GRAY-BOX PROVING IN THEOREMA

Wolfgang Windsteiger
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)

Seminar Formal Methods and Automated Reasoning - June 11, 2024

INTRODUCTION

■ A few words on Theorema for "newcomers" ...
■ Default style: White-Box Prover
\square Every single logical step is reflected in a node in the proof tree.
\square Every single node in the proof tree results in an explanation of the proof step.
■ Human style: Simple steps are not explained in too much (?) detail.
■ Still, not black-box without explanation.

EXAMPLE

Definition: Let p be a partial order on A and $s \in A$. We call s the smallest element in A w.r.t. p iff $p[s, x]$ for all $x \in A$.

Written in Theorema language:

$$
\underset{\substack{s, p, A \\[(p, A] \wedge s \in A}}{\forall} \text { smallest }[s, A, p]: \Longleftrightarrow \underset{x \in A}{\forall} p[s, x]
$$

If we need to prove smallest $[1, \mathbb{N}, \operatorname{div}]$, we would create 3 subgoals:

$$
p o[\operatorname{div}, \mathbb{N}] \quad 1 \in \mathbb{N} \quad \underset{x \in \mathbb{N}}{\forall} \operatorname{div}[1, x]
$$

Proof: In order to prove smallest $[1, \mathbb{N}, d i v]$ we have to show:

1. $p o[d i v, \mathbb{N}]: \ldots$
2. $1 \in \mathbb{N}: \ldots$
3. $\underset{x \in \mathbb{N}}{\forall} \operatorname{div}[1, x]: \ldots$

WHAT WE ARE AIMING AT ...

■ Identify $p o[p, A]$ and $s \in A$ as side-conditions in the definition.

- When expanding smallest $[1, \mathbb{N}, \operatorname{div}]$ check side-conditions "silently".

■ Result: only 1 subgoal, namely $\underset{x \in \mathbb{N}}{\forall} \operatorname{div}[1, x]$.
■ Proof: In order to prove smallest $[1, \mathbb{N}$, $\operatorname{div}]$, due to \ldots, we have to show $\underset{x \in \mathbb{N}}{\forall} \operatorname{div}[1, x]$.
■ The "silent check" should be efficient and cover simple cases.

EFFICIENT CHECKING OF (SIDE) CONDITIONS

We propose an efficient mechanism that allows to prove statements that can be easily derived from a given knowledge base. The intended use of this mechanism within the Theorema system is in places where we need to

■ quickly verify the truth of simple statements (e.g., atomic formulas without quantifiers) and

■ only need rough informations about the logical reasoning behind the scenes.
We consider a statement U easily derivable (from K) if

- $U \in K$ or
- $(\forall S \Rightarrow T) \in K$ with a substitution σ s.t. $T \sigma=U$ and $S \sigma$ is easily derivable.

A SIMPLE RECURSIVE ALGORITHM FOR CHECKING

Input: \square the formula to be checked,

- the knowledge base, and
- a list of formulas already used in the derivation so far.

Output: \square boolean value indicating whether the formula is easily derivable and

- a list of all formulas needed in the entire derivation.

Base cases:

$$
\begin{aligned}
\text { quickCheck }\left[f_{-},\left\{\left\{_{---}, f_{-}, __{--}\right\}, U_{-}\right]\right. & :=\{\text {True, Union }[\mathrm{U},\{\mathrm{f}\}]\} \\
\text { quickCheck }\left[\mathrm{f}_{-}, \mathrm{K}_{-}, \mathrm{U}_{-}\right] & :=\{\text {False, }\{ \}\}
\end{aligned}
$$

Recursion (roughly): for every (quantified) implication $f \equiv \underset{x}{\forall} S \Rightarrow T$:

$$
\text { quickCheck[T*, K_, U_] := quickCheck[S, K, Union[U, \{f\}]] }
$$

A NOTE ON IMPLEMENTATION

1. We use rule-based programming style in Mathematica, i.e. instead of nested if-then-else clauses we have individual cases implemented by separate functions that differ by parameter patterns \leadsto can easily be modified dynamically.
2. Instead of recursion like

$$
\text { quickCheck }\left[T^{*}, \mathrm{~K}_{-}, \mathrm{U}_{-}\right]:=\text {quickCheck }[\mathrm{S}, \mathrm{~K}, \mathrm{Union}[\mathrm{U},\{\mathrm{f}\}]]
$$

we implement recursion as
quickCheck[T*, K_, U_] := Module[v, body /; ...qCQ[S,K,U] ...]
where q CQ is just a wrapper around quickCheck that, instead of returning $\{b, U\}$, returns only the boolean value b and stores the used formulas U in a global variable, from which they can be retrieved later. This allows the quickCheck-mechanism to be used inside boolean conditions directly.

THE NON-ATOMIC CASE

If S or T are propositional formulas we proceed as follows:
■ If $f \equiv \underset{x}{\forall}\left(S \Rightarrow T_{1} \wedge \ldots \wedge T_{n}\right)$: Since f is equivalent to the conjunction of the individual $\forall\left(S \Rightarrow T_{i}\right)$ we generate individual quickCheck-cases for each T_{i}.

- If $f \equiv \underset{x}{\forall}\left(S_{1} \vee \ldots \vee S_{n} \Rightarrow T\right)$: Since f is equivalent to the conjunction of the individual $\forall\left(S_{i} \Rightarrow T\right)$ we generate individual quickCheck-cases for each S_{i}. x
■ If $f \equiv \underset{x}{\forall}\left(S_{1} \wedge \ldots \wedge S_{n} \Rightarrow T\right)$ then backchaining must branch to all the S_{i} and it delivers True only if all individual branches succeed. In the implementation this is reflected by calling quichCheck with a list of formulas as first parameter. Details next slide!
■ If $f \equiv \underset{x}{\forall}\left(S \Leftrightarrow T_{1} \wedge \ldots \wedge T_{n}\right)$ with atomic S then it is processed as if it was an implication. Same for dual case where T is atomic and S is a conjunction.
■ If $f \equiv S: \Leftrightarrow T_{1} \wedge \ldots \wedge T_{n}$ then we treat it like an implication. Note that in this case S is always atomic.

BRANCHING WITH FREE VARIABLES

If T does not contain some of the variables $(\operatorname{free}(T)=z$ and $y=x \backslash z)$

$$
\underset{x}{\forall}\left(S_{1} \wedge S_{2} \wedge \cdots \wedge S_{n} \Rightarrow T\right) \equiv \underset{z}{\forall}\left(\left(\underset{y}{\exists} S_{1} \wedge \cdots \wedge S_{n}\right) \Rightarrow T\right),
$$

i.e., in this case we cannot simply branch and check the S_{i} independently.

Try to find S_{j} and σ s.t.

- $\operatorname{free}\left(S_{j}\right)=y$ and
- $S_{j} \sigma \in K$ and

■ qCQ[$\left[S_{k} \sigma, K, U\right]$ for all $k \neq j$.
Finding S_{j} and σ is done in the same recursive pattern as above such that all possibilities are traversed.

APPLICATION 1: KNOWLEDGE EXPANSION

If $\forall \underset{x}{\forall}(S \Rightarrow T) \in K$ and an instance $S \sigma \in K$ then $K:=K \cup\{T \sigma\}$.
Instead of computing σ : generate rule $\mathrm{S}^{*}:>\mathrm{T}$ and apply it to all formulas in K.
If the pattern S^{*} matches, we found an instance of S, and the rule generates the respective instance of T. (Use pattern matching of Mathematica!)

Simple Example.

$$
\underset{x}{\forall}(4 \mid x \Rightarrow \operatorname{even}(x)) \sim 4 \mid \mathrm{x}_{-}:>\operatorname{even}[\mathrm{x}] .
$$

■ Suppose we have $4 \mid 20$ in our knowledge base.
■ Pattern $4 \mid x$ _ matches $4 \mid 20$,
■ rule application produces "new knowledge" even(20).

- Corresponds to inferring even(20) from the given knowledge.

APPLICATION 1: KNOWLEDGE EXPANSION

Quite often in mathematics, we have

$$
\underset{x}{\forall}\left(S_{1} \wedge S_{2} \wedge \cdots \wedge S_{n} \Rightarrow T\right)
$$

Equivalent formulation as "nested implication"

$$
\underset{x}{\forall}\left(S_{1} \Rightarrow\left(S_{2} \Rightarrow \ldots \Rightarrow S_{n} \Rightarrow T\right)\right)
$$

would result in a cumbersome step-by-step inference until finally deriving T.
Alternatively, for any choice $1 \leq i \leq n$, another alternative equivalent formulation is

$$
\underset{x}{\forall}\left(\left(S_{1} \wedge \cdots \wedge S_{i-1} \wedge S_{i+1} \wedge \cdots \wedge S_{n}\right) \Rightarrow\left(S_{i} \Rightarrow T\right)\right),
$$

View $S_{1}, \ldots, S_{i-1}, S_{i+1}, \ldots, S_{n}$ as side-conditions, under which we derive T from S_{i} !

$$
\mathrm{S}_{i}^{*} / ; \mathrm{qCQ}\left[\left\{\mathrm{~S}_{1}, \ldots, \mathrm{~S}_{i-1}, \mathrm{~S}_{i+1}, \ldots, \mathrm{~S}_{n}\right\}, \mathrm{K}, \mathrm{U}\right]:>\mathrm{T}
$$

with $\operatorname{free}\left(S_{i}\right)=x$ would achieve exactly what we need.

APPLICATION 2: GOAL REDUCTION

"Goal-oriented" application of Modus Ponens ("backward chaining"): exactly what quickCheck does, but now on the top-level. One reduction step at the time and verbose documentation in the proof (not silent).

$$
\begin{aligned}
& \operatorname{free}(T)=z \text { and } y=x \backslash z \text { and }\left\{C_{1}, \ldots, C_{k}\right\}=\left\{S_{i} \mid \text { free }\left(S_{i}\right) \cap y=\emptyset\right\} \text {. Then } \\
& \left.\qquad \underset{x}{\forall}\left(S_{1} \wedge S_{2} \wedge \cdots \wedge S_{n} \Rightarrow T\right) \equiv \underset{z}{\forall}\left(\left(C_{1} \wedge \cdots \wedge C_{k}\right) \Rightarrow \underset{y}{\exists} S_{1}^{\prime} \wedge \cdots \wedge S_{m}^{\prime}\right) \Rightarrow T\right) .
\end{aligned}
$$

View C_{1}, \ldots, C_{k} as side-conditions, under which we reduce the goal T !

$$
\mathrm{T}^{*} / ; \mathrm{qCQ}\left[\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{k}\right\}, \mathrm{K}, \mathrm{U}\right]:>{\underset{y}{\exists}}_{\exists} \mathrm{S}_{1}^{\prime} \wedge \cdots \wedge \mathrm{S}_{m}^{\prime}
$$

would achieve exactly what we need.
Special case: If $y=\emptyset$, then the goal reduces to True, i.e., the proof is finished.

GOAL REDUCTION: EXAMPLES

Example. The quantified implication

$$
\underset{f, X, Y, B}{\forall}((f: X \rightarrow Y \wedge B \subseteq Y \wedge \mathcal{I}(X, f)=B) \Rightarrow \operatorname{surjective}(f, X, B))
$$

would lead to the rule

$$
\text { surjective[f_, } \left.X_{-}, B_{-}\right] / ; q C Q[I(X, f)=B, K, U]:>\underset{Y}{\exists}(f: X \rightarrow Y \wedge B \subseteq Y)
$$

Proving the surjectivity of $f(x):=x^{2}$ from \mathbb{R} to \mathbb{R}_{0}^{+}reduces to
■ finding a Y such that $f: \mathbb{R} \rightarrow Y$ and $\mathbb{R}_{0}^{+} \subseteq Y$
\square provided that we can "easily show" that $\mathcal{I}(\mathbb{R}, f)=\mathbb{R}_{0}^{+}$.
■ Goal reduction would wait until this is the case.

GOAL REDUCTION: EXAMPLES

Example. The quantified implication

$$
\underset{f, X, Y}{\forall}((f: X \rightarrow Y \wedge \mathcal{I}(X, f)=Y) \Rightarrow \operatorname{surjective}(f, X, Y))
$$

would lead to the rule

$$
\text { surjective[f_, } \left.\left.\left.\mathrm{X}_{-}, \mathrm{Y}\right] \text {] /; qCQ[\{f: X } \rightarrow \mathrm{Y}, \mathrm{I}(\mathrm{X}, \mathrm{f})=\mathrm{Y}\right\}, \mathrm{~K}, \mathrm{U}\right] \text { :> True }
$$

FURTHER APPLICATIONS

■ Handling of explicit definitions

- Handling of implicit definitions

■ Replacement based on (conditional) equalities
■ Replacement based on (conditional) equivalences

EXAMPLE

See demo.

JYU

JOHANNES KEPLER UNIVERSITY LINZ

