
GRAY-BOX PROVING IN THEOREMA

Wolfgang Windsteiger

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)

Seminar Formal Methods and Automated Reasoning — June 11, 2024

INTRODUCTION

■ A few words on Theorema for “newcomers” . . .

■ Default style: White-Box Prover
□ Every single logical step is reflected in a node in the proof tree.
□ Every single node in the proof tree results in an explanation of the proof step.

■ Human style: Simple steps are not explained in too much (?) detail.

■ Still, not black-box without explanation.

W. Windsteiger 1/15

EXAMPLE
Definition: Let p be a partial order on A and s ∈ A. We call s the smallest element in A

w.r.t. p iff p[s, x] for all x ∈ A.

Written in Theorema language:

∀
s,p,A

po[p,A]∧s∈A

smallest[s,A, p] : ⇐⇒ ∀
x∈A

p[s, x]

If we need to prove smallest[1,N, div], we would create 3 subgoals:

po[div,N] 1 ∈ N ∀
x∈N

div[1, x]

Proof: In order to prove smallest[1,N, div] we have to show:

1. po[div,N]: . . .
2. 1 ∈ N: . . .
3. ∀

x∈N
div[1, x]: . . .

W. Windsteiger 2/15

WHAT WE ARE AIMING AT . . .

■ Identify po[p,A] and s ∈ A as side-conditions in the definition.

■ When expanding smallest[1,N, div] check side-conditions “silently”.

■ Result: only 1 subgoal, namely ∀
x∈N

div[1, x].

■ Proof: In order to prove smallest[1,N, div], due to . . . , we have to show ∀
x∈N

div[1, x].

■ The “silent check” should be efficient and cover simple cases.

W. Windsteiger 3/15

EFFICIENT CHECKING OF (SIDE) CONDITIONS

We propose an efficient mechanism that allows to prove statements that can be easily
derived from a given knowledge base. The intended use of this mechanism within the
Theorema system is in places where we need to

■ quickly verify the truth of simple statements (e.g., atomic formulas without quantifiers)
and

■ only need rough informations about the logical reasoning behind the scenes.

We consider a statement U easily derivable (from K) if

■ U ∈ K or

■ (∀
x
S ⇒ T) ∈ K with a substitution σ s.t. Tσ = U and Sσ is easily derivable.

W. Windsteiger 4/15

A SIMPLE RECURSIVE ALGORITHM FOR CHECKING

Input: ■ the formula to be checked,
■ the knowledge base, and
■ a list of formulas already used in the derivation so far.

Output: ■ boolean value indicating whether the formula is easily derivable and
■ a list of all formulas needed in the entire derivation.

Base cases:

quickCheck[f_, {___,f_,___}, U_] := {True,Union[U,{f}]}

quickCheck[f_, K_, U_] := {False,{}}

Recursion (roughly): for every (quantified) implication f ≡ ∀
x
S ⇒ T :

quickCheck[T∗, K_,U_] := quickCheck[S, K,Union[U,{f}]]

W. Windsteiger 5/15

A NOTE ON IMPLEMENTATION

1. We use rule-based programming style in Mathematica, i.e. instead of nested
if-then-else clauses we have individual cases implemented by separate functions that
differ by parameter patterns ; can easily be modified dynamically.

2. Instead of recursion like

quickCheck[T∗, K_,U_] := quickCheck[S, K,Union[U,{f}]]

we implement recursion as

quickCheck[T∗, K_,U_] := Module[v, body /; . . . qCQ[S,K,U] . . .]

where qCQ is just a wrapper around quickCheck that, instead of returning {b, U},
returns only the boolean value b and stores the used formulas U in a global variable,
from which they can be retrieved later. This allows the quickCheck-mechanism to be
used inside boolean conditions directly.

W. Windsteiger 6/15

THE NON-ATOMIC CASE
If S or T are propositional formulas we proceed as follows:

■ If f ≡ ∀
x
(S ⇒ T1 ∧ . . . ∧ Tn): Since f is equivalent to the conjunction of the individual

∀
x
(S ⇒ Ti) we generate individual quickCheck-cases for each Ti.

■ If f ≡ ∀
x
(S1 ∨ . . . ∨ Sn ⇒ T): Since f is equivalent to the conjunction of the individual

∀
x
(Si ⇒ T) we generate individual quickCheck-cases for each Si.

■ If f ≡ ∀
x
(S1 ∧ . . . ∧ Sn ⇒ T) then backchaining must branch to all the Si and it delivers

True only if all individual branches succeed. In the implementation this is reflected by
calling quichCheck with a list of formulas as first parameter. Details next slide!

■ If f ≡ ∀
x
(S ⇔ T1 ∧ . . . ∧ Tn) with atomic S then it is processed as if it was an

implication. Same for dual case where T is atomic and S is a conjunction.
■ If f ≡ S :⇔ T1 ∧ . . . ∧ Tn then we treat it like an implication. Note that in this case S is

always atomic.

W. Windsteiger 7/15

BRANCHING WITH FREE VARIABLES

If T does not contain some of the variables (free(T) = z and y = x \ z)

∀
x
(S1 ∧ S2 ∧ · · · ∧ Sn ⇒ T) ≡ ∀

z

(
(∃
y
S1 ∧ · · · ∧ Sn) ⇒ T

)
,

i.e., in this case we cannot simply branch and check the Si independently.

Try to find Sj and σ s.t.

■ free(Sj) = y and

■ Sjσ ∈ K and

■ qCQ[Skσ,K,U] for all k ̸= j.

Finding Sj and σ is done in the same recursive pattern as above such that all possibilities
are traversed.

W. Windsteiger 8/15

APPLICATION 1: KNOWLEDGE EXPANSION

If ∀
x
(S ⇒ T) ∈ K and an instance Sσ ∈ K then K := K ∪ {Tσ}.

Instead of computing σ: generate rule S∗:> T and apply it to all formulas in K.

If the pattern S∗ matches, we found an instance of S, and the rule generates the
respective instance of T . (Use pattern matching of Mathematica!)

Simple Example.
∀
x
(4|x ⇒ even(x)) ; 4|x_ :> even[x].

■ Suppose we have 4|20 in our knowledge base.

■ Pattern 4|x_ matches 4|20,

■ rule application produces “new knowledge” even(20).

■ Corresponds to inferring even(20) from the given knowledge.

W. Windsteiger 9/15

APPLICATION 1: KNOWLEDGE EXPANSION
Quite often in mathematics, we have

∀
x
(S1 ∧ S2 ∧ · · · ∧ Sn ⇒ T),

Equivalent formulation as “nested implication”

∀
x

(
S1 ⇒ (S2 ⇒ . . . ⇒ Sn ⇒ T)

)
would result in a cumbersome step-by-step inference until finally deriving T .

Alternatively, for any choice 1 ≤ i ≤ n, another alternative equivalent formulation is

∀
x

(
(S1 ∧ · · · ∧ Si−1 ∧ Si+1 ∧ · · · ∧ Sn) ⇒ (Si ⇒ T)

)
,

View S1, . . . , Si−1, Si+1, . . . , Sn as side-conditions, under which we derive T from Si!

S∗i /; qCQ[{S1, . . . , Si−1, Si+1, . . . , Sn}, K, U] :> T

with free(Si) = x would achieve exactly what we need.

W. Windsteiger 10/15

APPLICATION 2: GOAL REDUCTION

“Goal-oriented” application of Modus Ponens (“backward chaining”): exactly what
quickCheck does, but now on the top-level. One reduction step at the time and verbose
documentation in the proof (not silent).

free(T) = z and y = x \ z and {C1, . . . , Ck} = {Si | free(Si) ∩ y = ∅}. Then

∀
x
(S1 ∧ S2 ∧ · · · ∧ Sn ⇒ T) ≡ ∀

z

(
(C1 ∧ · · · ∧ Ck) ⇒ (∃

y
S′
1 ∧ · · · ∧ S′

m) ⇒ T
)
.

View C1, . . . , Ck as side-conditions, under which we reduce the goal T !

T∗ /; qCQ[{C1, . . . , Ck}, K, U] :> ∃
y
S′1 ∧ · · · ∧ S′m

would achieve exactly what we need.

Special case: If y = ∅, then the goal reduces to True, i.e., the proof is finished.

W. Windsteiger 11/15

GOAL REDUCTION: EXAMPLES

Example. The quantified implication

∀
f,X,Y,B

(
(f : X → Y ∧B ⊆ Y ∧ I(X, f) = B) ⇒ surjective(f,X,B)

)
would lead to the rule

surjective[f_, X_, B_] /; qCQ[I(X, f) = B, K, U] :> ∃
Y
(f : X → Y ∧ B ⊆ Y)

Proving the surjectivity of f(x) := x2 from R to R+
0 reduces to

■ finding a Y such that f : R → Y and R+
0 ⊆ Y

■ provided that we can “easily show” that I(R, f) = R+
0 .

■ Goal reduction would wait until this is the case.

W. Windsteiger 12/15

GOAL REDUCTION: EXAMPLES

Example. The quantified implication

∀
f,X,Y

(
(f : X → Y ∧ I(X, f) = Y) ⇒ surjective(f,X, Y)

)
would lead to the rule

surjective[f_, X_, Y_] /; qCQ[{f : X → Y, I(X, f) = Y}, K, U] :> True

W. Windsteiger 13/15

FURTHER APPLICATIONS

■ Handling of explicit definitions

■ Handling of implicit definitions

■ Replacement based on (conditional) equalities

■ Replacement based on (conditional) equivalences

W. Windsteiger 14/15

EXAMPLE

See demo.

W. Windsteiger 15/15

