GRAY-BOX PROVING IN THEOREMA

4

Wolfgang Windsteiger

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)

Seminar Formal Methods and Automated Reasoning — June 11, 2024

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

INTRODUCTION

B A few words on Theorema for “newcomers” ...
B Default style: White-Box Prover

O Every single logical step is reflected in a node in the proof tree.
O Every single node in the proof tree results in an explanation of the proof step.

B Human style: Simple steps are not explained in too much (?) detail.
W Still, not black-box without explanation.

JY¥YVyU W. Windsteiger 115

EXAMPLE

Definition: Let p be a partial order on A and s € A. We call s the smallest elementin A
w.r.t. p iff p[s, z] for all z € A.

Written in Theorema language:

Y smallest[s,A,p] : <= V¥V p[s,x]
s,p, A T€EA
po[p,A]As€A
If we need to prove smallest[1,N, div], we would create 3 subgoals:
poldiv, N] 1eN v div[l, x]
zeN

Proof: In order to prove smallest[1,N, div] we have to show:

1. poldiv,NJ: ...

2. 1eN: ...

3.V div[l,z]: ...
zeN

JY¥YVyU W. Windsteiger 2115

WHAT WE ARE AIMING AT ...

B Identify po[p, A] and s € A as side-conditions in the definition.
B When expanding smallest[1, N, div] check side-conditions “silently”.
B Result: only 1 subgoal, namely v div[1, x].

zeN

B Proof: In order to prove smallest[1,N, div], due to ..., we have to show Vv div[l, x].
zEN

B The “silent check” should be efficient and cover simple cases.

JY¥YVyU W. Windsteiger 3/15

EFFICIENT CHECKING OF (SIDE) CONDITIONS

We propose an efficient mechanism that allows to prove statements that can be easily
derived from a given knowledge base. The intended use of this mechanism within the
Theorema system is in places where we need to

B quickly verify the truth of simple statements (e.g., atomic formulas without quantifiers)
and
B only need rough informations about the logical reasoning behind the scenes.

We consider a statement U easily derivable (from K) if

B UecKor
B (vS=T) e K with a substitution ¢ s.t. To = U and So is easily derivable.

JY¥YVyU W. Windsteiger 4115

A SIMPLE RECURSIVE ALGORITHM FOR CHECKING

Input: B the formula to be checked,
B the knowledge base, and
H a list of formulas already used in the derivation so far.
Output: B boolean value indicating whether the formula is easily derivable and
Bl a list of all formulas needed in the entire derivation.

Base cases:

quickCheck[f_,{___,f_,___3} U_] := {True,Union[U,{£f}]1}
quickCheck[f_,K_,U_] := {False,{}}

Recursion (roughly): for every (quantified) implication f =v.S = T

quickCheck[T*,K_,U_] := quickCheck[S,K,Union[U,{f}]]

JY¥YVyU W. Windsteiger 5/15

A NOTE ON IMPLEMENTATION

1. We use rule-based programming style in Mathematica, i.e. instead of nested
if-then-else clauses we have individual cases implemented by separate functions that
differ by parameter patterns ~ can easily be modified dynamically.

2. Instead of recursion like

quickCheck[T*,K_,U_] := quickCheck[S,K,Union[U,{f}]]
we implement recursion as
quickCheck[T*,K_,U_] := Modulel[v,body /; ...qCQLS,K,U]...]

where qCQ is just a wrapper around quickCheck that, instead of returning {b, U},
returns only the boolean value b and stores the used formulas U in a global variable,
from which they can be retrieved later. This allows the quickCheck-mechanism to be
used inside boolean conditions directly.

JY¥YVyU W. Windsteiger 6/15

THE NON-ATOMIC CASE

If S or T are propositional formulas we proceed as follows:

miff= v(S =Ti N...\T,): Since f is equivalent to the conjunction of the individual
(S = T) we generate individual quickCheck-cases for each T;.

| If f= v(Sl .V S, = T): Since f is equivalent to the conjunction of the individual
(S :> T) we generate individual quickCheck-cases for each S;.

| If f=Vv(S1 A...AS, = T) then backchaining must branch to all the \S; and it delivers

True only if all individual branches succeed. In the implementation this is reflected by
calling quichCheck with a list of formulas as first parameter. Details next slide!
B If f=v(S<TiA...AT,) with atomic S then it is processed as if it was an

implication. Same for dual case where T' is atomic and S is a conjunction.
BIiff=5:<TA...\T,then we treat it like an implication. Note that in this case S is
always atomic.

JY¥YVyU W. Windsteiger 715

BRANCHING WITH FREE VARIABLES

If T'does not contain some of the variables (free(T) = zandy = x \ 2)

VSIASo A NSy =T) = V(ESAAS,)=T),
x z Yy

i.e., in this case we cannot simply branch and check the S; independently.
Try to find S; and o s.t.

B free(S;) =y and

B Sjo € K and

B qCQ[Sko, K, U] for all k # j.

Finding S; and o is done in the same recursive pattern as above such that all possibilities
are traversed.

JY¥YVyU W. Windsteiger 8/15

APPLICATION 1: KNOWLEDGE EXPANSION

Ifv(S=T)e K and an instance So € K then K := K U {Tco}.

Instead of computing o: generate rule S*:> T and apply it to all formulas in K.

If the pattern S* matches, we found an instance of S, and the rule generates the
respective instance of T'. (Use pattern matching of Mathematica!)

Simple Example.
V(4|r = even(z)) ~ 4lx_ :> even[x].

xT

B Suppose we have 4|20 in our knowledge base.

B Pattern 4|z_ matches 4|20,

B rule application produces “new knowledge” even(20).

B Corresponds to inferring even(20) from the given knowledge.

J¥U W. Windsteiger

9/15

APPLICATION 1: KNOWLEDGE EXPANSION

Quite often in mathematics, we have
V(Sl/\SQ/\"'/\SniT),
Equivalent formulation as “nested implication”

V(Si=(S2=...= S, =T1))

would result in a cumbersome step-by-step inference until finally deriving 7.

Alternatively, for any choice 1 < i < n, another alternative equivalent formulation is
Y((Sl/\~-/\Si_1/\Si+1A---/\Sn) = (S5 =1)),

View S1,...,S8:-1,Si+1,. .., S, as side-conditions, under which we derive T from S;!
Sf/; qCQ{S1,..-,Si-1,541,---,Sn}, K, U] > T

with free(S;) = « would achieve exactly what we need.

JY¥YVyU W. Windsteiger 10/15

APPLICATION 2: GOAL REDUCTION

“Goal-oriented” application of Modus Ponens (“backward chaining”): exactly what
quickCheck does, but now on the top-level. One reduction step at the time and verbose
documentation in the proof (not silent).

free(T)=zandy =z \ zand {C1,...,Cx} = {S; | free(S;) Ny = 0}. Then
Y(SIASQ/\--J\SH:T) = Y((ClA---ACk): (35{/\---/\5;,1):>T).
View (1, ..., C\ as side-conditions, under which we reduce the goal T'!
T" /5 qCQ[{Cy,...,Cx}, K, U] :> gs’l/\...As;n

would achieve exactly what we need.

Special case: If y = (), then the goal reduces to True, i.e., the proof is finished.

JY¥YVyU W. Windsteiger 1115

GOAL REDUCTION: EXAMPLES

Example. The quantified implication

vV ((f: X Y ABCY AI(X, f) = B) = surjective(f, X, B))
£.X.Y,B

would lead to the rule
surjective[f_,X_,B_] /; qCQ[I(X,f) =B,K.U] :> J(£: X —=YABCY)
Y

Proving the surjectivity of f(z) := 2? from R to R reduces to

W findinga Y suchthat f: R =Y and Rf C Y
B provided that we can “easily show” that Z(R, f) = Ry
B Goal reduction would wait until this is the case.

J¥U W. Windsteiger

12/15

GOAL REDUCTION: EXAMPLES

Example. The quantified implication

j’;Y (f: X Y NI(X, f) =Y) = surjective(f, X,Y))

would lead to the rule

surjective[f_,X_,Y] /; qCQ[{f: X — Y,I(X,f) = Y},K,U] :> True

JY¥YVyU W. Windsteiger 13/15

FURTHER APPLICATIONS

B Handling of explicit definitions

B Handling of implicit definitions

B Replacement based on (conditional) equalities

B Replacement based on (conditional) equivalences

J¥U W. Windsteiger 14/15

EXAMPLE

See demo.

JY¥YVyU W. Windsteiger 15/15

4

JOHANNES KEPLER
UNIVERSITY LINZ

