
INTEGRATION OF LEARNING
AND REASONING
Summary of some reading material

Temur Kutsia
RISC, Johannes Kepler University Linz

Content

A brief summary of the chapter:

� Robin Manhaeve, Giuseppe Marra, Thomas Demeester,
Sebastijan Dumancic, Angelika Kimmig, Luc De Raedt:

Neuro-Symbolic AI = Neural + Logical + Probabilistic AI.

In: Pascal Hitzler, Md. Kamruzzaman Sarker: Neuro-Symbolic
Artificial Intelligence: The State of the Art. Frontiers in Artificial
Intelligence and Applications 342, IOS Press 2021.

Plus some input from the recent survey:

� Giuseppe Marra, Sebastijan Dumancic, Robin Manhaeve, Luc
De Raedt: From statistical relational to neurosymbolic artificial
intelligence: A survey. Artif. Intell. 328: 104062 (2024)

Disclaimer: I do not claim that I understood everything.

1 / 39

Content

A brief summary of the chapter:

� Robin Manhaeve, Giuseppe Marra, Thomas Demeester,
Sebastijan Dumancic, Angelika Kimmig, Luc De Raedt:

Neuro-Symbolic AI = Neural + Logical + Probabilistic AI.

In: Pascal Hitzler, Md. Kamruzzaman Sarker: Neuro-Symbolic
Artificial Intelligence: The State of the Art. Frontiers in Artificial
Intelligence and Applications 342, IOS Press 2021.

Plus some input from the recent survey:

� Giuseppe Marra, Sebastijan Dumancic, Robin Manhaeve, Luc
De Raedt: From statistical relational to neurosymbolic artificial
intelligence: A survey. Artif. Intell. 328: 104062 (2024)

Disclaimer: I do not claim that I understood everything.

1 / 39

Neuro-Symbolic AI

Integration of learning and reasoning: one of the key challenges in AI.

This chapter explores the integration of learning and reasoning in two
different fields of artificial intelligence:

� neurosymbolic systems (NeSy, extending neural networks with
logical reasoning)

� statistical relational artificial intelligence (StarAI, integrating logic
with probabilistic graphical models)

and proposes putting the three base paradigms (logical, probabilistic,
and neural methods) together for neuro-symbolic AI.

Neuro-Symbolic AI = Neural + Logical + Probabilistic AI

2 / 39

Outline

1. Base paradigms
� logical methods
� Probabilistic methods
� Neural methods

2. Integration
� StarAI
� NeSy

3. Neural Probabilistic Logic Programming

4. Challenges

3 / 39

BASE PARADIGMS

Base paradigms: logical methods

Clausal fragments of

� propositional logic

� relational logic (first-order logic without nonconstant
function symbols)

� first-order logic

Clausal form: h1 ∨ · · · ∨ hk ← b1 ∧ · · · ∧ bn, where the h’s and b’s
are atomic formulas.

All variables are implicitly universally quantified.

Definite clause: k = 1. Fact: k = 1, n = 0.

The chapter focuses on logic programs: sets of definite clauses.

4 / 39

Base paradigms: logical methods

Example (Alarm, first-order form)

burglary.

earthquake.

at_home(mary).

at_home(john).

alarm ← earthquake.

alarm ← burglary.

calls(X) ← alarm, at_home(X).

5 / 39

Base paradigms: logical methods

Definite programs have least Herbrand model.

For the alarm example in first-order form, it is the set of ground
atoms:

{ burglary, earthquake, alarm,

at_home(mary), at_home(john),

calls(mary), calls(john) }

Every element of the least Herbrand model can be proved from
the program by SLD-resolution (backward chaining).

Programs containing general clauses are not guaranteed to
have the least Herbrand model: there are several minimal ones.

6 / 39

Base paradigms: probabilistic methods

Probabilistic graphical models are graph structures, where the nodes
represent random variables, existing edges represent dependences
between them, and missing edges indicate independence.

Two main classes of probabilistic graphical models:

� Bayesian networks, where the structure is a directed acyclic
graph, and

� Markov random fields, where the graph is undirected.

Bayesian networks model asymmetric (causal) effects and
dependencies.

The chapter focuses on Bayesian networks and their connections
with definite logic programs.

7 / 39

Base paradigms: probabilistic methods

Probabilistic graphical models are graph structures, where the nodes
represent random variables, existing edges represent dependences
between them, and missing edges indicate independence.

Two main classes of probabilistic graphical models:

� Bayesian networks, where the structure is a directed acyclic
graph, and

� Markov random fields, where the graph is undirected.

Bayesian networks model asymmetric (causal) effects and
dependencies.

The chapter focuses on Bayesian networks and their connections
with definite logic programs.

7 / 39

Base paradigms: probabilistic methods

8 / 39

Base paradigms: probabilistic methods

Bayesian belief networks compactly represent (joint) probability
distribution P (X1, . . . , Xn) over n random variables X1, . . . , Xn

using the formula

P (X1, . . . , Xn) = Πn
i=1P (Xi | parents(Xi)).

9 / 39

Base paradigms: probabilistic methods

Example (Simpler network, computing a joint entry)

P (J,M,A,¬B,¬E) =

P (J |A)P (M |A)P (A|¬B,¬E)P (¬B)P (¬E) =

0.9× 0.7× 0.001× 0.999× 0.999 = 0.000628741
10 / 39

Base paradigms: neural methods

Neural networks excel in machine learning tasks where the
input data is high-dimensional and feature engineering is hard.

Examples: analyzing images, video or audio data, or natural
language.

Combination of two principles:

� learning multiple layers of nonlinear functions that project
the input data onto relatively low-dimensional embedding
spaces,

� efficient training of these nonlinear models by using of
advanced optimization techniques.

11 / 39

Base paradigms: neural methods

In classification tasks, neural networks typically learn a
conditional probability distribution P (Y |X), where Y is a
random variable representing the class and X is the input
pattern.

For example, a neural network can model the probability
P (Y = 2|X =) that the MNIST image represents 2.

Neural networks can be seen as compact approximations of
conditional probability distribution tables.

They in general perform badly on reasoning tasks.

12 / 39

Base paradigms: neural methods

Side remark: The MNIST database (Modified NIST database)
is a large database of handwritten digits.

Commonly used for training various image processing systems.

13 / 39

INTEGRATION

Integration: StarAI

Statistical Relational AI.

Extends first-order logic (programming) with uncertainty.

Or, equivalently, extends probability theory with relations.

One key idea: to unify the notion of a logical atom and a
random variable.

14 / 39

Integration: StarAI

StarAI models allow defining templated probabilistic models
thanks to the use of first order clauses with variables.

The parameters of these models can be trained on a specific
set of individuals (e.g. mary and john)) and then they can be
used to make predictions on new individuals (e.g. bob).

ProbLog: a probabilistic logic programming language.

15 / 39

Integration: StarAI

ProbLog extends Prolog with probabilistic facts: p :: f .

The alarm example as a ProbLog program:

Example (Alarm, ProbLog)

0.1 :: burglary.

0.2 :: earthquake.

0.5 :: at_home(mary).

0.4 :: at_home(john).

alarm ← earthquake.

alarm ← burglary.

calls(X) ← alarm, at_home(X).

16 / 39

Integration: StarAI

A ProbLog program consists of a set of probabilistic facts and a
set of definite clauses.

Each ground instance fϑ of a probabilistic fact p :: f

corresponds to an independent Boolean random variable that is
true with probability p and false with probability 1− p.

Given a ProbLog program P, denote:

� F : the set of probabilistic facts in P,

� GROUND(F): the set of all ground instances of facts in F ,

� R: the set of rules in P.

17 / 39

Integration: StarAI

A ProbLog program consists of a set of probabilistic facts and a
set of definite clauses.

Each ground instance fϑ of a probabilistic fact p :: f

corresponds to an independent Boolean random variable that is
true with probability p and false with probability 1− p.

Given a ProbLog program P, denote:

� F : the set of probabilistic facts in P,

� GROUND(F): the set of all ground instances of facts in F ,

� R: the set of rules in P.

17 / 39

Integration: StarAI

Every subset F ⊆ GROUND(F) defines a possible world

wF = {h | F ∪R |= h and h is ground}.

wF is the least Herbrand model of the definite program F ∪R.

Example
F = {burglary, at_home(mary)}.

0.1 :: burglary.

0.5 :: at_home(mary).

alarm ← earthquake.

alarm ← burglary.

calls(X) ← alarm, at_home(X).

wF = F ∪ {alarm, calls(mary)}.

18 / 39

Integration: StarAI

The probability P (wF) of such a possible world wF :

P (wF) =
∏
fi∈F

pi
∏

fi∈GROUND(F)\F

(1− pi)

Example
F = {burglary, at_home(mary)}.

0.1 :: burglary. alarm ← earthquake.

0.2 :: earthquake. alarm ← burglary.

0.5 :: at_home(mary).

0.4 :: at_home(john). calls(X) ← alarm, at_home(X).

wF = {burglary, at_home(mary),alarm, calls(mary)}.

P (wF) = 0.1× 0.5× (1− 0.2)× (1− 0.4) = 0.024

19 / 39

Integration: StarAI

The probability of a ground atom q (success probability of q), is
defined as the sum of the probabilities of all worlds containing q:

P (q) :=
∑

F⊆GROUND(F), q∈wF

P (wF).

To compute P (alarm), we should consider P (wF)’s for 12 F ’s:

F1 = {burglary}

F2 = {burglary, at_home(mary)}

F3 = {burglary, at_home(john)}

F4 = {burglary, at_home(mary), at_home(john)}

F5 = {earthquake}

. . .

F12 = {burglary, earthquake, at_home(mary), at_home(john)}.

20 / 39

Integration: StarAI

ProbLog allows many shortcuts for making programming easier
(non-ground probabilistic facts, annotated disjunctions, probabilistic
clauses, . . .).

Bayesian networks can be encoded as ProbLog programs.

Annotated disjunction to model different severities of the earthquake:

0.4 :: no_earthquake ;

0.4 :: mild_earthquake ;

0.2 :: severe_earthquake.

Or without explicitly representing the event of no earthquake:

0.4 :: mild_earthquake ; 0.2 :: severe_earthquake.

in which “neither mild_earthquake nor severe_earthquake” will
be true with probability 0.4.

21 / 39

Integration: StarAI

ProbLog allows many shortcuts for making programming easier
(non-ground probabilistic facts, annotated disjunctions, probabilistic
clauses, . . .).

Bayesian networks can be encoded as ProbLog programs.

Annotated disjunction to model different severities of the earthquake:

0.4 :: no_earthquake ;

0.4 :: mild_earthquake ;

0.2 :: severe_earthquake.

Or without explicitly representing the event of no earthquake:

0.4 :: mild_earthquake ; 0.2 :: severe_earthquake.

in which “neither mild_earthquake nor severe_earthquake” will
be true with probability 0.4.

21 / 39

Integration: StarAI

Conditional probability distribution table as a ProbLog program:

0.95 :: alarm :- burglary, earthquake.

0.94 :: alarm :- burglary, \+ earthquake.

0.29 :: alarm :- \+ burglary, earthquake.

0.001 :: alarm :- \+ burglary, \+ earthquake.

22 / 39

Integration: NeSy

Neuro-symbolic AI integrates neural networks with symbolic
representations.

Two types of neuro-symbolic AI:

� neural networks extended with logical aspects,

� logical approaches extended with neural constructs.

23 / 39

Integration: NeSy

Neural networks extended with logical aspects. One way:

� logical constraints are imposed on the output,

� not hard constraints (not guaranteed to hold),

� only used during the training, where the degree in which they are
not satisfied serves as an additional loss term,

� enforces the neural methods to make predictions that adhere
better to the logic,

� encodes the logic into the parameters of the network, so that
even when the logic is not explicitly present, the model should
still satisfy the logical constraints more than models that were
trained without these constraints.

Examples: semantic based regularization, the semantic loss function.

24 / 39

Integration: NeSy

Neural networks extended with logical aspects. Another way:

� using a carefully designed architecture (e.g., as in
neuro-symbolic deductive reasoning or deep deductive
reasoning), or

� using the logic to define the neural network structure in a
templating approach (e.g., relational neural networks,
neural theorem provers, etc.).

25 / 39

Integration: NeSy

Logical methods with neural constructs.

The neural constructs create an interface between the
logic-based framework and the neural network.

These constructs allow the logic to evaluate neural networks
such that their parameters can be optimized together with any
possible parameters in the logic.

This type of extension is similar to how Prolog was extended
into ProbLog through the introduction of probabilistic facts.

26 / 39

Integration: NeSy

Numbers vs Booleans.

Neuro-symbolic AI systems need to connect the output of the
neural networks to the Boolean values in logic.

Seeing neural networks as classifiers, they output a confidence
score for each class.

If the neural network is sufficiently confident, it might suffice to
only select the top prediction.

However, in general, this is not feasible.

There are several strategies for dealing with this.

27 / 39

Integration: NeSy

Numbers vs Booleans.

Neuro-symbolic AI systems need to connect the output of the
neural networks to the Boolean values in logic.

Seeing neural networks as classifiers, they output a confidence
score for each class.

If the neural network is sufficiently confident, it might suffice to
only select the top prediction.

However, in general, this is not feasible.

There are several strategies for dealing with this.

27 / 39

Integration: NeSy

Numbers vs Booleans.

Neuro-symbolic AI systems need to connect the output of the
neural networks to the Boolean values in logic.

Seeing neural networks as classifiers, they output a confidence
score for each class.

If the neural network is sufficiently confident, it might suffice to
only select the top prediction.

However, in general, this is not feasible.

There are several strategies for dealing with this.

27 / 39

Integration: NeSy

Numbers vs Booleans, one strategy.

Choose one of the outputs of the neural network, based on the
confidence score.

When the choices turn out to be logically inconsistent, different
outputs are chosen until they are consistent.

These choices can be used train the neural network to make
this output more likely.

Used in systems ABL, NGS, . . .

28 / 39

Integration: NeSy

Numbers vs Booleans, another strategy.

Use the confidence scores directly in the logic, turning logical
operators into real-valued functions

This relaxes Boolean truth values to the continuous [0, 1]

interval.

This introduces T-norm-based fuzzy logics.

Used in systems LRNN, DiffLog, . . .

29 / 39

Integration: NeSy

Numbers vs Booleans, yet another strategy.

Interpret the confidence scores as a probability distribution.

Use a probabilistic logic to deal with the uncertainty.

Used in systems DeepProbLog, NeurASP, . . .

30 / 39

NEURAL PROBABILISTIC
LOGIC PROGRAMMING

Neural Probabilistic Logic Programming

The authors approach: two desirable properties of frameworks that
integrate two other frameworks A and B:

1. The original frameworks A and B should be a special case of
the integrated one.

2. Models that learn from observed samples should be able to deal
with uncertainty.

The authors claim that the first property is not satisfied by the vast
majority of neuro-symbolic approaches.

The second property implies that one should not only integrate logic
with neural networks in NeSy, but also probability.

Neuro-Symbolic AI = Neural + Logical + Probabilistic AI.

31 / 39

Neural Probabilistic Logic Programming

The authors approach: two desirable properties of frameworks that
integrate two other frameworks A and B:

1. The original frameworks A and B should be a special case of
the integrated one.

2. Models that learn from observed samples should be able to deal
with uncertainty.

The authors claim that the first property is not satisfied by the vast
majority of neuro-symbolic approaches.

The second property implies that one should not only integrate logic
with neural networks in NeSy, but also probability.

Neuro-Symbolic AI = Neural + Logical + Probabilistic AI.

31 / 39

Neural Probabilistic Logic Programming

DeepProbLog: neuro-symbolic extension of ProbLog.

In ProbLog, the probabilities of all random choices are explicitly
specified as part of probabilistic facts or annotated disjunctions.

DeepProbLog extends ProbLog to basic random choices
whose probabilities are parameterized by neural networks.

This is realized through neural predicates: special probabilistic
facts that are annotated by neural networks instead of by scalar
probabilities.

32 / 39

Neural Probabilistic Logic Programming

DeepProbLog: neuro-symbolic extension of ProbLog.

In ProbLog, the probabilities of all random choices are explicitly
specified as part of probabilistic facts or annotated disjunctions.

DeepProbLog extends ProbLog to basic random choices
whose probabilities are parameterized by neural networks.

This is realized through neural predicates: special probabilistic
facts that are annotated by neural networks instead of by scalar
probabilities.

32 / 39

Neural Probabilistic Logic Programming

Neural predicate is used to define a neural annotated
disjunction (nAD).

It is assumed that a neural network model m is given.

The network model m defines a probability distribution

pm(Y = t | X1 = s1, . . . , Xk = sk)

where

� t ∈ {t1, . . . , tn} (ti’s are ground terms, {t1, . . . , tn} is the
output domain),

� s1, . . . , sk represent the input to the neural network.

33 / 39

Neural Probabilistic Logic Programming

Example

This nAD specifies probability distribution for MNIST digits

nn(m_digit, [X], Y, [0,...,9]) :: digit(X, Y).

where m_digit is a network that classifies MNIST digits.

For input image , this generic nAD represents a ground nAD
containing 10 disjuncts:

pm_digit(Y = 0 | X =) :: digit(, 0) ;

...

pm_digit(Y = 9 | X =) :: digit(, 9)

Note that DeepProbLog allows images or other subsymbolic representations
as terms of the program.

34 / 39

Neural Probabilistic Logic Programming

DeepProbLog: how does it work.

Program:

nn(m_digit, [X], Y, [0,...,9]) :: digit(X, Y).

addition(X,Y,Z) :-

digit(X,N1), digit(Y,N2), Z is N1+N2.

Query: addition(, , 1)

Step 1: grounding the program (relevant part)

nn(m_digit, [], 0) :: digit(, 0) ;

nn(m_digit, [], 9) :: digit(, 9).

nn(m_digit, [], 0) :: digit(, 0) ;

nn(m_digit, [], 9) :: digit(, 9).

addition(, ,1) :- digit(,0), digit(,1).

addition(, ,1) :- digit(,1), digit(,0).

35 / 39

Neural Probabilistic Logic Programming

Step 2: obtain form the ground program a propositional formula that
defines the truth value of the query in terms of the truth values of
probabilistic facts:

(
digit(,0) ∧ digit(,1)

)
∨(

digit(,1) ∧ digit(,0)
)
.

36 / 39

Neural Probabilistic Logic Programming

Step 3: transform the obtained formula into an arithmetic circuit and
use it to compute the success probability of the query.

37 / 39

CHALLENGES

Challenges for neurosymbolic AI

� Scalability
� Can neural networks help? Or approximate inference?

� Structure learning
� Currently, providing clause templates or a model sketch is

required

� Semantics
� Many competing formalisms.

� Data efficiency
� StarAI is can learn from little data set, but does not scale.

Neural networks require large data sets.

� Symbolic representation learning
� Is it possible to change the representation at the symbolic

level like deep learning does to the data to simplify solving
the target task?

38 / 39

39 / 39

	Base paradigms
	Integration
	Neural Probabilistic Logic Programming
	Challenges

