntStack.jml” must be
implemented in implementation file “IntStack.java”.

also private normal behavior

Extension of public behavior specified in JML file by private behavior.

Very clean solution.

Wolfgang Schreiner https://www.risc.jku.at 51/58

1. Basic Class Specifications

2. Classes for Modeling

3. Model-based Class Specifications

4. Rounding Things Up

Wolfgang Schreiner https://www.risc.jku.at 52/58

Desugaring Specifications

A normal behavior specification is translated as follows.

public normal behavior

requires P;

assignable V;

ensures Q;

⇒

public behavior

requires P;

assignable V;

ensures Q;

signals (Exception e) false;

The method does not throw an exception.

Wolfgang Schreiner https://www.risc.jku.at 53/58

Desugaring Specifications (Contd)

A exceptional behavior specification is translated as follows.

public exceptional behavior

requires P;

assignable V;

signals (E e) Q;

⇒

public behavior

requires P;

assignable V;

ensures false;

signals (E e) Q;

The method does not return normally.

Wolfgang Schreiner https://www.risc.jku.at 54/58

Desugaring Specifications (Contd’2)

Two public behavior specifications are combined as follows.

public behavior

requires P1;

assignable V1;

ensures Q1;

signals (E1 e) R1;

also public behavior

requires P2;

assignable V2;

ensures Q2;

signals (E2 e) R2;

⇒

public behavior

requires P1 || P2;

assignable V1 if P1,

V2 if P2;

ensures (\old(P1) ==> Q1)

&& (\old(P2) ==> Q2);

signals (E1 e1) \old(P1) && R1;

signals (E2 e2) \old(P2) && R2;

Basically the same for combining a public and a private behavior.

Wolfgang Schreiner https://www.risc.jku.at 55/58

The Meaning of a Specification

public behavior

requires P;

assignable V if M, ...;

ensures Q;

signals (E1 e1) R1;

...

The method may be called, if P holds on the pre-state.

The conditions of multiple requires clauses are disjoined by ||.

The method may change V, if M holds.

And so on for the other variables in the assignable clause.

If the method returns normally, Q holds on the pre/post-state pair.

The conditions of multiple ensures clauses are conjoined by &&.

If the method throws an exception of type E1, R1 holds on the
pre/post-state pair.

And so on for the other signals clauses.

Wolfgang Schreiner https://www.risc.jku.at 56/58

Specifications and Subtyping

Combining specifications works also for subtyping.

If a class C2 inherits from a class C1,

C2 inherits all non-private entities of C1.

If C2 overrides some non-private method m of C1,

C2 combines C1’s non-private behavior specification of m with its own
behavior specification of m.
This is why the new behavior specification of m in C2 must begin
with also.

Thus an object of type C2 behaves like an object of type C1.

C2 specifies a behavioral subtype of C1.

Thus we can say “a C2 object is a C1 object”.

Wolfgang Schreiner https://www.risc.jku.at 57/58

Further Features of JML

Not covered in this course . . .

Specification shortcuts

\nonnullelements, \not modified, . . .

Redundant specifications and examples.

ensures redundantly, invariant redundantly,
represents redundantly, implies that, for example, . . .

Non-functional specifications.

Execution time, execution space, methods invoked, . . .

Concurrency.

Experimental support of MultiJava.

. . .

JML is (perhaps too) large and still evolving (latest version: July 2022).

Wolfgang Schreiner https://www.risc.jku.at 58/58

