
Specifying and Verifying Programs

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

https://www.risc.jku.at

Wolfgang Schreiner https://www.risc.jku.at 1/88

Specifying and Verifying Programs

We will discuss two (closely interrelated) calculi.
Hoare Calculus: {P} c {Q}

If command c is executed in a pre-state with property P and
terminates, it yields a post-state with property Q.
{x = a ∧ y = b}x := x + y{x = a+ y ∧ y = b}

Predicate Transformers: wp(c,Q) = P

If the execution of command c shall yield a post-state with
property Q, it must be executed in a pre-state with property P.
wp(x := x + y , x = a+ y ∧ y = b) = (x + y = a+ y ∧ y = b)

The Hoare calculs can be easily applied in manual verifications; for
automation, the predicate transformers calculus is more suitable (both
calculi can be also combined).

Wolfgang Schreiner https://www.risc.jku.at 2/88

1. The Hoare Calculus

2. Checking Verification Conditions

3. Predicate Transformers

4. Termination

5. Abortion

6. Generating Verification Conditions

7. Proving Verification Conditions

8. Procedures

Wolfgang Schreiner https://www.risc.jku.at 3/88

The Hoare Calculus

First/best-known calculus for program reasoning (C. A. R. Hoare, 1969).
“Hoare triple”: {P} c {Q}

Logical propositions P and Q, program command c .
The Hoare triple is itself a logical proposition.
The Hoare calculus gives rules for constructing true Hoare triples.

Partial correctness interpretation of {P} c {Q}:
“If c is executed in a state in which P holds, then it terminates
in a state in which Q holds unless it aborts or runs forever.”
Program does not produce wrong result.
But program also need not produce any result.

Abortion and non-termination are not (yet) ruled out.
Total correctness interpretation of {P} c {Q}:

“If c is executed in a state in which P holds, then it terminates
in a state in which Q holds.”
Program produces the correct result.

We will use the partial correctness interpretation for the moment.
Wolfgang Schreiner https://www.risc.jku.at 4/88

The Rules of the Hoare Calculus

Hoare calculus rules are inference rules with Hoare triples as proof goals.

{P1} c1 {Q1} . . . {Pn} cn {Qn} VC 1, . . . ,VCm

{P} c {Q}

Application of a rule to a triple {P} c {Q} to be verified yields
other triples {P1} c1 {Q1} . . . {Pn} cn {Qn} to be verified, and
formulas VC 1, . . . ,VCm (the verification conditions) to be proved.

Given a Hoare triple {P}c{Q} as the root of the verification tree:
The rules are repeatedly applied until the leaves of the tree do not
contain any more Hoare triples.
If all verification conditions in the tree can be proved, the root of the
tree represents a valid Hoare triple.

The Hoare calculus generates verification conditions such that the validity
of the conditions implies the validity of the original Hoare triple.

Wolfgang Schreiner https://www.risc.jku.at 5/88

Weakening and Strengthening

P ⇒ P ′ {P ′} c {Q ′} Q ′ ⇒ Q
{P} c {Q}

Logical derivation:
A1 A2

B

Forward: If we have shown A1 and A2, then we have also shown B.
Backward: To show B, it suffices to show A1 and A2.

Interpretation of above sentence:
To show that, if P holds, then Q holds after executing c , it suffices to
show this for a P ′ weaker than P and a Q ′ stronger than Q.

Precondition may be weakened, postcondition may be strengthened.

Wolfgang Schreiner https://www.risc.jku.at 6/88

Special Commands

{P} skip {P} {true} abort {false}

The skip command does not change the state; if P holds before its
execution, then P thus holds afterwards as well.
The abort command aborts execution and thus trivially satisfies
partial correctness.

Axiom implies {P} abort {Q} for arbitrary P,Q.

Useful commands for reasoning and program transformations.

Wolfgang Schreiner https://www.risc.jku.at 7/88

Scalar Assignments

{Q[e/x]} x := e {Q}

Syntax
Variable x , expression e.
Q[e/x] . . .Q where every free occurrence of x is replaced by e.

Interpretation
To make sure that Q holds for x after the assignment of e to x , it
suffices to make sure that Q holds for e before the assignment.

Partial correctness
Evaluation of e may abort.

{x + 3 < 5} x := x + 3 {x < 5}
{x < 2} x := x + 3 {x < 5}

Wolfgang Schreiner https://www.risc.jku.at 8/88

Array Assignments

{Q[a[i 7→ e]/a]} a[i] := e {Q}

An array is modelled as a function a : I → V .
Index set I , value set V .
a[i] = e . . . array a contains at index i the value e.

Term a[i 7→ e] (“array a updated by assigning value e to index i”)
A new array that contains at index i the value e.
All other elements of the array are the same as in a.

Thus array assignment becomes a special case of scalar assignment.
Think of “a[i] := e” as “a := a[i 7→ e]”.

{a[i 7→ x][1] > 0} a[i] := x {a[1] > 0}

Arrays are here considered as basic values (no pointer semantics).

Wolfgang Schreiner https://www.risc.jku.at 9/88

Array Assignments

How to reason about a[i 7→ e]?

Q[a[i 7→ e][j]]
⇝

(i = j ⇒ Q[e]) ∧ (i ̸= j ⇒ Q[a[j]])

Array Axioms
i = j ⇒ a[i 7→ e][j] = e
i ̸= j ⇒ a[i 7→ e][j] = a[j]

{a[i 7→ x][1] > 0} a[i] := x {a[1] > 0}
{(i = 1 ⇒ x > 0) ∧ (i ̸= 1 ⇒ a[1] > 0)} a[i] := x {a[1] > 0}

Get rid of “array update terms” when applied to indices.

Wolfgang Schreiner https://www.risc.jku.at 10/88

Command Sequences

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

Interpretation
To show that, if P holds before the execution of c1; c2, then Q holds
afterwards, it suffices to show for some R that

if P holds before c1, that R holds afterwards, and that
if R holds before c2, then Q holds afterwards.

Problem: find suitable R .
Easy in many cases (see later).

{x + y − 1 > 0} y := y − 1 {x + y > 0} {x + y > 0} x := x + y {x > 0}
{x + y − 1 > 0} y := y − 1; x := x + y {x > 0}

The calculus itself does not indicate how to find intermediate property.

Wolfgang Schreiner https://www.risc.jku.at 11/88

Conditionals

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} if b then c1 else c2 {Q}

{P ∧ b} c {Q} (P ∧ ¬b) ⇒ Q
{P} if b then c {Q}

Interpretation
To show that, if P holds before the execution of the conditional, then
Q holds afterwards,
it suffices to show that the same is true for each conditional branch,
under the additional assumption that this branch is executed.

{x ̸= 0 ∧ x ≥ 0} y := x {y > 0} {x ̸= 0 ∧ x ̸≥ 0} y := −x {y > 0}
{x ̸= 0} if x ≥ 0 then y := x else y := −x {y > 0}

Wolfgang Schreiner https://www.risc.jku.at 12/88

Loops

{true} loop {false} {I ∧ b} c {I}
{I} while b do c {I ∧ ¬b}

Interpretation:
The loop command does not terminate and thus trivially satisfies
partial correctness.

Axiom implies {P} loop {Q} for arbitrary P,Q.
If it is the case that

I holds before the execution of the while-loop and
I also holds after every iteration of the loop body,

then I holds also after the execution of the loop (together with the
negation of the loop condition b).

I is a loop invariant.
Problem:

Rule for while-loop does not have arbitrary pre/post-conditions P,Q.

In practice, we combine this rule with the strengthening/weakening-rule.
Wolfgang Schreiner https://www.risc.jku.at 13/88

Loops (Generalized)

P ⇒ I {I ∧ b} c {I} (I ∧ ¬b) ⇒ Q

{P} while b do c {Q}

Interpretation:
To show that, if before the execution of a while-loop the property P
holds, after its termination the property Q holds, it suffices to show
for some property I (the loop invariant) that

I holds before the loop is executed (i.e. that P implies I),
if I holds when the loop body is entered (i.e. if also b holds), that
after the execution of the loop body I still holds,
when the loop terminates (i.e. if b does not hold), I implies Q.

Problem: find appropriate loop invariant I .
Strongest relationship between all variables modified in loop body.

The calculus itself does not indicate how to find suitable loop invariant.

Wolfgang Schreiner https://www.risc.jku.at 14/88

Example

I :⇔ s =
∑i−1

j=1 j ∧ 1 ≤ i ≤ n + 1

(n ≥ 0 ∧ s = 0 ∧ i = 1) ⇒ I
{I ∧ i ≤ n} s := s + i ; i := i + 1 {I}

(I ∧ i ̸≤ n) ⇒ s =
∑n

j=1 j

{n ≥ 0 ∧ s = 0 ∧ i = 1} while i ≤ n do (s := s + i ; i := i + 1) {s = ∑n
j=1 j}

The invariant captures the “essence” of a loop; only by giving its invariant,
a true understanding of a loop is demonstrated.

Wolfgang Schreiner https://www.risc.jku.at 15/88

1. The Hoare Calculus

2. Checking Verification Conditions

3. Predicate Transformers

4. Termination

5. Abortion

6. Generating Verification Conditions

7. Proving Verification Conditions

8. Procedures

Wolfgang Schreiner https://www.risc.jku.at 16/88

A Program Verification

Verification of the following Hoare triple:
{Input} while i ≤ n do (s := s + i ; i := i + 1) {Output}

Auxiliary predicates:
Input :⇔ n ≥ 0 ∧ s = 0 ∧ i = 1
Output :⇔ s =

∑n
j=1 j

Invariant :⇔ s =
∑i−1

j=1 j ∧ 1 ≤ i ≤ n + 1

Verification conditions:
A :⇔ Input ⇒ Invariant
B :⇔ Invariant ∧ i ≤ n ⇒ Invariant[i + 1/i][s + i/s]
C :⇔ Invariant ∧ i ̸≤ n ⇒ Output

If the verification conditions are valid, the Hoare triple is true.

Wolfgang Schreiner https://www.risc.jku.at 17/88

RISCAL: Checking Program Execution

val N:Nat; type number = N[N]; type index = N[N+1]; type result = N[N·(1+N)/2];

proc summation(n:number): result
requires n ≥ 0;
ensures result =

∑
j:number with 1 ≤ j ∧ j ≤ n. j;

{
var s:result := 0;
var i:index := 1;
while i ≤ n do

invariant s =
∑

j:number with 1 ≤ j ∧ j ≤ i-1. j;
invariant 1 ≤ i ∧ i ≤ n+1;

{
s := s+i;
i := i+1;

}
return s;

}

We check for some N the program execution; this implies that the
invariant is not too strong.

Wolfgang Schreiner https://www.risc.jku.at 18/88

RISCAL: Checking Verification Conditions

pred Input(n:number, s:result, i:index) ⇔
n ≥ 0 ∧ s = 0 ∧ i = 1;

pred Output(n:number, s:result) ⇔
s =

∑
j:number with 1 ≤ j ∧ j ≤ n. j;

pred Invariant(n:number, s:result, i:index) ⇔
(s =

∑
j:number with 1 ≤ j ∧ j ≤ i-1. j) ∧ 1 ≤ i ∧ i ≤ n+1;

theorem A(n:number, s:result, i:index) ⇔
Input(n, s, i) ⇒ Invariant(n, s, i);

theorem B(n:number, s:result, i:index) ⇔
Invariant(n, s, i) ∧ i ≤ n ⇒ Invariant(n, s+i, i+1);

theorem C(n:number, s:result, i:index) ⇔
Invariant(n, s, i) ∧ ¬(i ≤ n) ⇒ Output(n, s);

We check for some N that the verification conditions are valid; this also
implies that the invariant is not too weak.

Wolfgang Schreiner https://www.risc.jku.at 19/88

Another Program Verification

Verification of the following Hoare triple:
{olda = a ∧ oldx = x}
i := 0; r := −1; n = |a|
while i < n ∧ r = −1 do

if a[i] = x
then r := i
else i := i + 1

{a = olda ∧ x = oldx ∧
((r = −1 ∧ ∀i : 0 ≤ i < |a| ⇒ a[i] ̸= x) ∨
(0 ≤ r < |a| ∧ a[r] = x ∧ ∀i : 0 ≤ i < r ⇒ a[i] ̸= x))}

Invariant :⇔ olda = a ∧ oldx = x ∧ n = |a| ∧
0 ≤ i ≤ n ∧ ∀j : 0 ≤ j < i ⇒ a[j] ̸= x ∧
(r = −1 ∨ (r = i ∧ i < n ∧ a[r] = x))

Find the smallest index r of an occurrence of value x in array a (r = −1,
if x does not occur in a).

Wolfgang Schreiner https://www.risc.jku.at 20/88

RISCAL: Checking Program Execution

val N:N; val M:N;
type index = Z[-1,N]; type elem = N[M]; type array = Array[N,elem];

proc search(a:array, x:elem): index
ensures (result = -1 ∧ ∀i:index. 0 ≤ i ∧ i < N ⇒ a[i] ̸= x) ∨

(0 ≤ result ∧ result < N ∧
a[result] = x ∧ ∀i:index. 0 ≤ i ∧ i < result ⇒ a[i] ̸= x);

{
var i:index = 0;
var r:index = -1;
while i < N ∧ r = -1 do

invariant 0 ≤ i ∧ i ≤ N ∧ ∀j:index. 0 ≤ j ∧ j < i ⇒ a[j] ̸= x;
invariant r = -1 ∨ (r = i ∧ i < N ∧ a[r] = x);

{
if a[i] = x

then r := i;
else i := i+1;

}
return r;

}

We check for some N,M the program execution.
Wolfgang Schreiner https://www.risc.jku.at 21/88

The Verification Conditions

Input :⇔ olda = a ∧ oldx = x ∧ n = length(a) ∧ i = 0 ∧ r = −1

Output :⇔ a = olda ∧ x = oldx ∧
((r = −1 ∧ ∀i : 0 ≤ i < length(a) ⇒ a[i] ̸= x) ∨
(0 ≤ r < length(a) ∧ a[r] = x ∧ ∀i : 0 ≤ i < r ⇒ a[i] ̸= x))

Invariant :⇔ olda = a ∧ oldx = x ∧ n = |a| ∧
0 ≤ i ≤ n ∧ ∀j : 0 ≤ j < i ⇒ a[j] ̸= x ∧
(r = −1 ∨ (r = i ∧ i < n ∧ a[r] = x))

A :⇔ Input ⇒ Invariant
B1 :⇔ Invariant ∧ i < n ∧ r = −1 ∧ a[i] = x ⇒ Invariant[i/r]
B2 :⇔ Invariant ∧ i < n ∧ r = −1 ∧ a[i] ̸= x ⇒ Invariant[i + 1/i]
C :⇔ Invariant ∧ ¬(i < n ∧ r = −1) ⇒ Output

The verification conditions A,B1,B2,C must be valid.

Wolfgang Schreiner https://www.risc.jku.at 22/88

RISCAL: Checking Verification Conditions

pred Input(i:index, r:index) ⇔ i = 0 ∧ r = -1;
pred Output(a:array, x:elem, i:index, r:index) ⇔

(r = -1 ∧ ∀i:index. 0 ≤ i ∧ i < N ⇒ a[i] ̸= x) ∨
(0 ≤ r ∧ r < N ∧ a[r] = x ∧ ∀i:index. 0 ≤ i ∧ i < r ⇒ a[i] ̸= x);

pred Invariant(a:array, x:elem, i:index, r:index) ⇔
0 ≤ i ∧ i ≤ N ∧ (∀j:index. 0 ≤ j ∧ j < i ⇒ a[j] ̸= x) ∧
(r = -1 ∨ (r = i ∧ i < N ∧ a[r] = x));

theorem A(a:array, x:elem, i:index, r:index) ⇔
Input(i, r) ⇒ Invariant(a, x, i, r);

theorem B1(a:array, x:elem, i:index, r:index) ⇔
Invariant(a, x, i, r) ∧ i < N ∧ r = -1 ∧ a[i] = x ⇒

Invariant(a, x, i, i);
theorem B2(a:array, x:elem, i:index, r:index) ⇔

Invariant(a, x, i, r) ∧ i < N ∧ r = -1 ∧ a[i] ̸= x ⇒
Invariant(a, x, i+1, r);

theorem C(a:array, x:elem, i:index, r:index) ⇔
Invariant(a, x, i, r) ∧ ¬(i < N ∧ r = -1) ⇒

Output(a, x, i, r);

We check for some N,M that the verification conditions are valid.
Wolfgang Schreiner https://www.risc.jku.at 23/88

1. The Hoare Calculus

2. Checking Verification Conditions

3. Predicate Transformers

4. Termination

5. Abortion

6. Generating Verification Conditions

7. Proving Verification Conditions

8. Procedures

Wolfgang Schreiner https://www.risc.jku.at 24/88

Backward Reasoning

Implication of rule for command sequences and rule for assignments:

{P} c {Q[e/x]}
{P} c ; x := e {Q}

Interpretation
If the last command of a sequence is an assignment, we can remove
the assignment from the proof obligation.
By multiple application, assignment sequences can be removed from
the back to the front.

{P}
x := x+1;
y := 2*x;
z := x+y
{z = 15}

{P}
x := x+1;
y := 2*x;
{x + y = 15}

{P}
x := x+1;
{x + 2x = 15}
(⇔ 3x = 15)
(⇔ x = 5)

{P}
{x + 1 = 5}
(⇔ x = 4)

P ⇒ x = 4

Wolfgang Schreiner https://www.risc.jku.at 25/88

Weakest Preconditions

A calculus for “backward reasoning” (E.W. Dijkstra, 1975).
Predicate transformer wp

Function “wp” that takes a command c and a postcondition Q and
returns a precondition.
Read wp(c ,Q) as “the weakest precondition of c w.r.t. Q”.

wp(c ,Q) is a precondition for c that ensures Q as a postcondition.
Must satisfy {wp(c ,Q)} c {Q}.

wp(c ,Q) is the weakest such precondition.
Take any P such that {P} c {Q}.
Then P ⇒ wp(c ,Q).

Consequence: {P} c {Q} iff (P ⇒ wp(c,Q))

We want to prove {P} c {Q}.
We may prove P ⇒ wp(c ,Q) instead.

Verification is reduced to the calculation of weakest preconditions.

Wolfgang Schreiner https://www.risc.jku.at 26/88

Weakest Preconditions

The weakest precondition of each program construct.

wp(skip,Q) = Q
wp(abort,Q) = true
wp(x := e,Q) = Q[e/x]
wp(c1; c2,Q) = wp(c1,wp(c2,Q))
wp(if b then c1 else c2,Q) = (b ⇒ wp(c1,Q)) ∧ (¬b ⇒ wp(c2,Q))
wp(if b then c ,Q) ⇔ (b ⇒ wp(c ,Q)) ∧ (¬b ⇒ Q)
wp(while b do c ,Q) = . . .

Loops represent a special problem (see later).

Wolfgang Schreiner https://www.risc.jku.at 27/88

Example

WP = wp(if a[i] < x then {a[i] := a[i-1]; i := i-1}, a[i + 1] = b)

= (a[i] < x ⇒ WP1) ∧ (¬(a[i] < x) ⇒ a[i + 1] = b)

≡ (a[i] < x ⇒ WP1) ∧ (a[i] ≥ x ⇒ a[i + 1] = b)

WP1 = wp({a[i] := a[i-1]; i := i-1}, a[i + 1] = b)

= wp(a[i] := a[i-1], a[(i − 1) + 1] = b)

≡ wp(a[i] := a[i-1], a[i] = b)

= wp(a := a[i 7→ a[i-1]], a[i] = b)

= a[i 7→ a[i − 1]][i] = b

≡ (i = i ⇒ a[i − 1] = b) ∧ (i ̸= i ⇒ a[i] = b)

≡ a[i − 1] = b

WP ≡ (a[i] < x ⇒ a[i − 1] = b) ∧ (a[i] ≥ x ⇒ a[i + 1] = b)

Wolfgang Schreiner https://www.risc.jku.at 28/88

Forward Reasoning

Sometimes, we want to derive a postcondition from a given precondition.

{P} x := e {∃x0 : P[x0/x] ∧ x = e[x0/x]}

Forward Reasoning
What is the maximum we know about the post-state of an
assignment x := e, if the pre-state satisfies P?
We know that P holds for some value x0 (the value of x in the
pre-state) and that x equals e[x0/x].

{x ≥ 0 ∧ y = a}
x := x + 1

{∃x0 : x0 ≥ 0 ∧ y = a ∧ x = x0 + 1}
(⇔ (∃x0 : x0 ≥ 0 ∧ x = x0 + 1) ∧ y = a)

(⇔ x > 0 ∧ y = a)

Wolfgang Schreiner https://www.risc.jku.at 29/88

Strongest Postcondition

A calculus for forward reasoning.
Predicate transformer sp

Function “sp” that takes a precondition P and a command c and
returns a postcondition.
Read sp(c ,P) as “the strongest postcondition of c w.r.t. P”.

sp(c ,P) is a postcondition for c that is ensured by precondition P .
Must satisfy {P} c {sp(c ,P)}.

sp(c ,P) is the strongest such postcondition.
Take any P,Q such that {P} c {Q}.
Then sp(c ,P) ⇒ Q.

Consequence: {P} c {Q} iff (sp(c ,P) ⇒ Q).
We want to prove {P} c {Q}.
We may prove sp(c ,P) ⇒ Q instead.

Verification is reduced to the calculation of strongest postconditions.

Wolfgang Schreiner https://www.risc.jku.at 30/88

Strongest Postconditions

The strongest postcondition of each program construct.

sp(skip,P) = P
sp(abort,P) = false
sp(x := e,P) = ∃x0 : P[x0/x] ∧ x = e[x0/x]
sp(c1; c2,P) = sp(c2, sp(c1,P))
sp(if b then c1 else c2,P) ⇔ sp(c1,P ∧ b) ∨ sp(c2,P ∧ ¬b)
sp(if b then c ,P) = sp(c ,P ∧ b) ∨ (P ∧ ¬b)
sp(while b do c ,P) = . . .

Forward reasoning as a (less-known) alternative to backward-reasoning.

Wolfgang Schreiner https://www.risc.jku.at 31/88

Example

SP = sp(if a[i] < x then {a[i] := a[i-1]; i := i-1}, a[i] = b)

= SP1 ∨ (a[i] = b ∧ ¬(a[i] < x)) ≡ SP1 ∨ (a[i] = b ∧ a[i] ≥ x)

≡ SP1 ∨ (b ≥ x ∧ a[i] = b)

SP1 = sp({a[i] := a[i-1]; i := i-1}, a[i] = b ∧ a[i] < x)

≡ sp({a[i] := a[i-1]; i := i-1}, a[i] = b ∧ b < x)

= sp(i:=i-1, SP2)

SP2 = sp(a[i]:=a[i-1], a[i] = b ∧ b < x)

= sp(a:=a[i 7→ a[i-1]], a[i] = b ∧ b < x)

= ∃a0 : a0[i] = b ∧ b < x ∧ a = a0[i 7→ a0[i − 1]]

≡ b < x ∧ ∃a0 : a0[i] = b ∧ a = a0[i 7→ a0[i − 1]]

≡ b < x ∧ a[i] = a[i − 1]

SP1 ≡ sp(i:=i-1, b < x ∧ a[i] = a[i − 1])

= ∃i0 : b < x ∧ a[i0] = a[i0 − 1] ∧ i = i0 − 1

≡ b < x ∧ ∃i0 : a[i0] = a[i0 − 1] ∧ i0 = i + 1

≡ b < x ∧ a[i + 1] = a[(i + 1)− 1] ≡ b < x ∧ a[i + 1] = a[i]

SP ≡ (b < x ∧ a[i + 1] = a[i]) ∨ (b ≥ x ∧ a[i] = b)

Wolfgang Schreiner https://www.risc.jku.at 32/88

Hoare Calc. and Predicate Transformers

In practice, often a combination of the calculi is applied.

{P} c1;while b do c ; c2 {Q}

Assume c1 and c2 do not contain loop commands.
It suffices to prove

{sp(P, c1)} while b do c {wp(c2,Q)}
Predicate transformers are applied to reduce the verification of a program
to the Hoare-style verification of loops.

Wolfgang Schreiner https://www.risc.jku.at 33/88

Weakest Liberal Preconditions for Loops

Why not apply predicate transformers to loops?

wp(loop,Q) = true
wp(while b do c ,Q) = L0(Q) ∧ L1(Q) ∧ L2(Q) ∧ . . .

L0(Q) = true
Li+1(Q) = (¬b ⇒ Q) ∧ (b ⇒ wp(c , Li (Q)))

Interpretation
Weakest precondition that ensures that loops stops in a state
satisfying Q, unless it aborts or runs forever.

Infinite sequence of predicates Li (Q):
Weakest precondition that ensures that after less than i iterations the
state satisfies Q, unless the loop aborts or does not yet terminate.

Alternative view: Li (Q) = wp(if i ,Q)
if0 = loop
if i+1 = if b then (c ; if i)

Wolfgang Schreiner https://www.risc.jku.at 34/88

Example

wp(while i < n do i := i + 1,Q)

L0(Q) = true
L1(Q) = (i ̸< n ⇒ Q) ∧ (i < n ⇒ wp(i := i + 1, true))

⇔ (i ̸< n ⇒ Q) ∧ (i < n ⇒ true)
⇔ (i ̸< n ⇒ Q)

L2(Q) = (i ̸< n ⇒ Q) ∧ (i < n ⇒ wp(i := i + 1, i ̸< n ⇒ Q))
⇔ (i ̸< n ⇒ Q) ∧

(i < n ⇒ (i + 1 ̸< n ⇒ Q[i + 1/i]))
L3(Q) = (i ̸< n ⇒ Q) ∧ (i < n ⇒ wp(i := i + 1,

(i ̸< n ⇒ Q) ∧ (i < n ⇒ (i + 1 ̸< n ⇒ Q[i + 1/i]))))
⇔ (i ̸< n ⇒ Q) ∧

(i < n ⇒ ((i + 1 ̸< n ⇒ Q[i + 1/i]) ∧
(i + 1 < n ⇒ (i + 2 ̸< n ⇒ Q[i + 2/i]))))

Wolfgang Schreiner https://www.risc.jku.at 35/88

Weakest Liberal Preconditions for Loops

Sequence Li (Q) is monotonically increasing in strength:
∀i ∈ N : Li+1(Q) ⇒ Li (Q).

The weakest precondition is the “lowest upper bound”:
∀i ∈ N : wp(while b do c ,Q) ⇒ Li (Q).
∀P : (∀i ∈ N : P ⇒ Li (Q)) ⇒ (P ⇒ wp(while b do c ,Q)).

We can only compute weaker approximation Li (Q).
wp(while b do c ,Q) ⇒ Li (Q).

We want to prove {P} while b do c {Q}.
This is equivalent to proving P ⇒ wp(while b do c ,Q).
Thus P ⇒ Li (Q) must hold as well.

If we can prove ¬(P ⇒ Li (Q)), . . .
{P} while b do c {Q} does not hold.
If we fail, we may try the easier proof ¬(P ⇒ Li+1(Q)).

Falsification is possible by use of approximation Li , but verification is not.
Wolfgang Schreiner https://www.risc.jku.at 36/88

Preconditions for Loops with Invariants

wp(while b do invariant I ; cx,...,Q) =
let oldx = x , . . . in
I ∧ (∀x , . . . : I ∧ b ⇒ wp(c , I)) ∧
(∀x , . . . : I ∧ ¬b ⇒ Q)

Loop body c only modifies variables x , . . .

Loop is annotated with invariant I .
May refer to new values x , . . . of variables after every iteration.
May refer to original values oldx , . . . when loop started execution.

Generated verification condition ensures:
1. I holds in the initial state of the loop.
2. I is preserved by the execution of the loop body c .
3. When the loop terminates, I ensures postcondition Q.

This precondition is only “weakest” relative to the invariant.

Wolfgang Schreiner https://www.risc.jku.at 37/88

Example

while i ≤ n do (s := s + i ; i := i + 1)

cs,i := (s := s + i ; i := i + 1)
I :⇔ s = olds +

(∑i−1
j=oldi j

)
∧ oldi ≤ i ≤ n + 1

Weakest precondition:
wp(while i ≤ n do invariant I ; cs,i ,Q) =

let olds = s, oldi = i in
I ∧ (∀s, i : I ∧ i ≤ n ⇒ I [i + 1/i][s + i/s]) ∧
(∀s, i : I ∧ ¬(i ≤ n) ⇒ Q)

Verification condition:
n ≥ 0 ∧ i = 1 ∧ s = 0 ⇒ wp(. . . , s =

∑n
j=1 j)

Many verification systems implement (a variant of) this calculus.

Wolfgang Schreiner https://www.risc.jku.at 38/88

1. The Hoare Calculus

2. Checking Verification Conditions

3. Predicate Transformers

4. Termination

5. Abortion

6. Generating Verification Conditions

7. Proving Verification Conditions

8. Procedures

Wolfgang Schreiner https://www.risc.jku.at 39/88

Termination

Hoare rules for loop and while are replaced as follows:

{false} loop {false} I ⇒ t ≥ 0 {I ∧ b ∧ t = N} c {I ∧ t < N}
{I} while b do c {I ∧ ¬b}

P ⇒ I I ⇒ t ≥ 0 {I ∧ b ∧ t = N} c {I ∧ t < N} (I ∧ ¬b) ⇒ Q
{P} while b do c {Q}

New interpretation of {P} c {Q}.
If execution of c starts in a state where P holds, then execution
terminates in a state where Q holds, unless it aborts.
Non-termination is ruled out, abortion not (yet).
The loop command thus does not satisfy total correctness.

Termination measure t (term type-checked to denote an integer).
Becomes smaller by every iteration of the loop.
But does not become negative.
Consequently, the loop must eventually terminate.

The initial value of t limits the number of loop iterations.
Any well-founded ordering may be used as the domain of t.

Wolfgang Schreiner https://www.risc.jku.at 40/88

Example

I :⇔ s =
∑i−1

j=1 j ∧ 1 ≤ i ≤ n + 1
t := n − i + 1

(n ≥ 0 ∧ i = 1 ∧ s = 0) ⇒ I I ⇒ n − i + 1 ≥ 0
{I ∧ i ≤ n ∧ n − i + 1 = N} s := s + i ; i := i + 1 {I ∧ n − i + 1 < N}

(I ∧ i ̸≤ n) ⇒ s =
∑n

j=1 j

{n ≥ 0 ∧ i = 1 ∧ s = 0} while i ≤ n do (s := s + i ; i := i + 1) {s = ∑n
j=1 j}

In practice, termination is easy to show (compared to partial correctness).

Wolfgang Schreiner https://www.risc.jku.at 41/88

Termination in RISCAL

while i ≤ n do
invariant s =

∑
j:number with 1 ≤ j ∧ j ≤ i-1. j;

invariant 1 ≤ i ∧ i ≤ n+1;
decreases n+1-i;

{
s := s+i;
i := i+1;

}

fun Termination(n:number, s:result, i:index): number =
n+1-i;

theorem T(n:number, s:result, i:index) ⇔
Invariant(n, s, i) ⇒ Termination(n, s, i) ≥ 0;

theorem B(n:number, s:result, i:index) ⇔
Invariant(n, s, i) ∧ i ≤ n ⇒

Invariant(n, s+i, i+1) ∧
Termination(n, s+i, i+1) < Termination(n, s, i);

Wolfgang Schreiner https://www.risc.jku.at 42/88

Termination in RISCAL

while i < N ∧ r = -1 do
invariant 0 ≤ i ∧ i ≤ N;
invariant ∀j:index. 0 ≤ j ∧ j < i ⇒ a[j] ̸= x;
invariant r = -1 ∨ (r = i ∧ i < N ∧ a[r] = x);
decreases if r = -1 then N-i else 0;

{
if a[i] = x

then r := i;
else i := i+1;

}

fun Termination(a:array, x:elem, i:index, r:index): index =
if r = -1 then N-i else 0;

theorem T(a:array, x:elem, i:index, r:index) ⇔
Invariant(a, x, i, r) ⇒ Termination(a, x, i, r) ≥ 0;

theorem B1(a:array, x:elem, i:index, r:index) ⇔
Invariant(a, x, i, r) ∧ i < N ∧ r = -1 ∧ a[i] = x ⇒

Invariant(a, x, i, i) ∧
Termination(a, x, i, i) < Termination(a, x, i, r);

theorem B2(a:array, x:elem, i:index, r:index) ⇔ ...

Wolfgang Schreiner https://www.risc.jku.at 43/88

Weakest Preconditions for Loops

wp(loop,Q) = false
wp(while b do c ,Q) = L0(Q) ∨ L1(Q) ∨ L2(Q) ∨ . . .

L0(Q) = false
Li+1(Q) = (¬b ⇒ Q) ∧ (b ⇒ wp(c , Li (Q)))

New interpretation
Weakest precondition that ensures that the loop terminates in a state
in which Q holds, unless it aborts.

New interpretation of Li (Q)
Weakest precondition that ensures that the loop terminates after less
than i iterations in a state in which Q holds, unless it aborts.

Preserves property: {P} c {Q} iff (P ⇒ wp(c ,Q))
Now for total correctness interpretation of Hoare calculus.

Preserves alternative view: Li (Q) ⇔ wp(if i ,Q)
if0 = loop
if i+1 = if b then (c ; if i)

Wolfgang Schreiner https://www.risc.jku.at 44/88

Example

wp(while i < n do i := i + 1,Q)

L0(Q) = false
L1(Q) = (i ̸< n ⇒ Q) ∧ (i < n ⇒ wp(i := i + 1, L0(Q)))

⇔ (i ̸< n ⇒ Q) ∧ (i < n ⇒ false)
⇔ i ̸< n ∧ Q

L2(Q) = (i ̸< n ⇒ Q) ∧ (i < n ⇒ wp(i := i + 1, L1(Q)))
⇔ (i ̸< n ⇒ Q) ∧

(i < n ⇒ (i + 1 ̸< n ∧ Q[i + 1/i]))
L3(Q) = (i ̸< n ⇒ Q) ∧ (i < n ⇒ wp(i := i + 1, L2(Q)))

⇔ (i ̸< n ⇒ Q) ∧
(i < n ⇒ ((i + 1 ̸< n ⇒ Q[i + 1/i]) ∧

(i + 1 < n ⇒ (i + 2 ̸< n ∧ Q[i + 2/i]))))
. . .

Wolfgang Schreiner https://www.risc.jku.at 45/88

Weakest Preconditions for Loops

Sequence Li (Q) is now monotonically decreasing in strength:
∀i ∈ N : Li (Q) ⇒ Li+1(Q).

The weakest precondition is the “greatest lower bound”:
∀i ∈ N : Li (Q) ⇒ wp(while b do c ,Q).
∀P : (∀i ∈ N : Li (Q) ⇒ P) ⇒ (wp(while b do c ,Q) ⇒ P).

We can only compute a stronger approximation Li (Q).
Li (Q) ⇒ wp(while b do c ,Q).

We want to prove {P} c {Q}.
It suffices to prove P ⇒ wp(while b do c ,Q).
It thus also suffices to prove P ⇒ Li (Q).
If proof fails, we may try the easier proof P ⇒ Li+1(Q)

However, verifications are typically not successful with any finite
approximation of the weakest precondition.

Wolfgang Schreiner https://www.risc.jku.at 46/88

Weakest Precondition with Measures

wp(while b do invariant I ;decreases t; cx,...,Q) =
let oldx = x , . . . in
I ∧ (∀x , . . . : I ∧ b ⇒ wp(c , I)) ∧
(∀x , . . . : I ∧ ¬b ⇒ Q) ∧
(∀x , . . . : I ⇒ t ≥ 0) ∧
(∀x , . . . : I ∧ b ⇒ let T = t in wp(c , t < T))

Loop body c only modifies variables x , . . .

Loop is annotated with termination measure (term) t.
May refer to new values x , . . . of variables after every iteration.

Generated verification condition ensures:
1. t is non-negative before/after every loop iteration.
2. t is decremented by the execution of the loop body c .

Also here any well-founded ordering may be used as the domain of t.

Wolfgang Schreiner https://www.risc.jku.at 47/88

Example

while i ≤ n do (s := s + i ; i := i + 1)

cs,i := (s := s + i ; i := i + 1)
I :⇔ s = olds +

(∑i−1
j=oldi

)
∧ oldi ≤ i ≤ n + 1

t := n + 1 − i

Weakest precondition:
wp(while i ≤ n do invariant I ; cs,i ,Q) =

let olds = s, oldi = i in
I ∧ (∀s, i : I ∧ i ≤ n ⇒ I [s + i/s, i + 1/i]) ∧
(∀s, i : I ∧ ¬(i ≤ n) ⇒ Q) ∧
(∀s, i : I ⇒ t ≥ 0) ∧
(∀s, i : I ∧ i ≤ n ⇒ let T = n+1− i in n+1−(i+1) < T)

Verification condition:
n ≥ 0 ∧ i = 1 ∧ s = 0 ⇒ wp(. . . , s =

∑n
j=1 j)

Wolfgang Schreiner https://www.risc.jku.at 48/88

1. The Hoare Calculus

2. Checking Verification Conditions

3. Predicate Transformers

4. Termination

5. Abortion

6. Generating Verification Conditions

7. Proving Verification Conditions

8. Procedures

Wolfgang Schreiner https://www.risc.jku.at 49/88

Abortion

New rules to prevent abortion.

{false} abort {true}
{Q[e/x] ∧ D(e)} x := e {Q}

{Q[a[i 7→ e]/a] ∧ D(e) ∧ D(i) ∧ 0 ≤ i < length(a)} a[i] := e {Q}

New interpretation of {P} c {Q}.
If execution of c starts in a state, in which property P holds, then it
does not abort and eventually terminates in a state in which Q holds.

Sources of abortion.
Division by zero.
Index out of bounds exception.

D(e) makes sure that every subexpression of e is well defined.

Wolfgang Schreiner https://www.risc.jku.at 50/88

Definedness of Expressions

D(0) = true.
D(1) = true.
D(x) = true.
D(a[i]) = D(i) ∧ 0 ≤ i < length(a).
D(e1 + e2) = D(e1) ∧ D(e2).
D(e1 ∗ e2) = D(e1) ∧ D(e2).
D(e1/e2) = D(e1) ∧ D(e2) ∧ e2 ̸= 0.
D(true) = true.
D(false) = true.
D(¬b) = D(b).
D(b1 ∧ b2) = D(b1) ∧ D(b2).
D(b1 ∨ b2) = D(b1) ∧ D(b2).
D(e1 < e2) = D(e1) ∧ D(e2).
D(e1 ≤ e2) = D(e1) ∧ D(e2).
D(e1 > e2) = D(e1) ∧ D(e2).
D(e1 ≥ e2) = D(e1) ∧ D(e2).

Assumes that expressions have already been type-checked.
Wolfgang Schreiner https://www.risc.jku.at 51/88

Abortion

Slight modification of existing rules.

P ⇒ D(b) {P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} if b then c1 else c2 {Q}

P ⇒ D(b) {P ∧ b} c {Q} (P ∧ ¬b) ⇒ Q
{P} if b then c {Q}

I ⇒ (t ≥ 0 ∧ D(b)) {I ∧ b ∧ t = N} c {I ∧ t < N}
{I} while b do c {I ∧ ¬b}

Expressions must be defined in any context.

Wolfgang Schreiner https://www.risc.jku.at 52/88

Abortion

Similar modifications of weakest preconditions.

wp(abort,Q) = false
wp(x := e,Q) = Q[e/x] ∧ D(e)
wp(if b then c1 else c2,Q) =
D(b) ∧ (b ⇒ wp(c1,Q)) ∧ (¬b ⇒ wp(c2,Q))

wp(if b then c ,Q) = D(b) ∧ (b ⇒ wp(c ,Q)) ∧ (¬b ⇒ Q)
wp(while b do c ,Q) = (L0(Q) ∨ L1(Q) ∨ L2(Q) ∨ . . .)

L0(Q) = false
Li+1(Q) = D(b) ∧ (¬b ⇒ Q) ∧ (b ⇒ wp(c , Li (Q)))

wp(c,Q) now makes sure that the execution of c does not abort but
eventually terminates in a state in which Q holds.

Wolfgang Schreiner https://www.risc.jku.at 53/88

1. The Hoare Calculus

2. Checking Verification Conditions

3. Predicate Transformers

4. Termination

5. Abortion

6. Generating Verification Conditions

7. Proving Verification Conditions

8. Procedures

Wolfgang Schreiner https://www.risc.jku.at 54/88

RISCAL and Verification Conditions

RISCAL implements (a variant of) the wp-calculus for VC generation.
Wolfgang Schreiner https://www.risc.jku.at 55/88

RISCAL Verification Conditions

RISCAL splits Dijkstra’s single condition Input ⇒ wp(C ,Output) into
many “fine-grained” verification conditions:

Is result correct?
One condition for every ensures clause.

Does loop invariant initially hold? Is loop invariant preserved?
Partial correctness.
One condition for every invariant clause.

Is loop measure non-negative? Is loop measure decreased?
Termination.
One condition for every decreases clause.

Specification and implementation preconditions
Well-definedness of formulas and commands (later).
One condition for every partial function/predicate application.

Click on a condition to see the affected commands; if the procedure
contains conditionals, a condition is generated for each execution branch.

Wolfgang Schreiner https://www.risc.jku.at 56/88

Checking Verification Conditions

Double-click a condition to have it checked.
Checked conditions turn from red to blue.

Right-click a condition to see a pop-up menu.
Check verification condition (same as double-click)
Show variable values that invalidate condition.
Print relevant program information (e.g. invariant).
Print verification condition itself.
Apply SMT solver for faster checking (see menu “SMT”).

Example: is loop invariant preserved?
s = (

∑
j:number with (1 ≤ j) ∧ (j ≤ (i-1)). j)

theorem _summation_0_LoopOp3(n:number)
requires n ≥ 0;
⇔ ∀s:result,i:index. ((((s = (

∑
j:number with (1 ≤ j)∧(j ≤ (i-1)). j))

∧ ((1 ≤ i) ∧ (i ≤ (n+1)))) ∧ (i ≤ n)) ⇒
(let s = s+i in (let i = i+1 in

(s = (
∑

j:number with (1 ≤ j) ∧ (j ≤ (i-1)). j)))));

Important: check models with small type sizes.
Wolfgang Schreiner https://www.risc.jku.at 57/88

1. The Hoare Calculus

2. Checking Verification Conditions

3. Predicate Transformers

4. Termination

5. Abortion

6. Generating Verification Conditions

7. Proving Verification Conditions

8. Procedures

Wolfgang Schreiner https://www.risc.jku.at 58/88

Proving Verification Conditions

RISCAL also integrates the RISCTP interface to various theorem provers.
Menu “TP” and menu entry “Apply Theorem Prover”

Tries to prove verification condition for arbitrary type sizes.
“Apply Prover to All Theorems”: multiple proofs (in parallel).
“Print Prover Output”: shows details of proof attempt.
“Open Theorem Prover GUI”: open the RISTP web interface.

Many (but typically not all) automatic proof attempts may succeed.
Wolfgang Schreiner https://www.risc.jku.at 59/88

Example: Linear Search

Does the quantified loop invariant initially hold?

Proof method MESON: proof problem is already closed by simplification.
Wolfgang Schreiner https://www.risc.jku.at 60/88

Example: Linear Search

Does the quantified loop invariant initially hold?

In the next (and final) step, it is recognized that the assumptions 0 ≤ j§
and j§ ≤ 0 are inconsistent.

Wolfgang Schreiner https://www.risc.jku.at 61/88

Example: Linear Search

Is the quantified loop invariant preserved by the first conditional branch?

Problem is closed by simplification, proof search, and SMT solving.
Wolfgang Schreiner https://www.risc.jku.at 62/88

Example: Linear Search

Is the quantified loop invariant preserved by the first conditional branch?

Invariant has to be instantiated with constant j§ for variable j .
Wolfgang Schreiner https://www.risc.jku.at 63/88

Example: Linear Search

Is the quantified loop invariant preserved by the first conditional branch?

Option “SMT: Med”: subgoals are closed by the SMT solver.
Wolfgang Schreiner https://www.risc.jku.at 64/88

Example: Linear Search

Is the quantified loop invariant preserved by the first conditional branch?

Option “SMT: Max”: a proof outline is produced by the SMT solver.
Wolfgang Schreiner https://www.risc.jku.at 65/88

Example: Linear Search

Is quantified loop invariant preserved by the second conditional branch?

Problem is closed by simplification, proof search, and SMT solving.
Wolfgang Schreiner https://www.risc.jku.at 66/88

Example: Linear Search

Is quantified loop invariant preserved by the second conditional branch?

Proof with knowledge j ≤ i is split into one case j = i (which is closed by
simplification) and one case j < i (which is closed by proof search as in
the first conditional branch).

Wolfgang Schreiner https://www.risc.jku.at 67/88

Example: Linear Search

Is result correct?

Problem is decomposed into five subproblems closed by proof search.
Wolfgang Schreiner https://www.risc.jku.at 68/88

Example: Linear Search

Is result correct?
proc search(a:array, x:elem): index

ensures
(result = -1 ∧ ∀i:index. 0 ≤ i ∧ i < N ⇒ a[i] ̸= x) ∨
(0 ≤ result ∧ result < N ∧ a[result] = x ∧ ∀i:index. 0 ≤ i ∧ i < result ⇒ a[i] ̸= x);

At first, the decomposition yields the second part of the disjunction as the goal
(with the negation of the first part as knowledge).

Wolfgang Schreiner https://www.risc.jku.at 69/88

Example: Linear Search

Is result correct?

The further decomposition yields four subproblems with the following
goals which are then decomposed into five open subproblems as follows:

(0 ≤ r) ⇝ 2 subproblems, 1 closed, 1 open: subproblem 1.
(r < N) ⇝ 3 subproblems, 2 closed, 1 open: subproblem 2.
(a[r] = x) ⇝ 2 subproblems, 1 closed, 1 open: subproblem 3.
(∀i : . . . a[i] ̸= x) ⇝ 4 subproblems, 2 closed, 2 open: subproblems 4, 5.

We show the derivation and solution of subproblem 5.

Wolfgang Schreiner https://www.risc.jku.at 70/88

Example: Linear Search

Is result correct?

The last of the four initial subproblems (the goal is to show that value x
does not occur in array a at any index less than result r).

Wolfgang Schreiner https://www.risc.jku.at 71/88

Example: Linear Search

Is result correct?

The subproblem after further decomposition; now a case split is going to
be performed on disjunction formula 63.

Wolfgang Schreiner https://www.risc.jku.at 72/88

Example: Linear Search

Is result correct?

The second case: result r equals loop variable i which is less than array
length N and x occurs at index r in a.

Wolfgang Schreiner https://www.risc.jku.at 73/88

Example: Linear Search

Is result correct?

After further simplification, another case split is performed on the negated
conjunction formula 63 (equivalent to a disjunction of negated formulas).

Wolfgang Schreiner https://www.risc.jku.at 74/88

Example: Linear Search

Is result correct?

The second case: given constant i§, array a holds at some index i greater
equal 0 and less than N value a[i§].

Wolfgang Schreiner https://www.risc.jku.at 75/88

Example: Linear Search

Is result correct?

After further simplification, we have subproblem 5.
Wolfgang Schreiner https://www.risc.jku.at 76/88

Example: Linear Search

Is result correct?

Subproblem 5 with the quantified formulas (except for the theory axioms).

Wolfgang Schreiner https://www.risc.jku.at 77/88

Example: Linear Search

Is result correct?

The problem is closed by proof search and SMT solving.
Wolfgang Schreiner https://www.risc.jku.at 78/88

Example: Linear Search

Is result correct?

Invariant has to be instantiated with constant i§0 for variable j .
Wolfgang Schreiner https://www.risc.jku.at 79/88

Example: Linear Search

Is result correct?

Option “SMT: Med”: the subproblems are closed by the SMT solver.

Wolfgang Schreiner https://www.risc.jku.at 80/88

Example: Linear Search

Is result correct?

Option “SMT: Max”: a proof outline is produced by the SMT solver.

Wolfgang Schreiner https://www.risc.jku.at 81/88

1. The Hoare Calculus

2. Checking Verification Conditions

3. Predicate Transformers

4. Termination

5. Abortion

6. Generating Verification Conditions

7. Proving Verification Conditions

8. Procedures

Wolfgang Schreiner https://www.risc.jku.at 82/88

Procedure Specifications

global g ;
requires Pre;
ensures Post;
o := p(i) { c }

Specification of a procedure p implemented by a command c .
Input parameter i , output parameter o, global variable g .

Command c may read/write i , o, and g .

Precondition Pre (may refer to i , g).
Postcondition Post (may refer to i , o, g , g0).

g0 denotes the value of g before the execution of p.

Proof obligation
{Pre ∧ i0 = i ∧ g0 = g} c {Post[i0/i]}

Proof of the correctness of the implementation of a procedure with
respect to its specification.

Wolfgang Schreiner https://www.risc.jku.at 83/88

Example

Procedure specification:
global g
requires g ≥ 0 ∧ i > 0
ensures g0 = g · i + o ∧ 0 ≤ o < i
o := p(i) { o := g%i ; g := g/i }

Proof obligation:
{g ≥ 0 ∧ i > 0 ∧ i0 = i ∧ g0 = g}
o := g%i ; g := g/i
{g0 = g · i0 + o ∧ 0 ≤ o < i0}

A procedure that divides g by i and returns the remainder.

Wolfgang Schreiner https://www.risc.jku.at 84/88

Procedure Calls

A call of p provides actual input argument e and output variable x .

x := p(e)

Similar to assignment statement; we thus first give an alternative
(equivalent) version of the assignment rule.

Original:
{D(e) ∧ Q[e/x]}

x := e
{Q}

Alternative:
{D(e) ∧ ∀x ′ : x ′ = e ⇒ Q[x ′/x]}

x := e
{Q}

The new value of x is given name x ′ in the precondition.
Wolfgang Schreiner https://www.risc.jku.at 85/88

Procedure Calls

From this, we can derive a rule for the correctness of procedure calls.

{D(e) ∧ Pre[e/i] ∧
∀x ′, g ′ : Post[e/i , x ′/o, g/g0, g

′/g] ⇒ Q[x ′/x , g ′/g]}
x := p(e)

{Q}

Pre[e/i] refers to the values of the actual argument e (rather than to
the formal parameter i).
x ′ and g ′ denote the values of the vars x and g after the call.
Post[. . .] refers to the argument values before and after the call.
Q[x ′/x , g ′/g] refers to the argument values after the call.

Modular reasoning: rule only relies on the specification of p, not on its
implementation.

Wolfgang Schreiner https://www.risc.jku.at 86/88

Corresponding Predicate Transformers

wp(x = p(e),Q) =
D(e) ∧ Pre[e/i] ∧
∀x ′, g ′ :

Post[e/i , x ′/o, g/g0, g
′/g] ⇒ Q[x ′/x , g ′/g]

sp(P, x = p(e)) =
∃x0, g0 :
P[x0/y , g0/g] ∧
(Pre[e[x0/x , g0/g]/i , g0/g] ⇒ Post[e[x0/x , g0/g]/i , x/o])

Explicit naming of old/new values required.

Wolfgang Schreiner https://www.risc.jku.at 87/88

Example

Procedure specification:
global g
requires g ≥ 0 ∧ i > 0
ensures g0 = g · i + o ∧ 0 ≤ o < i
o = p(i) { o := g%i ; g := g/i }

Procedure call:
{g ≥ 0 ∧ g = N ∧ b ≥ 0}
x = p(b + 1)
{g · (b + 1) ≤ N < (g + 1) · (b + 1)}

To be proved:
g ≥ 0 ∧ g = N ∧ b ≥ 0 ⇒

D(b + 1) ∧ g ≥ 0 ∧ b + 1 > 0 ∧
∀x ′, g ′ :

g = g ′ · (b + 1) + x ′ ∧ 0 ≤ x ′ < b + 1 ⇒
g ′ · (b + 1) ≤ N < (g ′ + 1) · (b + 1)

Wolfgang Schreiner https://www.risc.jku.at 88/88

