Specifying and Verifying Programs

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria https://www.risc.jku.at

We will discuss two (closely interrelated) calculi.

• Hoare Calculus: $\{P\} \ c \ \{Q\}$

If command c is executed in a pre-state with property P and terminates, it yields a post-state with property Q.

$$\{x = a \land y = b\}x := x + y\{x = a + y \land y = b\}$$

Predicate Transformers: wp(c, Q) = P

If the execution of command *c* shall yield a post-state with property *Q*, it must be executed in a pre-state with property *P*. $wp(x := x + y, x = a + y \land y = b) = (x + y = a + y \land y = b)$

The Hoare calculs can be easily applied in manual verifications; for automation, the predicate transformers calculus is more suitable (both calculi can be also combined).

1. The Hoare Calculus

- 2. Checking Verification Conditions
- 3. Predicate Transformers
- 4. Termination
- 5. Abortion
- 6. Generating Verification Conditions
- 7. Proving Verification Conditions
- 8. Procedures

Wolfgang Schreiner

First/best-known calculus for program reasoning (C. A. R. Hoare, 1969).

- "Hoare triple": $\{P\} \ c \ \{Q\}$
 - Logical propositions P and Q, program command c.
 - The Hoare triple is itself a logical proposition.
 - The Hoare calculus gives rules for constructing true Hoare triples.
- Partial correctness interpretation of {*P*} *c* {*Q*}:

"If c is executed in a state in which P holds, then it terminates in a state in which Q holds unless it aborts or runs forever."

- Program does not produce wrong result.
- But program also need not produce any result.
 - Abortion and non-termination are not (yet) ruled out.
- **Total correctness** interpretation of $\{P\} \ c \ \{Q\}$:

"If c is executed in a state in which P holds, then it terminates in a state in which Q holds."

Program produces the correct result.

We will use the partial correctness interpretation for the moment.

Wolfgang Schreiner

Hoare calculus rules are inference rules with Hoare triples as proof goals.

$$\frac{\{P_1\} c_1 \{Q_1\} \dots \{P_n\} c_n \{Q_n\} \quad VC_1, \dots, VC_m}{\{P\} c \{Q\}}$$

- Application of a rule to a triple $\{P\} \ c \ \{Q\}$ to be verified yields
 - other triples $\{P_1\} c_1 \{Q_1\} \dots \{P_n\} c_n \{Q_n\}$ to be verified, and
 - formulas VC_1, \ldots, VC_m (the verification conditions) to be proved.
- Given a Hoare triple $\{P\}c\{Q\}$ as the root of the verification tree:
 - The rules are repeatedly applied until the leaves of the tree do not contain any more Hoare triples.
 - If all verification conditions in the tree can be proved, the root of the tree represents a valid Hoare triple.

The Hoare calculus generates verification conditions such that the validity of the conditions implies the validity of the original Hoare triple.

$$\frac{P \Rightarrow P' \quad \{P'\} \ c \ \{Q'\} \quad Q' \Rightarrow Q}{\{P\} \ c \ \{Q\}}$$

Forward: If we have shown A_1 and A_2 , then we have also shown B.

Backward: To show B, it suffices to show A_1 and A_2 .

 $\frac{A_1 A_2}{P}$

- Interpretation of above sentence:
 - To show that, if *P* holds, then *Q* holds after executing *c*, it suffices to show this for a *P'* weaker than *P* and a *Q'* stronger than *Q*.

Precondition may be weakened, postcondition may be strengthened.

 $\{P\}$ skip $\{P\}$ {true} abort {false}

- The **skip** command does not change the state; if *P* holds before its execution, then *P* thus holds afterwards as well.
- The **abort** command aborts execution and thus trivially satisfies partial correctness.
 - Axiom implies $\{P\}$ **abort** $\{Q\}$ for arbitrary P, Q.

Useful commands for reasoning and program transformations.

$\{Q[e/x]\} \ x := e \ \{Q\}$

Syntax

- Variable *x*, expression *e*.
- $Q[e/x] \dots Q$ where every free occurrence of x is replaced by e.
- Interpretation
 - To make sure that Q holds for x after the assignment of e to x, it suffices to make sure that Q holds for e before the assignment.
- Partial correctness
 - Evaluation of *e* may abort.

$$\begin{cases} x + 3 < 5 \} & x := x + 3 & \{x < 5\} \\ \{x < 2\} & x := x + 3 & \{x < 5\} \end{cases}$$

$$\{Q[a[i \mapsto e]/a]\} a[i] := e \{Q\}$$

- An array is modelled as a function $a: I \rightarrow V$.
 - Index set I, value set V.
 - $a[i] = e \dots$ array *a* contains at index *i* the value *e*.

Term $a[i \mapsto e]$ ("array a updated by assigning value e to index i")

- A new array that contains at index *i* the value *e*.
- All other elements of the array are the same as in *a*.
- Thus array assignment becomes a special case of scalar assignment.
 - Think of "a[i] := e" as " $a := a[i \mapsto e]$ ".

$$\{a[i \mapsto x][1] > 0\}$$
 $a[i] := x \{a[1] > 0\}$

Arrays are here considered as basic values (no pointer semantics).

Wolfgang Schreiner

Array Assignments

How to reason about $a[i \mapsto e]$?

$$Q[\underline{a[i \mapsto e]}[j]]$$

$$\xrightarrow{\sim}$$

$$(i = j \Rightarrow Q[e]) \land (i \neq j \Rightarrow Q[a[j]])$$

Array Axioms

$$i = j \Rightarrow a[i \mapsto e][j] = e$$

 $i \neq j \Rightarrow \overline{a[i \mapsto e]}[j] = a[j]$

$$\begin{array}{ll} \{\underline{a[i \mapsto x]}[1] > 0\} & a[i] := x & \{a[1] > 0\} \\ \{(i = 1 \Rightarrow x > 0) \land (i \neq 1 \Rightarrow a[1] > 0)\} & a[i] := x & \{a[1] > 0\} \end{array}$$

Get rid of "array update terms" when applied to indices.

Wolfgang Schreiner

$$\frac{\{P\}\ c_1\ \{R\}\ \{R\}\ c_2\ \{Q\}}{\{P\}\ c_1; c_2\ \{Q\}}$$

Interpretation

- To show that, if *P* holds before the execution of c_1 ; c_2 , then *Q* holds afterwards, it suffices to show for some *R* that
 - if P holds before c_1 , that R holds afterwards, and that
 - if R holds before c_2 , then Q holds afterwards.

Problem: find suitable *R*.

Easy in many cases (see later).

$$\frac{\{x+y-1>0\}\ y:=y-1\ \{x+y>0\}\ \ \{x+y>0\}\ x:=x+y\ \{x>0\}}{\{x+y-1>0\}\ y:=y-1; x:=x+y\ \{x>0\}}$$

The calculus itself does not indicate how to find intermediate property.

Conditionals

$$\frac{\{P \land b\} c_1 \{Q\} \{P \land \neg b\} c_2 \{Q\}}{\{P\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{Q\}}$$
$$\frac{\{P \land b\} c \{Q\} (P \land \neg b) \Rightarrow Q}{\{P\} \text{ if } b \text{ then } c \{Q\}}$$

Interpretation

- To show that, if *P* holds before the execution of the conditional, then *Q* holds afterwards,
- it suffices to show that the same is true for each conditional branch, under the additional assumption that this branch is executed.

$$\frac{\{x \neq 0 \land x \ge 0\} \ y := x \ \{y > 0\} \ \{x \neq 0 \land x \ge 0\} \ y := -x \ \{y > 0\}}{\{x \neq 0\} \ \text{if } x \ge 0 \ \text{then } y := x \ \text{else } y := -x \ \{y > 0\}}$$

Wolfgang Schreiner

Loops

{true} loop {false}

$${I \land b} c {I} {I \land \neg b} {I \land \neg b}$$

Interpretation:

 The loop command does not terminate and thus trivially satisfies partial correctness.

• Axiom implies $\{P\}$ loop $\{Q\}$ for arbitrary P, Q.

If it is the case that

I holds before the execution of the while-loop and

I also holds after every iteration of the loop body,

then I holds also after the execution of the loop (together with the negation of the loop condition b).

I is a loop invariant.

Problem:

Rule for **while**-loop does not have arbitrary pre/post-conditions *P*, *Q*.

In practice, we combine this rule with the strengthening/weakening-rule.

Wolfgang Schreiner

$$\frac{P \Rightarrow I \quad \{I \land b\} \ c \ \{I\} \quad (I \land \neg b) \Rightarrow Q}{\{P\} \text{ while } b \text{ do } c \ \{Q\}}$$

Interpretation:

- To show that, if before the execution of a while-loop the property P holds, after its termination the property Q holds, it suffices to show for some property I (the loop invariant) that
 - I holds before the loop is executed (i.e. that P implies I),
 - if I holds when the loop body is entered (i.e. if also b holds), that after the execution of the loop body I still holds,
 - when the loop terminates (i.e. if b does not hold), I implies Q.
- Problem: find appropriate loop invariant *I*.
 - Strongest relationship between all variables modified in loop body.

The calculus itself does not indicate how to find suitable loop invariant.

Example

$$I :\Leftrightarrow s = \sum_{j=1}^{i-1} j \land 1 \le i \le n+1$$

$$(n \ge 0 \land s = 0 \land i = 1) \Rightarrow I$$

$$\{I \land i \le n\} \ s := s+i; i := i+1 \ \{I\}$$

$$(I \land i \le n) \Rightarrow s = \sum_{j=1}^{n} j$$

$$\{n \ge 0 \land s = 0 \land i = 1\} \text{ while } i \le n \text{ do } (s := s+i; i := i+1) \ \{s = \sum_{j=1}^{n} j\}$$

The invariant captures the "essence" of a loop; only by giving its invariant, a true understanding of a loop is demonstrated.

1. The Hoare Calculus

2. Checking Verification Conditions

- 3. Predicate Transformers
- 4. Termination
- 5. Abortion
- 6. Generating Verification Conditions
- 7. Proving Verification Conditions
- 8. Procedures

Wolfgang Schreiner

A Program Verification

• Verification of the following Hoare triple:

{*Input*} while $i \le n$ do (s := s + i; i := i + 1) {*Output*}

Auxiliary predicates:

 $\begin{array}{l} \textit{Input} :\Leftrightarrow n \geq 0 \land s = 0 \land i = 1 \\ \textit{Output} :\Leftrightarrow s = \sum_{j=1}^{n} j \\ \textit{Invariant} :\Leftrightarrow s = \sum_{j=1}^{i-1} j \land 1 \leq i \leq n+1 \end{array}$

Verification conditions:

 $\begin{array}{l} A:\Leftrightarrow \textit{Input} \Rightarrow \textit{Invariant} \\ B:\Leftrightarrow \textit{Invariant} \land i \leq n \Rightarrow \textit{Invariant}[i+1/i][s+i/s] \\ C:\Leftrightarrow \textit{Invariant} \land i \leq n \Rightarrow \textit{Output} \end{array}$

If the verification conditions are valid, the Hoare triple is true.


```
val N:Nat; type number = \mathbb{N}[N]; type index = \mathbb{N}[N+1]; type result = \mathbb{N}[N\cdot(1+N)/2];
proc summation(n:number): result
  requires n > 0:
  ensures result = \sum j:number with 1 \le j \land j \le n. j;
ł
  var s:result := 0;
  var i:index := 1;
  while i < n do
    invariant s = \sum j:number with 1 \le j \land j \le i-1. j;
    invariant 1 < i \land i < n+1;
  Ł
    s := s+i;
    i := i+1:
  ን
  return s;
}
```

We check for some N the program execution; this implies that the invariant is not too strong.

Wolfgang Schreiner

pred Input(n:number, s:result, i:index) $\Rightarrow n \ge 0 \land s = 0 \land i = 1;$ pred Output(n:number, s:result) $\Rightarrow \sum j:$ number with $1 \le j \land j \le n. j;$ pred Invariant(n:number, s:result, i:index) $\Rightarrow (s = \sum j:$ number with $1 \le j \land j \le i-1. j) \land 1 \le i \land i \le n+1;$

theorem A(n:number, s:result, i:index) \Leftrightarrow Input(n, s, i) \Rightarrow Invariant(n, s, i); theorem B(n:number, s:result, i:index) \Leftrightarrow Invariant(n, s, i) \land i \leq n \Rightarrow Invariant(n, s+i, i+1); theorem C(n:number, s:result, i:index) \Leftrightarrow Invariant(n, s, i) $\land \neg$ (i \leq n) \Rightarrow Output(n, s);

We check for some N that the verification conditions are valid; this also implies that the invariant is not too weak.

Verification of the following Hoare triple:

$$\{ olda = a \land oldx = x \}$$

$$i := 0; r := -1; n = |a|$$
while $i < n \land r = -1$ do
if $a[i] = x$
then $r := i$
else $i := i + 1$

$$\{ a = olda \land x = oldx \land$$

$$((r = -1 \land \forall i : 0 \le i < |a| \Rightarrow a[i] \ne x) \lor$$

$$(0 \le r < |a| \land a[r] = x \land \forall i : 0 \le i < r \Rightarrow a[i] \ne x)) \}$$
Invariant :\$\implies olda = a \land oldx = x \land n = |a| \land
$$0 \le i \le n \land \forall j : 0 \le j < i \Rightarrow a[j] \ne x \land$$

$$(r = -1 \lor (r = i \land i < n \land a[r] = x))$$

Find the smallest index r of an occurrence of value x in array a (r = -1, if x does not occur in a).

Wolfgang Schreiner

RISCAL: Checking Program Execution

```
val N:N; val M:N;
type index = \mathbb{Z}[-1,N]; type elem = \mathbb{N}[M]; type array = Array[N,elem];
proc search(a:array, x:elem): index
  ensures (result = -1 \land \foralli:index. 0 \leq i \land i \lt N \Rightarrow a[i] \neq x) \lor
             (0 < result \land result < N \land
               a[result] = x \land \forall i:index. 0 \le i \land i < result \Rightarrow a[i] \ne x);
ł
  var i:index = 0;
  var r:index = -1:
  while i < N \land r = -1 do
     invariant 0 \leq i \land i \leq N \land \forall j:index. 0 \leq j \land j < i \Rightarrow a[j] \neq x;
     invariant r = -1 \lor (r = i \land i \lt N \land a[r] = x):
  ł
     if a[i] = x
      then r := i:
       else i := i+1;
  }
  return r:
}
```

We check for some N, M the program execution.

Wolfgang Schreiner

$$\textit{Input} :\Leftrightarrow \textit{olda} = a \land \textit{oldx} = x \land n = \textit{length}(a) \land i = 0 \land r = -1$$

$$\begin{array}{l} \textit{Output} :\Leftrightarrow \textit{a} = \textit{olda} \land x = \textit{oldx} \land \\ ((r = -1 \land \forall i : 0 \le i < \textit{length}(\textit{a}) \Rightarrow \textit{a}[i] \neq x) \lor \\ (0 \le r < \textit{length}(\textit{a}) \land \textit{a}[r] = x \land \forall i : 0 \le i < r \Rightarrow \textit{a}[i] \neq x)) \end{array}$$

$$\begin{array}{l} \textit{Invariant} :\Leftrightarrow \textit{olda} = a \land \textit{oldx} = x \land n = |a| \land \\ 0 \leq i \leq n \land \forall j : 0 \leq j < i \Rightarrow a[j] \neq x \land \\ (r = -1 \lor (r = i \land i < n \land a[r] = x)) \end{array}$$

 $\begin{array}{l} A:\Leftrightarrow \textit{Input} \Rightarrow \textit{Invariant} \\ B_1:\Leftrightarrow \textit{Invariant} \land i < n \land r = -1 \land a[i] = x \Rightarrow \textit{Invariant}[i/r] \\ B_2:\Leftrightarrow \textit{Invariant} \land i < n \land r = -1 \land a[i] \neq x \Rightarrow \textit{Invariant}[i+1/i] \\ C:\Leftrightarrow \textit{Invariant} \land \neg(i < n \land r = -1) \Rightarrow \textit{Output} \end{array}$

The verification conditions A, B_1, B_2, C must be valid.

Wolfgang Schreiner

RISCAL: Checking Verification Conditions

pred Input(i:index, r:index) \Leftrightarrow i = 0 \land r = -1; pred Output(a:array, x:elem, i:index, r:index) \Leftrightarrow (r = -1 \land \forall i:index. 0 < i \land i < N \Rightarrow a[i] \neq x) \lor $(0 < r \land r < N \land a[r] = x \land \forall i:index. 0 < i \land i < r \Rightarrow a[i] \neq x);$ pred Invariant(a:array, x:elem, i:index, r:index) ⇔ $0 < i \land i < N \land (\forall j: index. 0 < j \land j < i \Rightarrow a[j] \neq x) \land$ $(r = -1 \lor (r = i \land i \lt N \land a[r] = x));$ theorem A(a:array, x:elem, i:index, r:index) \Leftrightarrow Input(i, r) \Rightarrow Invariant(a, x, i, r); theorem B1(a:array, x:elem, i:index, r:index) \Leftrightarrow Invariant(a, x, i, r) \land i < N \land r = -1 \land a[i] = x \Rightarrow Invariant(a, x, i, i); theorem B2(a:array, x:elem, i:index, r:index) \Leftrightarrow Invariant(a, x, i, r) \land i < N \land r = -1 \land a[i] \neq x \Rightarrow Invariant(a, x, i+1, r); theorem C(a:array, x:elem, i:index, r:index) \Leftrightarrow Invariant(a, x, i, r) $\land \neg$ (i < N \land r = -1) \Rightarrow Output(a, x, i, r);

We check for some N, M that the verification conditions are valid.

Wolfgang Schreiner

- 1. The Hoare Calculus
- 2. Checking Verification Conditions
- 3. Predicate Transformers
- 4. Termination
- 5. Abortion
- 6. Generating Verification Conditions
- 7. Proving Verification Conditions
- 8. Procedures

Wolfgang Schreiner

Implication of rule for command sequences and rule for assignments:

$$\{ \frac{\{P\} \ c \ \{Q[e/x]\}}{\{P\} \ c; x := e \ \{Q\}}$$

Interpretation

- If the last command of a sequence is an assignment, we can remove the assignment from the proof obligation.
- By multiple application, assignment sequences can be removed from the back to the front.

A calculus for "backward reasoning" (E.W. Dijkstra, 1975).

- Predicate transformer wp
 - Function "wp" that takes a command *c* and a postcondition *Q* and returns a precondition.
 - Read wp(c, Q) as "the weakest precondition of c w.r.t. Q".
- wp(c, Q) is a precondition for c that ensures Q as a postcondition.
 Must satisfy {wp(c, Q)} c {Q}.
- wp(c, Q) is the weakest such precondition.
 - Take any P such that $\{P\} \ c \ \{Q\}$.
 - Then $P \Rightarrow wp(c, Q)$.
- Consequence: $\{P\} \ c \ \{Q\} \ \text{iff} \ (P \Rightarrow wp(c, Q))$
 - We want to prove $\{P\} \ c \ \{Q\}$.
 - We may prove $P \Rightarrow wp(c, Q)$ instead.

Verification is reduced to the calculation of weakest preconditions.

The weakest precondition of each program construct.

$$\begin{split} & \mathsf{wp}(\mathsf{skip}, Q) = Q \\ & \mathsf{wp}(\mathsf{abort}, Q) = \mathsf{true} \\ & \mathsf{wp}(\mathbf{abort}, Q) = \mathsf{true} \\ & \mathsf{wp}(x := e, Q) = Q[e/x] \\ & \mathsf{wp}(c_1; c_2, Q) = \mathsf{wp}(c_1, \mathsf{wp}(c_2, Q)) \\ & \mathsf{wp}(\mathsf{if} \ b \ \mathsf{then} \ c_1 \ \mathsf{else} \ c_2, Q) = (b \Rightarrow \mathsf{wp}(c_1, Q)) \land (\neg b \Rightarrow \mathsf{wp}(c_2, Q)) \\ & \mathsf{wp}(\mathsf{if} \ b \ \mathsf{then} \ c, Q) \Leftrightarrow (b \Rightarrow \mathsf{wp}(c, Q)) \land (\neg b \Rightarrow Q) \\ & \mathsf{wp}(\mathsf{while} \ b \ \mathsf{do} \ c, Q) = \dots \end{split}$$

Loops represent a special problem (see later).

Example

$$WP = wp(if a[i] < x then {a[i] := a[i-1]; i := i-1}, a[i+1] = b)$$

= $(a[i] < x \Rightarrow WP_1) \land (\neg (a[i] < x) \Rightarrow a[i+1] = b)$
= $(a[i] < x \Rightarrow WP_1) \land (a[i] \ge x \Rightarrow a[i+1] = b)$
$$WP_1 = wp({a[i] := a[i-1]; i := i-1}, a[i+1] = b)$$

= $wp(a[i] := a[i-1], a[(i-1)+1] = b)$
= $wp(a[i] := a[i-1], a[i] = b)$
= $wp(a := a[i \mapsto a[i-1]], a[i] = b)$
= $a[i \mapsto a[i-1]][i] = b$
= $(i = i \Rightarrow a[i-1] = b) \land (i \neq i \Rightarrow a[i] = b)$
= $a[i-1] = b$
$$WP \equiv (a[i] < x \Rightarrow a[i-1] = b) \land (a[i] \ge x \Rightarrow a[i+1] = b)$$

Wolfgang Schreiner

Sometimes, we want to derive a postcondition from a given precondition.

$$\{P\} \ x := e \ \{\exists x_0 : P[x_0/x] \land x = e[x_0/x]\}$$

Forward Reasoning

- What is the maximum we know about the post-state of an assignment x := e, if the pre-state satisfies P?
- We know that *P* holds for some value x_0 (the value of *x* in the pre-state) and that *x* equals $e[x_0/x]$.

$$\begin{cases} x \ge 0 \land y = a \\ x := x + 1 \\ \{ \exists x_0 : x_0 \ge 0 \land y = a \land x = x_0 + 1 \} \\ (\Leftrightarrow (\exists x_0 : x_0 \ge 0 \land x = x_0 + 1) \land y = a) \\ (\Leftrightarrow x > 0 \land y = a) \end{cases}$$

Strongest Postcondition

A calculus for forward reasoning.

- Predicate transformer sp
 - Function "sp" that takes a precondition *P* and a command *c* and returns a postcondition.
 - Read sp(c, P) as "the strongest postcondition of c w.r.t. P".
- sp(c, P) is a postcondition for c that is ensured by precondition P.
 Must satisfy {P} c {sp(c, P)}.
- sp(c, P) is the strongest such postcondition.
 - Take any P, Q such that $\{P\} \ c \ \{Q\}$.
 - Then $\operatorname{sp}(c, P) \Rightarrow Q$.
- Consequence: $\{P\} \ c \ \{Q\} \ \text{iff} \ (\text{sp}(c, P) \Rightarrow Q).$
 - We want to prove $\{P\} \ c \ \{Q\}$.
 - We may prove $sp(c, P) \Rightarrow Q$ instead.

Verification is reduced to the calculation of strongest postconditions.

The strongest postcondition of each program construct.

$$sp(skip, P) = P$$

$$sp(abort, P) = false$$

$$sp(x := e, P) = \exists x_0 : P[x_0/x] \land x = e[x_0/x]$$

$$sp(c_1; c_2, P) = sp(c_2, sp(c_1, P))$$

$$sp(if b then c_1 else c_2, P) \Leftrightarrow sp(c_1, P \land b) \lor sp(c_2, P \land \neg b)$$

$$sp(if b then c, P) = sp(c, P \land b) \lor (P \land \neg b)$$

$$sp(while b do c, P) = \dots$$

Forward reasoning as a (less-known) alternative to backward-reasoning.

Example

$$\begin{split} SP &= \mathrm{sp}(\mathrm{if} \ a[i] < \times \mathrm{then} \ \{\mathrm{a}[i] := \mathrm{a}[i-1]; \ i := \mathrm{i-1}\}, \ a[i] = b) \\ &= SP_1 \lor (a[i] = b \land \neg(a[i] < x)) \equiv SP_1 \lor (a[i] = b \land a[i] \geq x) \\ &\equiv SP_1 \lor (b \geq x \land a[i] = b) \\ SP_1 &= \mathrm{sp}(\{\mathrm{a}[i] := \mathrm{a}[i-1]; \ i := \mathrm{i-1}\}, \ a[i] = b \land a[i] < x) \\ &\equiv \mathrm{sp}(\{\mathrm{a}[i] := \mathrm{a}[\mathrm{i-1}]; \ i := \mathrm{i-1}\}, \ a[i] = b \land b < x) \\ &= \mathrm{sp}(\mathrm{a}[\mathrm{i}] := \mathrm{a}[\mathrm{i-1}]; \ a[i] = b \land b < x) \\ &= \mathrm{sp}(\mathrm{a}:=\mathrm{a}[\mathrm{i} \to \mathrm{a}[\mathrm{i-1}]], \ a[i] = b \land b < x) \\ &= \mathrm{sp}(\mathrm{a}:=\mathrm{a}[\mathrm{i} \to \mathrm{a}[\mathrm{i-1}]], \ a[i] = b \land b < x) \\ &= \mathrm{sp}(\mathrm{a}:=\mathrm{a}[\mathrm{i} \to \mathrm{a}[\mathrm{i-1}]], \ a[i] = b \land b < x) \\ &= \mathrm{sp}(\mathrm{a}:=\mathrm{a}[\mathrm{i} \to \mathrm{a}[\mathrm{i-1}]], \ a[i] = b \land b < x) \\ &= \mathrm{sp}(\mathrm{a}:=\mathrm{a}[\mathrm{i} \to \mathrm{a}[\mathrm{i-1}]], \ a[i] = b \land b < x) \\ &= \mathrm{sp}(\mathrm{a}:=\mathrm{a}[\mathrm{i} \to \mathrm{a}[\mathrm{i-1}]], \ a[i] = b \land b < x) \\ &= \mathrm{sp}(\mathrm{a}:=\mathrm{a}[\mathrm{i} \to \mathrm{a}[\mathrm{i-1}]], \ a[i] = b \land b < x) \\ &= \mathrm{sp}(\mathrm{a}:=\mathrm{a}[\mathrm{i} \to \mathrm{a}[\mathrm{i-1}]], \ a[i] = b \land b < x) \\ &= \mathrm{sp}(\mathrm{a}:=\mathrm{a}[\mathrm{i} \to \mathrm{a}[\mathrm{i-1}]], \ a[i] = b \land b < x) \\ &= \mathrm{sp}(\mathrm{a}:=\mathrm{a}[\mathrm{i} \to \mathrm{a}[\mathrm{i-1}]], \ a[i] = b \land b < x) \\ &= \mathrm{sp}(\mathrm{a}:=\mathrm{i-1}, \ b < x \land a[i] = a[i - 1]) \\ &\equiv b < x \land a[i] = a[i - 1] \\ \\ SP_1 \equiv \mathrm{sp}(\mathrm{i}:=\mathrm{i-1}, \ b < x \land a[i] = a[i - 1]) \\ &= \exists i_0 : \ b < x \land a[i_0] = a[i_0 - 1] \land i = i_0 - 1 \\ &\equiv b < x \land \exists i_0 : a[i_0] = a[i_0 - 1] \land i_0 = i + 1 \\ &\equiv b < x \land a[i + 1] = a[(i + 1) - 1] \equiv b < x \land a[i + 1] = a[i] \\ SP \equiv (b < x \land a[i + 1] = a[i]) \lor (b \ge x \land a[i] = b) \end{aligned}$$

Wolfgang Schreiner

In practice, often a combination of the calculi is applied.

```
\{P\} c_1; while b do c; c_2 \{Q\}
```

• Assume c_1 and c_2 do not contain loop commands.

It suffices to prove

 ${sp(P, c_1)}$ while b do c ${wp(c_2, Q)}$

Predicate transformers are applied to reduce the verification of a program to the Hoare-style verification of loops.

Why not apply predicate transformers to loops?

wp(loop, Q) = true wp(while b do c, Q) = $L_0(Q) \wedge L_1(Q) \wedge L_2(Q) \wedge ...$

 $L_0(Q) = true$ $L_{i+1}(Q) = (\neg b \Rightarrow Q) \land (b \Rightarrow wp(c, L_i(Q)))$

- Interpretation
 - Weakest precondition that ensures that loops stops in a state satisfying *Q*, unless it aborts or runs forever.
- Infinite sequence of predicates $L_i(Q)$:
 - Weakest precondition that ensures that after less than *i* iterations the state satisfies Q, unless the loop aborts or does not yet terminate.
- Alternative view: $L_i(Q) = wp(if_i, Q)$

 $if_0 = loop$ $if_{i+1} = if b$ then $(c; if_i)$

Wolfgang Schreiner

Example

wp(while i < n do i := i + 1, Q) $L_0(Q) =$ true $L_1(Q) = (i \lt n \Rightarrow Q) \land (i \lt n \Rightarrow wp(i := i + 1, true))$ \Leftrightarrow $(i \lt n \Rightarrow Q) \land (i \lt n \Rightarrow true)$ \Leftrightarrow ($i \not< n \Rightarrow Q$) $L_2(Q) = (i \not< n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, i \not< n \Rightarrow Q))$ $\Leftrightarrow (i \lt n \Rightarrow Q) \land$ $(i < n \Rightarrow (i + 1 \lt n \Rightarrow Q[i + 1/i]))$ $L_3(Q) = (i \lt n \Rightarrow Q) \land (i \lt n \Rightarrow wp(i := i + 1,$ $(i \not< n \Rightarrow Q) \land (i < n \Rightarrow (i + 1 \not< n \Rightarrow Q[i + 1/i]))))$ $\Leftrightarrow (i \lt n \Rightarrow Q) \land$ $(i < n \Rightarrow ((i + 1 \lt n \Rightarrow Q[i + 1/i])) \land$ $(i + 1 < n \Rightarrow (i + 2 \lt n \Rightarrow Q[i + 2/i])))$

- Sequence $L_i(Q)$ is monotonically increasing in strength:
 - $\forall i \in \mathbb{N} : L_{i+1}(Q) \Rightarrow L_i(Q).$
- The weakest precondition is the "lowest upper bound":
 - $\forall i \in \mathbb{N} : wp(while \ b \ do \ c, Q) \Rightarrow L_i(Q).$
 - $\forall P : (\forall i \in \mathbb{N} : P \Rightarrow L_i(Q)) \Rightarrow (P \Rightarrow wp(while \ b \ do \ c, Q)).$
- We can only compute weaker approximation $L_i(Q)$.

• wp(while b do $c, Q) \Rightarrow L_i(Q)$.

- We want to prove $\{P\}$ while b do c $\{Q\}$.
 - This is equivalent to proving $P \Rightarrow wp(while \ b \ do \ c, Q)$.
 - Thus $P \Rightarrow L_i(Q)$ must hold as well.
- If we can prove $\neg(P \Rightarrow L_i(Q)), \ldots$
 - $\{P\}$ while b do c $\{Q\}$ does not hold.
 - If we fail, we may try the easier proof $\neg(P \Rightarrow L_{i+1}(Q))$.

Falsification is possible by use of approximation L_i , but verification is not.

wp(while b do invariant I;
$$c^{x,...}, Q) =$$

let $oldx = x,...$ in
 $I \land (\forall x,...: I \land b \Rightarrow wp(c, I)) \land$
 $(\forall x,...: I \land \neg b \Rightarrow Q)$

Loop body c only modifies variables x,...

Loop is annotated with invariant *I*.

- May refer to new values x,... of variables after every iteration.
- May refer to original values *oldx*,... when loop started execution.
- Generated verification condition ensures:
 - 1. *I* holds in the initial state of the loop.
 - 2. I is preserved by the execution of the loop body c.
 - 3. When the loop terminates, I ensures postcondition Q.

This precondition is only "weakest" relative to the invariant.

Example

while
$$i \le n$$
 do $(s := s + i; i := i + 1)$
 $c^{s,i} := (s := s + i; i := i + 1)$
 $I :\Leftrightarrow s = olds + \left(\sum_{j=oldi}^{i-1} j\right) \land oldi \le i \le n + 1$

Weakest precondition:

Verification condition:

$$n \ge 0 \land i = 1 \land s = 0 \Rightarrow wp(\dots, s = \sum_{j=1}^{n} j)$$

Many verification systems implement (a variant of) this calculus.

Wolfgang Schreiner

- 1. The Hoare Calculus
- 2. Checking Verification Conditions
- 3. Predicate Transformers

4. Termination

- 5. Abortion
- 6. Generating Verification Conditions
- 7. Proving Verification Conditions
- 8. Procedures

Wolfgang Schreiner

Termination

Hoare rules for loop and while are replaced as follows:

false} loop {false}
$$I \Rightarrow t \ge 0$$
 { $I \land b \land t = N$ } c { $I \land t < N$ }{ I } while b do c { $I \land \neg b$ }

 $P \Rightarrow I \quad I \Rightarrow t \ge 0 \quad \{I \land b \land t = N\} \ c \ \{I \land t < N\} \quad (I \land \neg b) \Rightarrow Q$ $\{P\} \text{ while } b \text{ do } c \ \{Q\}$

• New interpretation of $\{P\} \ c \ \{Q\}$.

- If execution of c starts in a state where P holds, then execution terminates in a state where Q holds, unless it aborts.
- Non-termination is ruled out, abortion not (yet).
- The **loop** command thus does not satisfy total correctness.
- Termination measure t (term type-checked to denote an integer).
 - Becomes smaller by every iteration of the loop.
 - But does not become negative.
 - Consequently, the loop must eventually terminate.

The initial value of t limits the number of loop iterations.

Any *well-founded ordering* may be used as the domain of *t*.

Wolfgang Schreiner

Example

$$I :\Leftrightarrow s = \sum_{j=1}^{i-1} j \land 1 \le i \le n+1$$

$$t := n-i+1$$

$$(n \ge 0 \land i = 1 \land s = 0) \Rightarrow I \quad I \Rightarrow n-i+1 \ge 0$$

$$\{I \land i \le n \land n-i+1 = N\} \ s := s+i; i := i+1 \ \{I \land n-i+1 < N\}$$

$$(I \land i \le n) \Rightarrow s = \sum_{j=1}^{n} j$$

$$\{n \ge 0 \land i = 1 \land s = 0\} \text{ while } i \le n \text{ do } (s := s+i; i := i+1) \ \{s = \sum_{j=1}^{n} j\}$$

In practice, termination is easy to show (compared to partial correctness).

Termination in RISCAL


```
while i \leq n do
  invariant s = \sum j:number with 1 \leq j \land j \leq i-1. j;
  invariant 1 \leq i \wedge i \leq n+1;
  decreases n+1-i:
ł
  s := s+i:
  i := i+1:
}
fun Termination(n:number, s:result, i:index): number =
  n+1-i:
theorem T(n:number, s:result, i:index) \Leftrightarrow
  Invariant(n, s, i) \Rightarrow Termination(n, s, i) \ge 0;
theorem B(n:number, s:result, i:index) \Leftrightarrow
  Invariant(n, s, i) \land i < n \Rightarrow
    Invariant(n, s+i, i+1) \wedge
    Termination(n, s+i, i+1) < Termination(n, s, i);</pre>
```

Termination in RISCAL


```
while i \leq N \wedge r = -1 do
  invariant 0 < i \land i < N;
  invariant \forall j:index. 0 < j \land j < i \Rightarrow a[j] \neq x;
  invariant r = -1 \lor (r = i \land i \lt N \land a[r] = x);
  decreases if r = -1 then N-i else 0;
Ł
  if a[i] = x
    then r := i:
    else i := i+1:
}
fun Termination(a:array, x:elem, i:index, r:index): index =
  if r = -1 then N-i else 0:
theorem T(a:array, x:elem, i:index, r:index) \Leftrightarrow
  Invariant(a, x, i, r) \Rightarrow Termination(a, x, i, r) \ge 0;
theorem B1(a:array, x:elem, i:index, r:index) \Leftrightarrow
  Invariant(a, x, i, r) \land i < N \land r = -1 \land a[i] = x \Rightarrow
    Invariant(a, x, i, i) \wedge
    Termination(a, x, i, i) < Termination(a, x, i, r);</pre>
theorem B2(a:array, x:elem, i:index, r:index) \Leftrightarrow \ldots
```


wp(loop, Q) = false wp(while b do c, Q) = $L_0(Q) \vee L_1(Q) \vee L_2(Q) \vee ...$

$$L_0(Q) = {\sf false} \ L_{i+1}(Q) = (\neg b \Rightarrow Q) \land (b \Rightarrow {\sf wp}(c, L_i(Q)))$$

- New interpretation
 - Weakest precondition that ensures that the loop terminates in a state in which Q holds, unless it aborts.
- New interpretation of $L_i(Q)$
 - Weakest precondition that ensures that the loop terminates after less than *i* iterations in a state in which *Q* holds, unless it aborts.
- Preserves property: $\{P\} \ c \ \{Q\} \ \text{iff} \ (P \Rightarrow wp(c, Q))$
 - Now for total correctness interpretation of Hoare calculus.
- Preserves alternative view: $L_i(Q) \Leftrightarrow wp(if_i, Q)$

$$if_0 = loop$$

 $if_{i+1} = if b$ then (c; if_i)

Wolfgang Schreiner

Example

wp(while i < n do i := i + 1, Q)

$$\begin{array}{l} L_0(Q) = \mathsf{false} \\ L_1(Q) = (i \not < n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, L_0(Q))) \\ \Leftrightarrow (i \not < n \Rightarrow Q) \land (i < n \Rightarrow \mathsf{false}) \\ \Leftrightarrow i \not < n \land Q \\ L_2(Q) = (i \not < n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, L_1(Q))) \\ \Leftrightarrow (i \not < n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, L_1(Q))) \\ \Leftrightarrow (i \not < n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, L_2(Q))) \\ L_3(Q) = (i \not < n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, L_2(Q))) \\ \Leftrightarrow (i \not < n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, L_2(Q))) \\ \Leftrightarrow (i \not < n \Rightarrow Q) \land (i < n \Rightarrow wp(i := i + 1, L_2(Q))) \\ (i < n \Rightarrow ((i + 1 \not < n \Rightarrow Q[i + 1/i]) \land (i + 1 < n \Rightarrow (i + 2 \not < n \land Q[i + 2/i])))) \end{array}$$

Wolfgang Schreiner

. . .

Sequence L_i(Q) is now monotonically decreasing in strength:
 ∀i ∈ N : L_i(Q) ⇒ L_{i+1}(Q).

The weakest precondition is the "greatest lower bound":

- $\forall i \in \mathbb{N} : L_i(Q) \Rightarrow wp(while \ b \ do \ c, Q).$
- $\forall P : (\forall i \in \mathbb{N} : L_i(Q) \Rightarrow P) \Rightarrow (wp(while \ b \ do \ c, Q) \Rightarrow P).$
- We can only compute a stronger approximation $L_i(Q)$.

• $L_i(Q) \Rightarrow wp(while \ b \ do \ c, Q).$

• We want to prove $\{P\} \ c \ \{Q\}$.

- It suffices to prove $P \Rightarrow wp(while \ b \ do \ c, Q)$.
- It thus also suffices to prove $P \Rightarrow L_i(Q)$.
- If proof fails, we may try the easier proof $P \Rightarrow L_{i+1}(Q)$

However, verifications are typically not successful with any finite approximation of the weakest precondition.

$$wp(while b do invariant l; decreases t; c^{x,...}, Q) = let oldx = x,... in $l \land (\forall x,...: l \land b \Rightarrow wp(c, l)) \land (\forall x,...: l \land \neg b \Rightarrow Q) \land (\forall x,...: l \Rightarrow t \ge 0) \land (\forall x,...: l \land b \Rightarrow let T = t in wp(c, t < T))$$$

- Loop body c only modifies variables x,...
- Loop is annotated with termination measure (term) t.
 - May refer to new values *x*,... of variables after every iteration.
- Generated verification condition ensures:
 - 1. *t* is non-negative before/after every loop iteration.
 - 2. t is decremented by the execution of the loop body c.

Also here any well-founded ordering may be used as the domain of t.

Example

while
$$i \le n$$
 do $(s := s + i; i := i + 1)$
 $c^{s,i} := (s := s + i; i := i + 1)$
 $I :\Leftrightarrow s = olds + \left(\sum_{j=oldi}^{i-1}\right) \land oldi \le i \le n + 1$
 $t := n + 1 - i$

Weakest precondition:

wp(while $i \le n$ do invariant I; $c^{s,i}, Q$) = let olds = s, oldi = i in $I \land (\forall s, i : I \land i \le n \Rightarrow I[s + i/s, i + 1/i]) \land$ $(\forall s, i : I \land \neg (i \le n) \Rightarrow Q) \land$ $(\forall s, i : I \Rightarrow t \ge 0) \land$ $(\forall s, i : I \land i \le n \Rightarrow \text{let } T = n+1-i \text{ in } n+1-(i+1) < T)$

Verification condition:

$$n \ge 0 \land i = 1 \land s = 0 \Rightarrow wp(\dots, s = \sum_{j=1}^{n} j)$$

Wolfgang Schreiner

- 1. The Hoare Calculus
- 2. Checking Verification Conditions
- 3. Predicate Transformers
- 4. Termination
- 5. Abortion
- 6. Generating Verification Conditions
- 7. Proving Verification Conditions
- 8. Procedures

Wolfgang Schreiner

Abortion

New rules to prevent abortion.

 $\begin{cases} \text{false} \text{ abort } \{\text{true}\} \\ \{Q[e/x] \land D(e)\} \ x := e \ \{Q\} \\ \{Q[a[i \mapsto e]/a] \land D(e) \land D(i) \land 0 \le i < \text{length}(a)\} \ a[i] := e \ \{Q\} \end{cases}$

• New interpretation of $\{P\} \ c \ \{Q\}$.

- If execution of c starts in a state, in which property P holds, then it does not abort and eventually terminates in a state in which Q holds.
- Sources of abortion.
 - Division by zero.
 - Index out of bounds exception.

D(e) makes sure that every subexpression of e is well defined.

Definedness of Expressions

$$\begin{array}{l} D(0) = {\rm true.} \\ D(1) = {\rm true.} \\ D(x) = {\rm true.} \\ D(a[i]) = D(i) \land 0 \leq i < {\rm length}(a). \\ D(e_1 + e_2) = D(e_1) \land D(e_2). \\ D(e_1 * e_2) = D(e_1) \land D(e_2). \\ D(e_1/e_2) = D(e_1) \land D(e_2) \land e_2 \neq 0. \\ D({\rm true}) = {\rm true.} \\ D({\rm false}) = {\rm true.} \\ D({\rm false}) = {\rm true.} \\ D(\neg b) = D(b). \\ D(b_1 \land b_2) = D(b_1) \land D(b_2). \\ D(b_1 \lor b_2) = D(e_1) \land D(e_2). \\ D(e_1 < e_2) = D(e_1) \land D(e_2). \\ D(e_1 \leq e_2) = D(e_1) \land D(e_2). \\ D(e_1 > e_2) = D(e_1) \land D(e_2). \\ D(e_1 > e_2) = D(e_1) \land D(e_2). \\ D(e_1 \geq e_2) = D(e_1) \land D(e_2). \\ D(e_1 \geq e_2) = D(e_1) \land D(e_2). \\ \end{array}$$

Assumes that expressions have already been type-checked.

Wolfgang Schreiner

Abortion

Slight modification of existing rules.

$$\frac{P \Rightarrow D(b) \{P \land b\} c_1 \{Q\} \{P \land \neg b\} c_2 \{Q\}}{\{P\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{Q\}}$$

$$\frac{P \Rightarrow D(b) \{P \land b\} c \{Q\} (P \land \neg b) \Rightarrow Q}{\{P\} \text{ if } b \text{ then } c \{Q\}}$$

$$I \Rightarrow (t \ge 0 \land D(b)) \{I \land b \land t = N\} c \{I \land t < N\}$$

$$\{I\} \text{ while } b \text{ do } c \{I \land \neg b\}$$

Expressions must be defined in any context.

Abortion

Similar modifications of weakest preconditions.

$$wp(abort, Q) = falsewp(x := e, Q) = Q[e/x] \land D(e)wp(if b then c_1 else c_2, Q) =D(b) \land (b \Rightarrow wp(c_1, Q)) \land (\neg b \Rightarrow wp(c_2, Q))wp(if b then c, Q) = D(b) \land (b \Rightarrow wp(c, Q)) \land (\neg b \Rightarrow Q)wp(while b do c, Q) = (L_0(Q) \lor L_1(Q) \lor L_2(Q) \lor ...)$$

$$L_0(Q) = \mathsf{false}$$

$$L_{i+1}(Q) = D(b) \land (\neg b \Rightarrow Q) \land (b \Rightarrow \mathsf{wp}(c, L_i(Q)))$$

wp(c, Q) now makes sure that the execution of c does not abort but eventually terminates in a state in which Q holds.

- 1. The Hoare Calculus
- 2. Checking Verification Conditions
- 3. Predicate Transformers
- 4. Termination
- 5. Abortion

6. Generating Verification Conditions

- 7. Proving Verification Conditions
- 8. Procedures

Wolfgang Schreiner

RISCAL and Verification Conditions

RISCAL implements (a variant of) the wp-calculus for VC generation.

Wolfgang Schreiner

RISCAL splits Dijkstra's single condition $Input \Rightarrow wp(C, Output)$ into many "fine-grained" verification conditions:

- Implementation preconditions
 - Well-definedness of commands and loop annotations.
 - One condition for every partial function/predicate application.
- Is result correct?
 - One condition for every ensures clause.
- Does loop invariant initially hold? Is loop invariant preserved?
 - Partial correctness.
 - One condition for every invariant clause.
- Is loop measure non-negative? Is loop measure decreased?
 - Termination.
 - One condition for every decreases clause.

Click on a condition to see the affected commands; if the procedure contains conditionals, a condition is generated for each execution branch.

Wolfgang Schreiner

Checking Verification Conditions

- Double-click a condition to have it checked.
 - Checked conditions turn from red to blue.
- Right-click a condition to see a pop-up menu.
 - Check verification condition (same as double-click)
 - Show variable values that invalidate condition.
 - Print relevant program information (e.g. invariant).
 - Print verification condition itself.
 - Apply SMT solver for faster checking (see menu "SMT").

Example: is loop invariant preserved?

s = (
$$\sum j$$
:number with (1 \leq j) \land (j \leq (i-1)). j)

theorem _summation_0_LoopOp3(n:number)
requires n
$$\geq$$
 0;
 $\Leftrightarrow \forall s:result, i:index. ((((s = (\sum j:number with (1 \leq j) \land (j \leq (i-1)). j))) \land ((1 \leq i) \land (i \leq (n+1)))) \land (i \leq n)) \Rightarrow$
(let s = s+i in (let i = i+1 in
(s = ($\sum j:$ number with (1 $\leq j$) \land (j \leq (i-1)). j)))));

Important: check models with *small* type sizes.

Wolfgang Schreiner

https://www.risc.jku.at

Execute Task Show Counterexample Print Description Print Definition Apply SMT Solver Apply Theorem Prover Print Prover Output

- 1. The Hoare Calculus
- 2. Checking Verification Conditions
- 3. Predicate Transformers
- 4. Termination
- 5. Abortion
- 6. Generating Verification Conditions

7. Proving Verification Conditions

8. Procedures

Wolfgang Schreiner

Proving Verification Conditions

RISCAL also integrates the RISCTP interface to various theorem provers.

Menu "TP" and menu entry "Apply Theorem Prover"

- Tries to prove verification condition for *arbitrary* type sizes.
- "Apply Prover to All Theorems": multiple proofs (in parallel).
- "Print Prover Output": shows details of proof attempt.
- "Open Theorem Prover GUI": open the RISTP web interface.

Many (but typically not all) automatic proof attempts may succeed.

Wolfgang Schreiner

Does the quantified loop invariant initially hold?

Proof method MESON: proof problem is already closed by simplification.

Wolfgang Schreiner

Does the quantified loop invariant initially hold?

(We hide universally quantified knowledge)

goal:['_search_0_LoopOp1(Array[Z],Z)'.2.2.2.2] ¬'=§0'(a§[j§],x§)

In the next (and final) step, it is recognized that the assumptions $0 \le j$ and j s ≤ 0 are inconsistent.

Wolfgang Schreiner

RISC Algo	rithm Language (RISCAL): RISCTP Theorem Prover - •
ISCTP	*
rove Without Type-Checking Theorems - Method: SMT @MESON Timeout (s): 5 : Multi-Threaded	t «Threads 4 :
ipand: s Aviorns: s Int+ Ent+ s Maps s Data Equality: Off e Low Med High Max SMT: Off M	in o Med Max Display. Problems o Proofs Search Limit: o Depth Size 4 : e Iterate #Single Goal
	25(\$part1) WcIntydint.(x ≤ y) v (y < x))
roor status: success	$26[\text{spart2}] \forall x: \text{int, y:int, } (\cdot x \le y) \times (y < x))$
rover Outout	2//isoens/watching (in a set of the set of t
	20 (South 2) West where the first of a South 200 million
nout Elle	and the second s
partie	$31(3+1) = 0$ We introduce $M(3+0) = 0 = 0 \le (n+1)0 \le (n+1) \le 300$
roof Problem	$32(3+1 \le 1 \le x_0)$ or $x_0(1, (0 \le y_0) \le 0, x+1) \le x_0(1)$
	$33(5+1<)$ Walling, dist. dist. 40×10^{10} (y + 10)
Problem Simplification:	$34[5+1]$ $\forall x (int,y)nt, (y < y) \Rightarrow (x \le (y-1))$
all search 0 LoopOp//arms/2172/mile IMR LIB/Liop the coal)	$35(5-1<)$ Weint, yint, ($ x \le y \Rightarrow (x-1 < y)$
1. Transmont Company and the first first and the first first	36:(5x-1 <x) <="" n)<="" td="" wcint.(0x-1)=""></x)>
Subproblems:	37:(8x <x+1) (x="" (x+1))<="" <="" td="" vx:int.=""></x+1)>
	38(\$0<1±) \$\u00ed xi + (1±x)
1. (search_0_LoopUpb/Array/212)	39(5±0<1) Vcfnt. (0x ± 0) = (x < 1)
Clause Forms:	$40(s 0) \forall s(nt, 0 \le x) \Rightarrow (-400)s \le 0)$
	41:[s-0] Weint. (0 < x) = [-80(x) < 0]
1. <u>search 0.LoopOp6/ArrayIZLZY</u>	$42[365y]$ (xint, yint, $0x \le y \ge 0 \le y(x)$)
- December -	(2) (2)
Proofs.	and set in the set of
1. [4]: search @ LoopOpt/Arra/[ZLZY (success)	45(2)(-5)(-5)(-1)(-5)(-5)(-5)(-5)(-5)(-5)(-5)(-5)(-5)(-5
[-] ' search 0 LoopOp6(Array[2] 27 2 2 2 2 2 2 2 (success)	The second
[+] ' search 0 LoopOp6(Array[Z1,Z1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,	APRICAL PROPERTY AND A STATE
[-]+5010(a6.j6).0(a6.i60.] search_0_LoopOp6/Array[2].27.2.2.2.2.1.1.1.2) (soccess)	49 Diffuel 0 < M
[-] <u>si(0,±(8,1))</u> (success)	Stream 1991 Year Manifest Intil m2-Manifest Intil 0/Verint (#600m11ki m21ki) == 1611 Year 1 m2 m20
 [-] ≤(ji.Ni) (success) 	51: measures 112 Vm Maplint. Int Lkint Atlant. vint. (~501k k0H*) = ~501km with (k) = vik01vk
[-] <u>miQ_B</u> (success)	52 [morestore\$113] VmtMap[int,int]k:int,k0 int,v:int, ii ~= \$01K,k00(*)) -> = \$01im with iki = viik01m(k00)
[-] <u>-] 5,3</u>) (success)	52['search_0_LoopOp6[Array[2],27,1,1] Vs:Int_[[0 ≤ x] ∧ 0x+1] ≤ N0 → 00 ≤ a8[x0 ∧ (a8[x] ≤ M[0
Devel County	54("_search_0_LoopOp6(Array[Z],Z):1.2] ∀x:Int. (]~(0 ≤ x) ∧ (]x+1) ≤ N(0 → `+50'[a5(x],intSundef))
Proof Bearch.	55("_search_0_LoopOp6(Array[Z],Z7,2,1,1] 0 ≤ a6(8)
	56(_search_0_LoopOp6(Array[2],27.2.1.2) #6[8] s M
	57:['_search_0_LoopOp6(Array[Z],Z) 2.2.1.2] IS ≤ N
	58['_search_0_LoopOp6(Array[2],27.2.2.2.1.1.1.1] 0 ≤ 8
	[59:[_search_0_LoopOp6[Array[2],2].2.2.2.1.1.1.2] ♥jindex.000 ≤ (j+1) ∧ (j ≤ N) → 000 ≤ ji ∧ (j < N) → (~>80/44[],48[H]00
	[60:[_search_0_LoopOp6[Array[2],2] 2.2.2.2.1.2.1] 8 < N
	[01][_search_0_LoopOp0[Array[2]_U[22.2.2.2.2.1.2] ft ≤ N
	[62][search_0_booptoparray[z],z].2.2.2.2.2.1.1]0 ≤ p
	hard "search" of non-holder hard references and the search of the search

Problem is closed by simplification, proof search, and SMT solving.

Wolfgang Schreiner

Goal: ¬'=\$0'([](a§,j§),[](a§,i§)) ['_search_0_LoopOp6(Array[Z],Z)'.2.2.2.2.1.1.1.2] (proof depth: 0, proof size: 1)

```
Goal: ¬'=$0'([](a$,j$),[](a$,i$))
```

To prove the goal, we assume its negation

```
[1] '=$0'([](a$,j$),[](a$,i$))
```

and show a contradiction. For this, consider knowledge ['_search_0_LoopOp6(Array[Z],Z)'.2.2.2.2.1.1.1.2] with the following instance:

```
∀j@113:index. ≤(0,+(j@113,1)) ∧ ≤(j@113,N§) ∧ ≤(0,j@113) ∧ <(j@113,i§) ∧ '=§0'([](a§,j@113),[](a§,i§)) → ⊥</p>
```

Assumption [1] matches the literal '=\$0'([](a\$,j@113),[](a\$,i\$)) on the left side of this clause by the following substitution:

j@113 → j§

Therefore, applying this substitution and dropping the literal, we know:

```
\leq (0,+(j\$,1)) \land \leq (j\$,N\$) \land \leq (0,j\$) \land < (j\$,i\$) \Rightarrow \bot
```

Therefore, to show a contradiction, we prove this subgoal:

 $\leq (0,+(j\$,1)) \land \leq (j\$,N\$) \land \leq (0,j\$) \land < (j\$,i\$)$

```
-----
```

```
SUCCESS: goal ¬'=$0'([](a§,j§),[](a§,i§)) ['_search_0_LoopOp6(Array[Z],Z)'.2.2.2.2.1.1.1.2] has been proved with the following substitution:
```

j@113 → j§

Invariant has to be instantiated with constant j for variable j.

Wolfgang Schreiner

Goal: \leq (0,+(j§,1)) (proof depth: 1, proof size: 2)

Goal: ≤(0,+(j§,1))

Assumptions:

```
[1] '=$0'([](a$,j$),[](a$,i$))
```

The goal has been proved by the SMT solver: the solver states by the output

unsat

the unsatisfiability of the negated goal in conjunction with this knowledge:

['_search_0_LoopOp6(Array[ℤ],ℤ)'.2.2.2.2.2.2.2.1.1] ≤(0,j§) SUCCESS: goal ≤(0,+(j§,1)) has been proved with the following substitution:

j@113 → j§

Option "SMT: Med": subgoals are closed by the SMT solver.

Wolfgang Schreiner

Proof problem: '_search_0_LoopOp6(Array[Z],Z)'

The problem has been closed by the SMT solver: the solver states by the output

unsat

the unsatisfiability of these clauses that arise from the negation of the theorem to be proved:

['_search_@_LoopOp6(Array[2],2'):2.2:2.1:1.1:2] ∀j:index. ≤(Ø,+(j,1)) ∧ ≤(j,N§) ∧ ≤(Ø,j) ∧ <(j,i§) ∧ '=\$0'([](a5,j),[](a5,i\$)) → ⊥ ['_search_@_LoopOp6(Array[2],2'):2.2:2:2.2:2(j5,N§) ['_search_@_LoopOp6(Array[2],2'):2.2:2.2:2.2:1] ≤(Ø,j§) ['_search_@_LoopOp6(Array[2],2'):2.2:2.2:2.2:2:2] <(j5,i5) ['_search_@_LoopOp6(Array[2],2'):2.2:2.2:2.2:2:2] <(j5,i5)

In more detail, the solver states the unsatisfiability of these clause instances:

```
['_search_@_LoopOp6(Array[Z],Z)'.2.2.2.1.1.1.2.1] <(0, (j5,1)) ∧ ≤(j5,N5) ∧ ≤(0,j5) ∧ <(j5,15) ∧ '=50'([](a5,j5),[](a5,15)) → ⊥
['_search_@_LoopOp6(Array[Z],Z)'.2.2.2.2.2.1.2] <(j5,N5)
['_search_@_LoopOp6(Array[Z],Z)'.2.2.2.2.2.1.1] <(0,j5)
['_search_@_LoopOp6(Array[Z],Z)'.2.2.2.2.2.2.1.2] <(j5,15)
['_search_@_LoopOp6(Array[Z],Z)'.2.2.2.2.2.2.1.2] <(j5,15)
```

Thus the theorem is valid.

 ${\tt SUCCESS: goal '_search_0_Loop0p6(Array[{\Bbb Z}],{\Bbb Z})' \ has \ been \ proved.}$

Option "SMT: Max": a proof outline is produced by the SMT solver.

Wolfgang Schreiner

RSSC Algorithm Language (RISCAL); RISCTP Theorem Prover - • •			
RISCTP			
Prove Without Type-Checking Theorems - Method: SMT & MESON Timeout Isl: 5 : Multi-Three	adect a Threads: 4 :		
Expand: 6 Axioms: 6 Int+ - Int+ 6 Maps 6 Data Equality: - Off 6 Low - Med - High - Max SMT: - Off	' Min o Med - Max Display: - Problems o Proofs - Search Limit: o Depth - Size - 4 : e literate in Single Goal		
Proof Status: Success	26(Spart2) VxInty/int.(+(x ≤ y) x (y < x)) 27(Sideft s) VxInty/int.() x < y) v ~600x,y) = (x si y)		
Prover Output	$ 28 [Sidef2s] \forall xint, y, int, (y, s y) \rightarrow (y < y) y (= 800, y)(*)) 29 [Sinx(*) \forall xint, y, int, (-0x < y) \land \models 807(x, y)(0) $		
Input-File	$\begin{array}{l} 30. [Sex:12<] \ \forall x.lnt,y.lnt. (+ y < x) \land ^{-90}(0x,y)(0) \\ 31. [Sex:1<] \ \forall x.lnt,y.lnt. (+(x,y)(*)) \Rightarrow \ +(y < (x + 1)) \land (+(y + 1) < x)(0) \end{array}$		
Proof Problem	32(5+1s) Wangyth, (x ≤ y) • (x+1) ≤ y(33(5+1≤) Wangyth, (x ≤ y) • (x ≤ y+1))		
[·] Problem Simplification:	34(5-1 s) ¥x:intydint, (ix ≤ y) ⇔ (x s) (y-1)() 35(5-1 ≤) ¥x:inty,zint, (ix ≤ y) ⇔ (ix-1) ≤ y)		
(+):_search_0_LoopOpZ/Array(Z).Z): (rule [V-R B-L] on the goal)	36(5x-1 <x) (x-1)="" <="" vicint.="" x)<br="">37(5x-x+1) Vicint. (x < (x+1))</x)>		
(·) Subproblems:	38(10<1 s) WcInt. (0 < x) + (1 s x)		
1. Leearch.0.LoopOp7/Array/Z121/2	$40.(5 \le 0) \forall x:Int, (0 \le x) \rightarrow (-500x) \le 0)$		
(-) Clause Forms:	(41:(5<0) %cfmt, (0 < x) ∞ (*90%) < 0)) (42:(5xsy) %clmt,yfmt, (0 ≤ s) ↔ (0 ≤ (y-x)))		
1. Lsearch 0. LoopOp7/ArrayIZ127(2	43(3x <y) ((x="" (0="" (y="" 0)<br="" <="" wcintycht.="" y)="" →="">44(5) < 10 < 1</y)>		
[·] Proofs:	45(5-1-0) -50(1) < 0		
1. [-] _search_0_LoopOp7/Array[Z]_Z).2 (success)	47.[Srefis] Vicint. (x = x)		
 [-] search 0 LoopOp/Array[2] 212222222 (success) [-] search 0 LoopOp/Array[2] 71222222 (success) 	48[Piltype] 0 ≤ N		
[-] ===50101a5;61x511" search Q LoopOp7/ArrardZ127(2:2:2:2:1.1.1.2) (success)	expension was a second strain and a second s		
[-] <u>sl(0,+(0,1))</u> (success)	Statements and a subscription of the statement of the sta		
[-] ≤(<u>3.N3)</u> (success)	52(moesstore)1131 Vm/MaplinLintkintk0(ntkint) +*601kk0(*) = *601km with (k) = vik0(m(k0))		
[-] <u>\$10,0</u> (success)	$53(-search_0_copOp7(Array[2],2),1,1)$ Vicint, (i) $0 \le x$ ($x \ge N_0 \Rightarrow (0 \le x3)x$ ($x \le M_0$)		
[-] <u><]\$.</u> ∂) (success)	54(_search_0_LoopOp7(Array[2],27.1.2) VicInt. [[-(0 ≤ x) ∧ ((x+1) ≤ N)]] → `+50(a5(x)_intSundef))		
Proof Search:	SS{[_search_0_LoopOp7(Array[Z],Z).2.1.1]0 ≤ x5		
	56(_search_0_LoopOp7(Array[Z],Z) 2.1.2) x8 ≤ M		
	57[_search_0_LoopOp7[Array[2],7]:22.1.2] A S N		
	Set _ search_0_coopdp/Array[2].27.22.22.11.11.10 S 8		
	Set Search 0 London?Marad(277)222212118 < N		
	61: search 0 LoopOp7(Array[2].2(2.2.2.2.1) -= \$0186(\$1.\$0		
	62(_search_0_LoopOp7(Array[2],2) 2.2.2.2.2.1.2) # ≤ N		
	63('_search_0_LoopOp7(Array(Z),Z) 2.2.2.2.2.2.1.1) 0 ≤ β		
	64('_search_0_LoopOp7(Array[2],2):2:2:2:2:2:2:1:2:2])\$ < 16		
	goal{_search_0_LoopOp7(Array(Z),Z):2.2.2.2.2.2.2] ==\$0"(#6(8),x9)		

Problem is closed by simplification, proof search, and SMT solving.

Wolfgang Schreiner

Proof with knowledge $j \le i$ is split into one case j = i (which is closed by simplification) and one case j < i (which is closed by proof search as in the first conditional branch).

Wolfgang Schreiner

Example: Linear Search

Is result correct?

BISC Algorithm Language (BISCAL): RISCTP Theorem Prover - • •			
RISCTP			
Press Without Type-Checking Theorems • Method: SMIT #MESON Timeout (b): 5 : Multi-Threeded: #Threeded: 4 :			
Expend: & Advins: Inte Tint * Maps Data Equally. Off eLow Med High Max SMT: Off Min Med Max Display. Problems Proofs Search Limit: Depth Size 4 : elterate e Single-Goal			
Descal Statute Concess	30 (Sexci2+) Vx:Int.y:Int. (+()y + x) = \$0"(x,y())		
From status, success	$31[3+1] + [9cant_y(nt, [1-(0,y)(t)]) \rightarrow (1-(y < (y+1))] + [1-(y-1)] < x[[0])$		
Prover Output	$3 \le (3 + 1 \le) = \nabla \sum_{i=1}^{n} \nabla \sum_{i=1}^{n} (i_i + 1) \le y_i$ $3 \ge (5 + 1 \le) = \nabla \sum_{i=1}^{n} (i_i + 1) \le y_i$		
	24 Chi 19 Martin (Brite Barrier 1971)		
Descript Film	25(5)(5) Welling the first of a first of the		
anput Hie	and a set of memory and the state of the sta		
Proof Problem	22 Charles 1 Models (no. 6 No.10		
	38 (Soci <) Write this year (1 < y)		
[·] Problem Simplification:	$3923 \le 0 \le 11$ Yields, the $\le 01 \le 10 \le 10$		
Colored a Constant of The last Republic and a second	40/5 m01 Weint, 00 m x1 = C-60 m0 m 00		
(*)	41 (3<0) VacInt, H0 < x) = C-507(a) < 00		
- Subproblems:	$42 (5 \pm 5) \forall x (nt, x) nt, (b \pm 5) \Rightarrow 00 \equiv (y \times 10)$		
	$43(3x \cdot y) \forall x \ln y \ln y \ln y = 0 < (y \cdot y)$		
 Search 0 CorrOp0(Array(Z),Z),1,1,1,1,2,1 	44(90<1)0<1		
 _search_0_CorrOpO(Array(2)2).1.1.2.1.1.2 	45 (5-1<0) '-50'(1) < 0		
 Search 0 CorrOpO(Array(212):1.2.1.2 	46 (Sirreff<) VcInt. (-(x < x))		
 search_0_CorrOpD(Array(2)2).2.2.1 	47(Srefts) Vicint. (r s x)		
 Search 0. CorrOpO(Array/2121.2.2.2 	48 (N8type) 0 ≤ N		
Clause Forms:	49(MStype)0 ≤ M		
	50 (ext8109) Vm1:Map[Int,Int].m2:Map[Int,Int]. {/Vk:Int. \+80(m1[k].m2[k])) = \+81(m1,m2)		
1. 'search 0 CorrOp0/Array[Z] ZV.1.1.1.1.2.1	51 (meqstore5112) Ym/Map(Int,Int],ktint,kti(Int,vtint, (=50)(k,kt)(*) = *=50)(m with [k] = v([k0],v))		
 <u>search_0_CorrOp0(Array[Z]2)(1.1.2.1.1.2</u> 	52(mneqstore5113) Vm:Map(int,int),kint,k0:int,vint.(-`+\$0'(k,k0)(*)) + `+\$0'(jm with [k] = v([k0],m[k0])		
'search_0_CorrOp0/ArrayIZ1ZY.1.2.1.2	53(;_search_0_CorrOp0(Array(Z),Z):1.1) %cfnt, ((0 ≤ x) ∧ (x+1) ≤ N() → ((0 ≤ a8(x)) ∧ (a8(x) ≤ N())		
search_0_CorrOp0(Array[Z],Z),2,2,1	542_search_0_CorrOp0(Array(2),21:1.3) Vxint. ((-40 s x) + (0x+1) s N(0 + +60(a6(x),inthunder))		
search 0 CorrOp0/ArrayIZI ZV.2.2.2	551_563r0_0_C0rr0p(array(z]z]:z]:1]0 ≤ a3(a)		
() Benefit	502_search_0_corrup(Army(z),z).z).z) as [6] 5 M		
[-] Proois:	Signature Contropolency (2012) 222211110 # M		
1. [+1] search 0 CorrOp0(Array[ZLZ[1,1,1,1,1,2,1 (success)	302 (3000) (3000		
2. [1]' search 0 CorrOp0(Array[2],2(1,1,2,1,1,2)(success)	SIC search 0. Composition (212) 2222112 (212) 304 (A		
3. [+] ' search 0 CorrOp0(Array[Z],Z[,1,2,1,2 (success)	612 swarch 0 CorrDopOkraw (ZT)22222.121 + 400160-11		
 [*] search_0_CorrOp0(Array[Z],Z],2,2,1 (success) 	620 search 0. CorrOp(i(ara)(2) 7(2 2 2 2 1 2 1 2) 185 < N		
[-] search 0 CorrOp0(Array(ZLZ), 2.2.2 (success)	031 search 0 CorrOp0(Array[212].2.2.2.2.1.22.1.110 s i85		
[+] search_0_CorrOp0(Array[Z],Z),2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,	64(; search 0_CorrOp0(Army(Z)Z):2.2.2.2.1.2.1.2] #6 < N		
[-]' search 0 CorrOp0(Array[Z],Z1,2,2,2,2,2,2,2,2,2,2)(teration 1))	65 (_search_0_CorrOp0(Array(Z),Z) 2.2.2.2.2.1.2.2.2] =80(a5[85],a5(15])		
[+] -= \$0111a5.800.045.800.0 search 0_CorrOp0(Array(Z1Z).2.3	66 {_search_0_CorrOp0(Array(Z],Z):2.2.2.2.2.2.1.2] i50 ≤ N		
[-] <u>=(0.1040.1)</u> (success)	67.5_search_0_CorrOp0(Array(Z),Z):2.2.2.2.2.2.2.1.1] 0 ≤ 80		
[-] <u>\$100,N2</u> (success)	68 €_search_0_CorrOp0(Array(Z),Z) 2.2.2.2.2.2.2.1.2] 80 < 8		
(-) milling (success)			
Fil Storeth (Soccess)	[]@oat[_search_0_couldbi/wush[s]%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%		

Problem is decomposed into five subproblems closed by proof search.

Wolfgang Schreiner

Example: Linear Search

Is result correct?

```
proc search(a:array, x:elem): index
   ensures
       (result = -1 \land \foralli:index. 0 \leq i \land i \leq N \Rightarrow a[i] \neq x) \lor
       (0 < \text{result} \land \text{result} < \mathbb{N} \land a[\text{result}] = x \land \forall i: \text{index.} 0 < i \land i < \text{result} \Rightarrow a[i] \neq x);
(We hide universally quantified knowledge)
1:[§0+11'=§0'(0+1.1)
2:[§1+0] '=§0'(1+0,1)
44:[§0<1] 0 < 1
45:[§-1<0] '-§0'(1) < 0
48:[NStype] 0 \le N
49:[M§type] 0 \le M
55:[' search 0 CorrOp0(Array[\mathbb{Z}],\mathbb{Z})'.2.1.1] 0 \leq x§
56:['_search_0_CorrOp0(Array[\mathbb{Z}],\mathbb{Z})'.2.1.2] x \S \le M
57:['_search_0_CorrOp0(Array[Z],Z)'.2.2.1.1] 0 \le (is+1)
58:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.1.2] i§ ≤ N
59:[' search 0 CorrOp0(Array[\mathbb{Z}],\mathbb{Z})'.2.2.2.1.1] 0 \leq (r§+1)
60:[' search 0 CorrOp0(Arrav[Z],Z)'.2.2.2.1.2] r§ ≤ N
61:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.1.1.1.1] 0 ≤ i§
63:[' search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.1.1.2] '=$0'(r$,'-$0'(1)) v (('=$0'(r$,i$) ^ (i$ < N)) ^ '=$0'(a$[r$],x$))
64:[' search 0 CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.1.2] ¬((i§ < N) ∧ '=§0'(r§,'-§0'(1)))
65:[' search 0 CorrOp0(Array[2],2):2.2.2.2.1] ¬('=$0'(r$,'-$0'(1)) ∧ (∀i:index. ((('-$0'(1) ≤ i) ∧ (i ≤ N)) ⇒ ((i ≤ N)) ⇒ (¬'=$0'(a$[i],x$)))))
```

 $goal:[_search_0_CorrOp0(Array[\mathbb{Z}],\mathbb{Z}): 2.2.2.2.2.2] (((0 \le r\$) \land (r\$ < N)) \land [=\$0'(a\$[r\$],x\$)) \land (\forall i:index. ((('-\$0'(1) \le i) \land (i < N)) \Rightarrow (((0 \le i) \land (i < r\$)) \Rightarrow (-'=\$0'(a\$[i],x\$)))))$

At first, the decomposition yields the second part of the disjunction as the goal (with the negation of the first part as knowledge).

Wolfgang Schreiner

Is result correct?

 $(((0 \le r\$) \land (r\$ < N)) \land '=\$0'(a\$[r\$], x\$)) \land (\forall i:index. ((('-\$0'(1) \le i) \land (i \le N)) \Rightarrow (((0 \le i) \land (i < r\$)) \Rightarrow (\neg'=\$0'(a\$[i], x\$)))))$

The further decomposition yields four subproblems with the following goals which are then decomposed into five open subproblems as follows:

- $(0 \le r) \rightsquigarrow 2$ subproblems, 1 closed, 1 open: subproblem 1.
- $(r < N) \rightsquigarrow 3$ subproblems, 2 closed, 1 open: subproblem 2.
- $(a[r] = x) \rightsquigarrow 2$ subproblems, 1 closed, 1 open: subproblem 3.
- $(\forall i: \dots a[i] \neq x) \rightsquigarrow 4$ subproblems, 2 closed, 2 open: subproblems 4, 5.

We show the derivation and solution of subproblem 5.

Example: Linear Search

Is result correct?

(We hide universally quantified knowledge)

```
1:[§0+1] '=§0'(0+1.1)
2:[§1+0] '=§0'(1+0.1)
44:[§0<1]0<1
45:[§-1<0] '-§0'(1) < 0
48:[N§type] 0 \le N
49:[M§type] 0 \leq M
55:['_search_0_CorrOp0(Array[\mathbb{Z}],\mathbb{Z})'.2.1.1] 0 \leq x§
56:[' search 0 CorrOp0(Array[\mathbb{Z}],\mathbb{Z})'.2.1.2] x§ \leq M
57:[' search 0 CorrOp0(Array[\mathbb{Z}],\mathbb{Z})'.2.2.1.1] 0 ≤ (i§+1)
58:[' search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.1.2] i§ ≤ N
59:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.1.1] 0 ≤ (r§+1)
60:[' search 0 CorrOp0(Array[\mathbb{Z}],\mathbb{Z})',2,2,2,1,2] r§ \leq N
61:[' search 0 CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.1.1.1.1] 0 ≤ i§
63:[' search 0 CorrOp0(Array[Z],Z)'.2.2.2.2.1.1.2] '=$0'(r$,'-$0'(1)) v (('=$0'(r$,i$) \ (i$ < N)) \ '=$0'(a$[r$],x$))
64:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.1.2] ¬((i§ < N) ∧ '=§0'(r§,'-§0'(1)))
65:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.1] ¬('=$0'(r$,'-$0'(1)) ∧ (∀i:index.((('-$0'(1) ≤ i) ∧ (i ≤ N)) ⇒ (((0 ≤ i) ∧ (i < N)) ⇒ (¬'=$0'(a$[i],x$)))))
```

The last of the four initial subproblems (the goal is to show that value x does not occur in array a at any index less than result r).

Wolfgang Schreiner

Example: Linear Search

Is result correct?

(We hide universally quantified knowledge)

```
1:[§0+1] '=§0'(0+1.1)
2:[§1+0] '=§0'(1+0,1)
44:[§0<110 < 1
45:[§-1<0] '-§0'(1) < 0
48:[N$type] 0 \leq N
49:[M§type] 0 \le M
55:[' search 0 CorrOp0(Arrav[\mathbb{Z}],\mathbb{Z})',2,1,1] 0 \leq x§
56:[' search 0 CorrOp0(Array[\mathbb{Z}],\mathbb{Z})'.2.1.2] x§ \leq M
57:[' search 0 CorrOp0(Arrav[\mathbb{Z}],\mathbb{Z})'.2.2.1.110 \leq (i§+1)
58:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.1.2] i§ ≤ N
59:[' search 0 CorrOp0(Arrav[Z],Z)'.2.2.2.1.110 ≤ (r§+1)
60:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.1.2] r§ ≤ N
61:[' search 0 CorrOp0(Arrav[ℤ],ℤ)',2,2,2,2,1,1,1,1] 0 ≤ i§
63:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.1.1.2] '=§0'(r§,'=§0'(1)) v (('=§0'(r§,i§) ∧ (i§ < N)) ∧ '=§0'(a§[r§],x§))
64:[' search 0 CorrOp0(Arrav[ℤ].ℤ)'.2.2.2.2.1.2] ¬((i§ < N) ∧ '=§0'(r§.'-§0'(1)))
65:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.1] ¬('=$0'(r$, '$0'(1)) ∧ (∀i:index. ((('-$0'(1) ≤ i) ∧ (i ≤ N)) ⇒ (((0 ≤ i) ∧ (i < N)) ⇒ (¬'=$0'(a§[i],x§)))))
66:[' search 0 CorrOp0(Array[ℤ].ℤ)'.2.2.2.2.2.2.1.110 ≤ (i§0+1)
67:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.2.2.1.2] i§0 ≤ N
68:[' search 0 CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.2.2.2.1.1] 0 ≤ i§0
69:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.2.2.2.2.1.2] i§0 < r§
```

```
goal:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.2.2.2.2.2] ¬'=§0'(a§[i§0],x§)
```

The subproblem after further decomposition; now a case split is going to be performed on disjunction formula 63.

Wolfgang Schreiner

Is result correct?

(We hide universally quantified knowledge)

```
1:[§0+1] '=§0'(0+1.1)
2:[§1+0] '=§0'(1+0,1)
44:[§0<110 < 1
45:[§-1<0] '-§0'(1) < 0
48:[N$type] 0 \leq N
49:[M§type] 0 \le M
55:[' search 0 CorrOp0(Arrav[\mathbb{Z}],\mathbb{Z})',2,1,1] 0 \leq x§
56:[' search 0 CorrOp0(Array[\mathbb{Z}],\mathbb{Z})'.2.1.2] x§ \leq M
57:[' search 0 CorrOp0(Arrav[\mathbb{Z}],\mathbb{Z})'.2.2.1.110 \leq (i§+1)
58:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.1.2] i§ ≤ N
59:[' search 0 CorrOp0(Arrav[Z],Z)'.2.2.2.1.110 ≤ (r§+1)
60:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.1.2] r§ ≤ N
61:[' search 0 CorrOp0(Arrav[ℤ],ℤ)',2,2,2,2,1,1,1,1] 0 ≤ i§
63:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.1.1.2.2] ('=$0'(r$,i$) ^ (i$ < N)) ^ '=$0'(a$[r$],x$)
64:[' search 0 CorrOp0(Arrav[ℤ].ℤ)'.2.2.2.2.1.2] ¬((i§ < N) ∧ '=§0'(r§.'-§0'(1)))
65:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.1] ¬('=$0'(r$, '$0'(1)) ∧ (∀i:index. ((('-$0'(1) ≤ i) ∧ (i ≤ N)) ⇒ (((0 ≤ i) ∧ (i < N)) ⇒ (¬'=$0'(a§[i],x§)))))
66:[' search 0 CorrOp0(Array[ℤ].ℤ)'.2.2.2.2.2.2.1.110 ≤ (i§0+1)
67:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.2.2.1.2] i§0 ≤ N
68:[' search 0 CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.2.2.2.1.1] 0 ≤ i§0
69:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.2.2.2.2.1.2] i§0 < r§
```

```
goal:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.2.2.2.2.2] ¬'=§0'(a§[i§0],x§)
```

The second case: result r equals loop variable i which is less than array length N and x occurs at index r in a.

Wolfgang Schreiner

Is result correct?

(We hide universally quantified knowledge)

1:[§0+1] '=§0'(0+1.1) 2:[§1+0] '=§0'(1+0.1) 44:[§0<1] 0 < 1 45:[§-1<0] '-§0'(1) < 0 $48:[N\true{stype}] 0 \le N$ 49:[M§type] $0 \le M$ 55:[' search 0 CorrOp0(Array[\mathbb{Z}], \mathbb{Z})'.2.1.1] 0 \leq a§[i§] 56:[' search 0 CorrOp0(Array[\mathbb{Z}], \mathbb{Z})'.2.1.2] a§[i§] \leq M $57:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.1.1] 0 \le (i\$+1)$ 58:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.1.2] i§ ≤ N 59:[' search 0 CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.1.1.1.1] 0 ≤ i§ 61:[' search 0 CorrOp0(Array[Z],Z)'.2.2.2.2.1.1.2.2.1.2] i§ < N 62:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.1.2] -'=§0'(i§,0-1) 63:['_search_0_CorrOp0(Array[ℤ],ℤ).2.2.2.2.2.1] ¬('=\$0'(i§,'-\$0'(1) ∧ (∀i:index.((('-\$0'(1) ≤ i) ∧ (i ≤ N)) ⇒ (((0 ≤ i) ∧ (i < N)) ⇒ (¬'=\$0'(a§[i],a§[i§]))))) 64:[' search 0 CorrOp0(Array[\mathbb{Z}], \mathbb{Z})'.2.2.2.2.2.2.2.1.1] 0 ≤ (i§0+1) 65:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.2.2.1.2] i§0 ≤ N 66:[' search 0 CorrOp0(Arrav[ℤ].ℤ)'.2.2.2.2.2.2.2.1.110 ≤ i§0 67:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.2.2.2.2.1.2] i§0 < i§

goal:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.2.2.2.2.2] ¬'=\$0'(a\$[i\$0],a\$[i\$])

After further simplification, another case split is performed on the negated conjunction formula 63 (equivalent to a disjunction of negated formulas).

Wolfgang Schreiner

Is result correct?

(We hide universally quantified knowledge)

```
1:[§0+1] '=§0'(0+1.1)
2:[§1+0] '=§0'(1+0,1)
44:[§0<1] 0 < 1
45:[§-1<0] '-§0'(1) < 0
48:[Nstype] 0 \leq N
49:[MStype] 0 \le M
55:['_search_0_CorrOp0(Array[\mathbb{Z}],\mathbb{Z})'.2.1.1] 0 \leq a§[i§]
56:['_search_0_CorrOp0(Array[\mathbb{Z}],\mathbb{Z})'.2.1.2] a§[i§] \leq M
57:[' search 0 CorrOp0(Array[\mathbb{Z}],\mathbb{Z})'.2.2.2.1.1] 0 \leq (i§+1)
58:[' search 0 CorrOp0(Arrav[ℤ],ℤ)'.2.2.2.1.2] i§ ≤ N
59:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.1.1.1.1] 0 ≤ i§
61:[' search 0 CorrOp0(Array[Z],Z)'.2.2.2.2.1.1.2.2.1.2] i§ < N
62:[' search 0 CorrOp0(Array[Z],Z)'.2.2.2.2.1.2] -'=$0'(i$,0-1)
63:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.1.2] ¬(∀i:index. ((('-§0'(1) ≤ i) ∧ (i ≤ N)) ⇒ ((i < N)) ⇒ (¬'=§0'(a§[i],a§[i§]))))
64:['_search_0_CorrOp0(Array[\mathbb{Z}],\mathbb{Z})'.2.2.2.2.2.2.2.1.1] 0 ≤ (i§0+1)
65:[' search 0 CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.2.2.1.2] i§0 ≤ N
66:[' search 0 CorrOp0(Arrav[ℤ].ℤ)'.2.2.2.2.2.2.2.1.110 ≤ i§0
67:[' search 0 CorrOp0(Arrav[Z],Z)',2,2,2,2,2,2,2,2,1,2] i§0 < i§
```

goal:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.2.2.2.2.2] ¬'=\$0'(a\$[i\$0],a\$[i\$])

The second case: given constant i is, array a holds at some index i greater equal 0 and less than N value a[i is].

Wolfgang Schreiner

Is result correct?

(We hide universally quantified knowledge)

1:[§0+1] '=§0'(0+1,1) 2:[§1+0] '=§0'(1+0.1) 44:[§0<110 < 1 45:[§-1<0] '-§0'(1) < 0 $48:[NStype] 0 \le N$ 49:[M§type] $0 \le M$ 55:[' search 0 CorrOp0(Array[\mathbb{Z}], \mathbb{Z})'.2.1.1] 0 \leq a§[i§] 56:[' search 0 CorrOp0(Array[\mathbb{Z}], \mathbb{Z})'.2.1.2] a§[i§] $\leq M$ 57:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.1.2] i§ ≤ N 58:[' search 0 CorrOp0(Arrav[ℤ].ℤ)'.2.2.2.2.1.1.1.110 ≤ i§ 60:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.1.1.2.2.1.2] i§ < N 61:[' search 0 CorrOp0(Array[Z],Z)'.2.2.2.2.1.2] ¬'=§0'(i§.0-1) 62:[' search 0 CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.1.2.1.2] i§5 ≤ N 63:[' search 0 CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.1.2.2.1.1] 0 ≤ i§5 64:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.2.1.2.2.1.2] i§5 < N 65:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.2.1.2.2.2] '=§0'(a§[i§5],a§[i§]) 66:[' search 0 CorrOp0(Arrav[ℤ].ℤ)'.2.2.2.2.2.2.2.1.2] i§0 ≤ N 67:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.2.2.2.1.1] 0 ≤ i§0 68:[' search 0 CorrOp0(Array[Z],Z)'.2.2.2.2.2.2.2.2.1.2] i§0 < i§

goal:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.2.2.2.2.2] ¬'=\$0'(a\$[i\$0],a\$[i\$])

After further simplification, we have subproblem 5.

Wolfgang Schreiner

Is result correct?

53:['_search_0_CorrOp0(Array[ℤ],ℤ)'.1.1] \forall x:Int. (((0 ≤ x) ∧ ((x+1) ≤ N)) ⇒ ((0 ≤ a§[x]) ∧ (a§[x] ≤ M))) 54:[' search 0 CorrOp0(Array[\mathbb{Z}], \mathbb{Z})'.1.2] \forall x:Int. ((¬((0 ≤ x) \land ((x+1) ≤ N))) \Rightarrow '=§0'(a§[x],Int§undef)) 55:[' search 0 CorrOp0(Array[\mathbb{Z}], \mathbb{Z})'.2.1.1] 0 \leq a§[i§] 56:['_search_0_CorrOp0(Array[\mathbb{Z}], \mathbb{Z})'.2.1.2] a§[i§] \leq M 57:[' search 0 CorrOp0(Arrav[ℤ],ℤ)'.2.2.2.1.2] i§ ≤ N 58:[' search 0 CorrOp0(Array[\mathbb{Z}], \mathbb{Z})'.2.2.2.2.1.1.1.1] 0 \leq i§ 59:['_search_0_CorrOp0(Array[ℤ],ℤ]:2.2.2.2.1.1.1.2] ∀j:index. (((0 ≤ (j+1)) ∧ (j ≤ N)) ⇒ (((0 ≤ j) ∧ (j < iš)) ⇒ (¬'=\$0'(a\$[i],a\$[i§]))) 60:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.1.1.2.2.1.2] i§ < N 61:[' search 0 CorrOp0(Array[Z],Z)'.2.2.2.2.1.2] ¬'=\$0'(i\$,0-1) 62:[' search 0 CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.1.2.1.2] i§5 ≤ N 63:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.1.2.2.1.1] 0 ≤ i§5 64:[' search 0 CorrOp0(Array[Z],Z)'.2.2.2.2.2.1.2.2.1.2] i§5 < N 65:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.2.1.2.2.2] '=§0'(a§[i§5],a§[i§]) 66:['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.2.2.1.2] i§0 ≤ N 67:[' search 0 CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.2.2.2.2.1.1] 0 ≤ i§0 68:[' search 0 CorrOp0(Array[Z],Z)'.2.2.2.2.2.2.2.1.2] i§0 < i§

goal:['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.2.2.2.2.2] ¬'=§0'(a§[i§0],a§[i§])

Subproblem 5 with the quantified formulas (except for the theory axioms).

Wolfgang Schreiner

Is result correct?

RISC Algorithm Language (RISCAL): RISCTP Theorem Prover	
RISCTP	A
	<u> </u>
wow wetrace (yp-chronog movine * Method: Said Switcher (medicipe 5 : wid-chroaded c chrowade 4 : Expand: c Axomic Intel Intel Alaps: Data Equality: Off o Low Med High: Med SMT: Off Min o Med Maa Display: Problems oProofs Sainch Lind: o Displa: 4 : o breate is Single Goal	
Proof Status: Success	[Sirrefle] Wx:Int. <(x,x) = 1
Beneral Coloral	[Srefis] Vx:Int. T = s(x,x)
Fight Sugar	[NStype] i = s(0,NS)
	[restype] = s(ero) [restype] = s(ero) [restype] = s(ero)
Input File	[maximum] var.emp[int,int], maximp[int,int]
Proof Problem	Innerstoreiliji weikaning og king ving til an sen som
[-] Problem Simplification:	The following "negated goals" represent the negation of the theorem to be proved:
(a) is sough it is comparisoned in Transfer (0.0). It is a the work	
(1) THE CONTRACTOR FOR TANK I and out one down	['_search_0_Corr0p0(Array[2],2)'.1.1.0] ¥x:Int. s(0,x) ∧ s(+(x,1),NS) → s(0,[](a5,x))
[·] Subproblems:	['_search_8_Corr0p8(Array[2],2)'-1-1-1] %:Int. s(0,x) ^ s(=(x,1),NS) = s([](a5,x),NS)
	['_search_@_CorrOp@(Array[Z],Z)'.1.2.0] %x:Int. T = s(0,x) v '=50'([(o5,x),IntSundef)
 Search 0. CorrOp0/Array(Z) 27.1.1.1.2.1 	['_search_8_Corr0p8(Array[2],2)'.1.2.1] %:Int. T = s(+(x,1),85) V '=58'([)(a5,x),IntSundef)
 search_0_EorrOpD(Array12)(2).1.1.2.1.1.2 	['_search_@_CorrOp@(Array[2],2)'.2.1.1] T = s(0,[](a8,15))
_search_0_CorrOp0(Array[Z],Z):1.2.1.2	['_search_@_CorrOp@(Array[Z],Z)'.2.1.2] T -> s([](a5,15),M5)
 Search 0. CorrOp0(Array/ZL2):2.2.1 	['_search_@_CorrOp@(Array[Z],Z)'.2.2.2.1.2] T = s(15,N5)
 Smarch Q. CorrOpD/Array/2127/2.2.2 	['_search_@_CorrOp@(Array[2],2)'.2.2.2.2.1.1.1.1] T = s(0,19)
Li Claura Farma	['_search_@_CorrOp@(Array[Z],Z)'.2.2.2.2.1.1.1.2] Vj:index. s(8,+(j,1)) ^ s(j,N5) ^ s(0,j) ^ <(j,
() cause forms.	['_search_8_Corrdp8(Array[2],2)'.2.2.2.2.1.1.2.2.1.2] Y = <(15,85)
1. ' search 0 CorrOp004rrav/ZLZf.1.1.1.2.1	['_search_8_Corr0p8(Array[2],2)'.2.2.2.2.1.2] '=58'(i5,-(0,1)) = 1
2. ' search 0 CorrOp004rrad/212(11)2112	['_search_@_CorrOp@(Array[Z],Z)'.2.2.2.2.2.1.2.1.2] T = s(195,N9)
3. ' search 0. CorrOx00/eran(717(12)12	['_search_@_CorrOp@(Array[Z],Z)'.2.2.2.2.2.1.2.2.1.1] T = s(0,155)
4. ' search 0 CorrOp0l4rrav/ZLZr 2.2.1	['_search_8_Corr0p8(Array[2],2)'.2.2.2.2.1.2.2.1.2] T = <(155,N5)
5. ' search 0 CorrOp004rra/Z1Z1222	['_search_@_CorrOp@(Array[2],2)'.2.2.2.2.2.1.2.2.2] T = '=90'([](a5,155),[](a5,155)]
	[]_search_g_orrups(array[z], z) - z, z, z, z, z, z, z, 1, 2] T = s(150, 85)
[·] Proofs:	['_search_6_corrup#(Array[z],z)'.2.2.2.2.2.2.2.1.1] T = s(0,150)
	['_search_@_CorrOp@(Array[2],2)'.2.2.2.2.2.2.2.1.2] T = <(198,19)
1. [+] search U corrupperray/ztzr.1.1.1.2.1 (success)	['_search_8_Corr0p8(Array[Z],Z)'.2.2.2.2.2.2.2.2.2] T = '=8'([](35,158),[](35,15))
2. [*] SERCE & CONSPRENDING CONTRACTOR (CONTRACT)	
 (*) Search & Comparing/Exercise (S000055) (*) Search & Comparing/Exercise (S000055) 	to prove the theorem, we apply the proof strategy MESON (model elimination, subgoal oriented)
 (*) <u>Startin o Concoptionalizzati (2.2.1</u> (soffees)) 	to derive from the axioms and negated goals a contradiction. For this,
S. (-) MARCH & CONTRACTORY 2122 222 (MICHAE)	we prove some (not negated) goal from the 'knowledge' represented by the other formulas.
(1) and (1) Control of the Control of the Control of	we start the proof with the last goal; if this does not succeed, we also try the previous ones.
 (i) Stance of Constrainty (Constrainty Constrainty Co	
()	According to the 'SMI' setting, we aid MESCW by application of an SMI solver:
C) INVESTIGATION (SOUNDARY)	in every proor situation, we first apply the set solver before HESON;
(1) <u>2000/00</u> (2000/05)	it the misum proof falls, we apply the smi solver to the whole proof problem.
[-] 201/000 (puccess)	
[-] <u>-I III (SACCESS</u>)	SUCCESS: the proof has been completed.

The problem is closed by proof search and SMT solving.

Wolfgang Schreiner

Is result correct?

Goal: ¬'=§0'([](a§,i§0),[](a§,i§)) ['_search_0_CorrOp0(Array[ℤ],ℤ)'.2.2.2.2.1.1.1.2] (proof depth: 0, proof size: 1)

```
Goal: ¬'=$0'([](a§,i§0),[](a§,i§))
```

To prove the goal, we assume its negation

```
[1] '=$0'([](a$,i$0),[](a$,i$))
```

and show a contradiction. For this, consider knowledge ['_search_0_CorrOp0(Array[Z],Z)'.2.2.2.2.1.1.1.2] with the following instance:

∀j@113:index. ≤(0,+(j@113,1)) ∧ ≤(j@113,N§) ∧ ≤(0,j@113) ∧ <(j@113,i§) ∧ '=\$0'([](a§,j@113),[](a§,i§)) → ⊥

Assumption [1] matches the literal '=\$0'([](a\$,j@113),[](a\$,i\$)) on the left side of this clause by the following substitution:

j@113 → i§0

Therefore, applying this substitution and dropping the literal, we know:

```
\leq (0, +(i\$0, 1)) \land \leq (i\$0, N\$) \land \leq (0, i\$0) \land \leq (i\$0, i\$) \rightarrow \bot
```

Therefore, to show a contradiction, we prove this subgoal:

≤(0,+(i§0,1)) ∧ ≤(i§0,N§) ∧ ≤(0,i§0) ∧ <(i§0,i§)

SUCCESS: goal ¬'=\$0'([](a\$,i\$0),[](a\$,i\$)) ['_search_0_Corr0p0(Array[Z],Z)'.2.2.2.2.1.1.1.2] has been proved with the following substitution:

i@113 → i§0

Invariant has to be instantiated with constant i §0 for variable j.

Wolfgang Schreiner

Is result correct?

Goal: ≤(0,+(i§0,1)) (proof depth: 1, proof size: 2)

Goal: ≤(0,+(i§0,1))

Assumptions:

```
[1] '=$0'([](a$,i$0),[](a$,i$))
```

The goal has been proved by the SMT solver: the solver states by the output

unsat

the unsatisfiability of the negated goal in conjunction with this knowledge:

j@113 → i§0

Option "SMT: Med": the subproblems are closed by the SMT solver.

Wolfgang Schreiner

Is result correct?

Proof problem: '_search_0_CorrOp0(Array[Z],Z)'.2.2.2

The problem has been closed by the SMT solver: the solver states by the output

unsat

the unsatisfiability of these clauses that arise from the negation of the theorem to be proved:

['_search_@_CorrOp0(Array[2],2'):2.2.2.2.2.1.1.1.2] Vj:index. s(0,+(j,1)) ∧ ≤(j,N5) ∧ ≤(0,j) ∧ <(j,15) ∧ '=50'([](a5,j),[](a5,15)) → ⊥ ['_search_@_CorrOp0(Array[2],2'):2.2.2.2.2.1.2] <(150,M5) ['_search_@_CorrOp0(Array[2],2'):2.2.2.2.2.2.1.2] <(150,15) ['_search_@_CorrOp0(Array[2],2'):2.2.2.2.2.2.2.1.2] <(150,15) ['_search_@_CorrOp0(Array[2],2'):2.2.2.2.2.2.2.2.2] <(150,15))

In more detail, the solver states the unsatisfiability of these clause instances:

['_search_@_corrOp0(Array[2],2)'.2.2.2.2.1.1.1.2.2] =(0,+(i\$0,1)) ∧ ≤(i\$0,1\$) ∧ ≤(0,i\$0) ∧ <(i\$0,i\$) ∧ '=\$0'([](a5,i\$0),[](a5,i\$)) → 1 ['_search_@_corrOp0(Array[2],2)'.2.2.2.2.2.2.2.(i\$0,1\$) ['_search_@_corrOp0(Array[2],2)'.2.2.2.2.2.2.2.2.1.] ≤(0,i\$0) ['_search_@_corrOp0(Array[2],2)'.2.2.2.2.2.2.2.2.2.2.2.2.2] '=50'([](a5,i\$0),[](a5,i\$))

Thus the theorem is valid.

 $\label{eq:success:goal '_search_0_corrop0(Array[\ensuremath{\mathbb{Z}}],\ensuremath{\mathbb{Z}})`.2.2.2 \ has \ been \ proved.$

Option "SMT: Max": a proof outline is produced by the SMT solver.

Wolfgang Schreiner

- 1. The Hoare Calculus
- 2. Checking Verification Conditions
- 3. Predicate Transformers
- 4. Termination
- 5. Abortion
- 6. Generating Verification Conditions
- 7. Proving Verification Conditions

8. Procedures

Wolfgang Schreiner

global g; requires Pre; ensures Post; $o := p(i) \{ c \}$

Specification of a procedure p implemented by a command c.

- Input parameter *i*, output parameter *o*, global variable *g*.
 - Command *c* may read/write *i*, *o*, and *g*.
- Precondition *Pre* (may refer to *i*, *g*).
- Postcondition Post (may refer to i, o, g, g_0).
 - g_0 denotes the value of g before the execution of p.

Proof obligation

 $\{Pre \land i_0 = i \land g_0 = g\} \ c \ \{Post[i_0/i]\}$

Proof of the correctness of the implementation of a procedure with respect to its specification.

Wolfgang Schreiner

Example

Procedure specification:

global g
requires
$$g \ge 0 \land i > 0$$

ensures $g_0 = g \cdot i + o \land 0 \le o < i$
 $o := p(i) \{ o := g\%i; g := g/i \}$

Proof obligation:

$$\{g \ge 0 \land i > 0 \land i_0 = i \land g_0 = g \} \\ o := g\%i; \ g := g/i \\ \{g_0 = g \cdot i_0 + o \land 0 \le o < i_0 \}$$

A procedure that divides g by i and returns the remainder.

A call of p provides actual input argument e and output variable x.

$$x := p(e)$$

Similar to assignment statement; we thus first give an alternative (equivalent) version of the assignment rule.

Original:

$$\{D(e) \land Q[e/x]\}$$

 $x := e$
 $\{Q\}$

Alternative:

$$\{D(e) \land \forall x' : x' = e \Rightarrow Q[x'/x]\}$$

$$x := e$$

$$\{Q\}$$

The new value of x is given name x' in the precondition.

Wolfgang Schreiner

From this, we can derive a rule for the correctness of procedure calls.

$$\{D(e) \land Pre[e/i] \land \\ \forall x', g' : Post[e/i, x'/o, g/g_0, g'/g] \Rightarrow Q[x'/x, g'/g] \} \\ x := p(e) \\ \{Q\}$$

- Pre[e/i] refers to the values of the actual argument e (rather than to the formal parameter i).
- x' and g' denote the values of the vars x and g after the call.
- *Post*[...] refers to the argument values before and after the call.
- Q[x'/x, g'/g] refers to the argument values after the call.

Modular reasoning: rule only relies on the *specification* of p, not on its implementation.

$$\begin{array}{l} \text{wp}(x = p(e), Q) = \\ D(e) \land Pre[e/i] \land \\ \forall x', g' : \\ Post[e/i, x'/o, g/g_0, g'/g] \Rightarrow Q[x'/x, g'/g] \\ \text{sp}(P, x = p(e)) = \\ \exists x_0, g_0 : \\ P[x_0/y, g_0/g] \land \\ (Pre[e[x_0/x, g_0/g]/i, g_0/g] \Rightarrow Post[e[x_0/x, g_0/g]/i, x/o]) \end{array}$$

Explicit naming of old/new values required.

())

Example

Procedure specification:

global g
requires
$$g \ge 0 \land i > 0$$

ensures $g_0 = g \cdot i + o \land 0 \le o < i$
 $o = p(i) \{ o := g\%i; g := g/i \}$

Procedure call:

$$\{g \ge 0 \land g = N \land b \ge 0\}$$

$$x = p(b+1)$$

$$\{g \cdot (b+1) \le N < (g+1) \cdot (b+1)\}$$

To be proved:

$$g \ge 0 \land g = N \land b \ge 0 \Rightarrow$$

$$D(b+1) \land g \ge 0 \land b+1 > 0 \land$$

$$\forall x', g':$$

$$g = g' \cdot (b+1) + x' \land 0 \le x' < b+1 \Rightarrow$$

$$g' \cdot (b+1) \le N < (g'+1) \cdot (b+1)$$

Wolfgang Schreiner