Approximate Unification with
Fuzzy Relations: A Survey

Bachelor Thesis

Paul-Gabriel Turcuman

May, 28 2024

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relation May, 28 2024 1/49

Introduction

@ Process of solving satisfiability problems:
Given: A set of identities E and two terms s and t
Find: A substitution o with o(s) ~g o(t)
In syntactic unification: E = ()

Given: Two terms s and t
Find: A substitution o with o(s) = o(t)

Basis of logic programming

Used in program transformation

@ etc.

Paul-Gabriel Turcuman May, 28 2024 2/49

Introduction

Classic Unification

Introduced by Robinson in 1965
In the thesis the focus is on the rule-based algorithm

(Pseudocode included only for reference)

Var(t) denotes the set of variables present in term t

Paul-Gabriel Turcuman May, 28 2024 3/49

Introduction
Algorithm

o Classic-Trivial: (C-Tri)
{s="s}wP';0 = P';o, where s can be a variable or a constant.

o Classic-Decomposition: (C-Dec)
{f(sl, ...,S,,) =7 f(tl, . t,,)}H—JP/;O' = {51 =7 t1,...,Sn =7 t,,}UP/; o,

where n > 0.

o Classic-Symbol Clash: (C-SC)
{f(s1, .-, 5n) =7 g(ty,....th) WP o= L, if f #g.

Paul-Gabriel Turcuman May, 28 2024 4/49

Introduction
Algorithm

o Classic-Orient: (C-Or)
{t="x}wWP,o={x="t}UP,o, iftgV.

@ Classic-Occurs Check: (C-0OC)
{(x="tYUP;0= L,if x € Var(t) but x # t.

o Classic-Variable Elimination: (C-VE)
(x="tYUP;0= P{x— tho{xm t}U{x— t},if x ¢ Var(t).

Paul-Gabriel Turcuman May, 28 2024 5/49

Example

e We want to unify p(f(x),y) and p(f(a), g(a)).
o Applying the algorithm gives:
{p(f(x),y) =" p(f(a),&(2))}; 0 =cpec
{f(x) =" f(a),y =" g(a)};0 =cve
{f(x) =" f(a)};i {y — &(a)} = cpec
{x="a};{y = g(a)} =cve
0;{x— a,y— g(a)}.
@ Substituion o = {x +— a,y + g(a)} is a solution

Paul-Gabriel Turcuman May, 28 2024 6/49

Motivation

With different symbols classical algorithm fails (eg. p(x) with g(a))
Or different arities

But we want to be able to unify such terms as well

What to do?

Introduce a fuzzy relation between the two symbols

We need to define the notions of proximity and similarity for them

Paul-Gabriel Turcuman May, 28 2024 7/49

Motivation

Two kinds of signatures, depending how fuzzy relations are defined on the
set of function symbols:
@ More special: basic fuzzy signatures. Proximal/similar function
symbols can have different names, but not different arities.

@ More general: fully fuzzy signatures. Proximal/similar function
symbols can have different names and different arities.

Paul-Gabriel Turcuman May, 28 2024 8/49

Approximate Unification

[KP19] [PK21]
[Dun+26] [Ses02] [AP20]
Sim /
[IR15] [CMR1s]]

Paul-Gabriel Turcuman May, 28 2024 9/49

General Preliminaries

@ We need to know what proximity and similarity relations are:

Definition

A proximity relation B : U x U — [0, 1] is a fuzzy subset of U x U, where
U is a domain, that satisfies the following:

@ ‘P is reflexive (i.e. P(x,x) =1 for all x € U);

@ B is symmetric (i.e. P(x,y) = P(y,x) for all x,y € U).

Paul-Gabriel Turcuman May, 28 2024 10 /49

General Preliminaries

Definition

A similarity relation & : U x U — [0, 1] is a proximity relation that also has
the transitivity regarding a t-norm (in our case the minimum t-norm) as
one of its properties (i.e. S(x,z) > S(x,y) A S(y, z) for all x,y,z € U).

@ We also need the notion of the A\-cut:

Definition

Let U be a domain and § be a relation on U (can be either a proximity or
a similarity relation). We define the A-cut of §, for any A € [0,1], as the
relation ~z \ with: x >~z y y < §(x,y) > A for all x,y € [0, 1].

Paul-Gabriel Turcuman May, 28 2024 11/49

Similarity Unification

[KP19] [PK21]
[Dun+26] [Ses02] [AP20]
Sim /
[IR15] [CMR1s]]

Paul-Gabriel Turcuman May, 28 2024 12 /49

Similarity Unification - Basic Case

@ We now use the system P;«; o, where a denotes the similarity degree
@ Trivial, Orient, Occurs Check, Variable Elimination remain the same

@ Only changes occur in Decomposition and Symbol Clash:

o Similarity-Symbol Clash: (S-SC)
{f(s1, .-, Sn) :?67/\ gty ntm)} WP ;0= L, if 6(f,g) < A

o Similarity-Decomposition: (S-Dec)
{f(s1, .5 5n) :?G,A g(tr, .., ta)} WP ;0 =
{s1 :?6,)\ t1,y ey Sp :767/\ th} UP,aNS(f,g) 0, if S(f,g) >\,
where n > 0.

Paul-Gabriel Turcuman May, 28 2024 13 /49

Example

@ The following similarity relation is given:
S(f,g) =0.6,6(p,q) =0.7,65(a, b) = &(b,c) = 0.4 and
S(a, c) = 0.8, the cut value A = 0.2 and the terms that need to be
unified are f(x, p(y), b) and g(a, q(c),y).

@ Applying the algorithm gives:
{f(x,p(y), b) ~e02 8(a,q(c), ¥)}: 1; id =5 pec
{x =602 a,p(y) ~e,02 q(c), b ~e,02 y};0.6; id =s.vE
{p(y) ~e,02 q(c), b ~e,02 y}:0.6; {x — a} =s.0or
{p(y) =02 q(c),y ~s02 b};0.6; {x > a} =sve
{p(b) ~a,02 q(c)};0.6;{x — a,y — b} =5.pec
{b~g02c};0.6;{x—a,y— b} =5 pec
0;0.5;{x — a,y — b}

@ Substituion o = {x + a,y — b} is a solution with degree o = 0.5.

Paul-Gabriel Turcuman May, 28 2024 14 /49

Similarity Unification

[KP19] [PK21]
[Dun+26] [Ses02] [AP20]
Sim /
[IR15] [CMR1s]]

Paul-Gabriel Turcuman May, 28 2024 15 /49

Similarity Unification - Fully Fuzzy Case

o Take into consideration arity mismatch

@ For each pair of functors f, g with arities m, respectively n, where
0 < m < n there exists an injective mapping
pre 1 {1,2,...,m} = {1,2,...,n}
@ The mapping associates each of the m argument positions of f with a
unique position among the n arguments of g
@ It should also hold:
@ pg = the identity function (i.e 1 — 1,2+ 2 etc.);
@ g 0 pgr = the identity function, if f and g have the same arity;

@ for three terms f, g and h with arities m, n and respectively /, with
Ogmgngl: Pfh = Pgh © Pfg-

@ Meaning it should be consistent

(Functor meaning either function or predicate symbols)

Paul-Gabriel Turcuman May, 28 2024 16 /49

Similarity Unification - Fully Fuzzy Case

o We use again the system P;q; o

@ Trivial, Symbol Clash, Orient, Occurs Check, Variable Elimination
remain the same

@ Only changes occur in Decomposition and Symbol Clash

@ Introduce a new rule: Equation Orient

Paul-Gabriel Turcuman May, 28 2024 17 /49

Algorithm

o Fully Fuzzy Similarity-Symbol Clash: (FFS-SC)
{f(s1, .-, Sm) :?6)\ gt ..., ta) WP ;0= L, if &(f,g) <\

o Fully Fuzzy Similarity-Decomposition: (FFS-Dec)
{f(s1y-sSm) :76 N g(tl, o tn)} WP a0 =

{s1 2?6,)\ Epre(1)s -5 Sm = _G A Lo (m }U P a A S(f,g);0,if
S(f,g) > X\, where n>m >0 Wlth respect to the mapping p.

e Fully Fuzzy Similarity-Equation Orient: (FFS-EO)

{g(t1, ..., tn) :éA f(s1,...5m)} WP, ;0 =
{f(s1,..-5m) :76’/\ g(ti, ..., tn)} UP a;0,if n>m>0.

Paul-Gabriel Turcuman May, 28 2024 18 /49

Example

@ The following similarity relation is given:
S(p,q) =0.7,6(h,g) = 0.3,5(c,d) = 0.5 with cut value A = 0.2,
the mapping pgp = {1 — 1,2 — 3}, pgn = {1 — 2} and the terms
that need to be unified are p(h(x,y), a,y) and q(g(c), d).
@ Applying the algorithm gives:
{p(h(x,y);a,y) ~s02 q(g(c),d)}; 1;id =Frrseo0
{a(g(c),d) ~s02 p(h(x,y),a,y)}: 1; id =FFs Dec
{g(c) =02 h(x,y),d ~e,02 y};0.7; id =FFsor
{g(c) ~s02 h(x,y),y ~s02 d};0.7; id =Frs.ve
{g(c) ~e,02 h(x,d)};0.7; {y > d} =FFs.Dec
{c ~&,02d};0.3;{y — d} =FFs-Dec
0;0.3;{y — d}

@ Substituion o = {y — d} is a solution with degree o = 0.3

Paul-Gabriel Turcuman May, 28 2024 19 /49

Block- and Class-based Approach for Proximity

o Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

@ One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

Paul-Gabriel Turcuman May, 28 2024 20 /49

Block- and Class-based Approach for Proximity

@ Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

@ One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based Vs class-based
block of a: class of a:
a clique to which a belongs the neighborhood of a

Paul-Gabriel Turcuman May, 28 2024 20 /49

Block- and Class-based Approach for Proximity

o Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

@ One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based VS class-based
block of a: class of a:
a clique to which a belongs the neighborhood of a

Paul-Gabriel Turcuman May, 28 2024 20 /49

Block- and Class-based Approach for Proximity

@ Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

@ One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based Vs class-based
block of a: class of a:
a clique to which a belongs the neighborhood of a

Paul-Gabriel Turcuman May, 28 2024 20 /49

Block- and Class-based Approach for Proximity

@ Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

@ One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based Vs class-based
block of a: class of a:
a clique to which a belongs the neighborhood of a

Paul-Gabriel Turcuman May, 28 2024 20 /49

Block- and Class-based Approach for Proximity

@ Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

@ One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based Vs class-based
block of a: class of a:
a clique to which a belongs the neighborhood of a

Paul-Gabriel Turcuman May, 28 2024 20 /49

Block- and Class-based Approach for Proximity

@ Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

@ One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based Vs class-based
block of a: class of a:
a clique to which a belongs the neighborhood of a

Paul-Gabriel Turcuman May, 28 2024 20 /49

Block- and Class-based Approach for Proximity

@ Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

@ One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based VS class-based
block of a: class of a:
a clique to which a belongs the neighborhood of a
{X 2;]37/\ b, X’i;n’)\ C} {X Zm,)\ b, XZ(p’)\ C}
not solvable solved by {x — a}

Paul-Gabriel Turcuman May, 28 2024 20 /49

Proximity Unification

[KP19] [PK21]
[Dun+26] [Ses02] [AP20]
Sim /
[IR15] [CMR1s]]

Paul-Gabriel Turcuman May, 28 2024 21 /49

Proximity Unification - Block-Based Basic Case

@ Before the rule-based algorithm some notions need to be introduced

Definition
Given a proximity relation 3 on a domain U, a proximity block of level A
(A-block), denoted as B2 (where i is the index of the block), is a subset of

U such that ~g) | is total and maximal.

@ Maximal in this case means that the elements of the proximity block
are not contained in another set that restricts ~y) to form a total

relation.

May, 28 2024 22 /49

Paul-Gabriel Turcuman

Proximity Unification - Block-Based Basic Case

Definition

Let S :=C W F U P be the union set of constants, function symbols and
predicate symbols of £. Then we define a proximity constraint a ~ b as an
unordered pair of elements a, b € S.

@ The following definition will also be needed

Definition

Given a proximity relation 3, a cut value A\ € [0,1] and a set C of
proximity constraints, the function Sat looks at all the constraints a =~ b in
this set C, and takes the value fail if and only if it finds a = b in C with
B(a, b) < A. Otherwise Sat(C) returns success.

Paul-Gabriel Turcuman May, 28 2024 23 /49

Algorithm

@ We use the system P; C; «; 0, where C is the set of proximity
constraints

@ Trivial, Orient, Variable Elimination and Occurs Check remain the
same

@ Decomposition changes into 2 rules

@ Symbol Clash changes

Paul-Gabriel Turcuman May, 28 2024 24 /49

Algorithm

o Block-Based Proximity-Decompositionl: (BBP-Decl)
{f(s1, .-, 5n) 2‘?43A f(tr, ., tn) WP, C a0 =
{s1 2537)\ t1,...,5n :‘?B,/\ ta} UP’; C; ; o, where n > 0.

o Block-Based Proximity-Decomposition2: (BBP-Dec2)
{f(s1y .-y 5n) f?p,)\ g(tl,.. th)} WP, Ca0=

{sl—qg)\ t1s s Sn—r‘p thb UP,, CU{f =g}, a NB(F,g); 0,
if P(f,g) > A, Sat(C U {f ~ g}) # fail, where n > 0.

o Block-Based Proximity-Symbol Clash: (BBP-SC)

{f(s1, .-, 5n) :‘?43,A g(ty,..tm)} WP, Caso= L, if
n#m,PB(f,g) < Xor Sat(CU{f ~ g}) = fail.

Paul-Gabriel Turcuman May, 28 2024

25 /49

Example

@ The following proximity relation is given:
B(f,g) =0.5,B(a, c) = 0.2,°B(b,d) = 0.3,B(p, g) = 0.6, the cut
value A = 0.4 and the terms that need to be unified f(x, p(x), b,y)
respectively g(a, q(c), d, p(d)).
@ Applying the algorithm gives:
{f(x,p(x), b,y) =304 g(a,q(c),d, p(d))}; 0; 1; id =pBp-Dec
{x ~p04 a,p(x) ~p04 q(c), b ~poa4d,
y ~p.04 p(d)};0.5; id =pep-vE
{p(a) ~p04 q(c),b=p04ad,y =p04 p(d)}; {f = g};
0.5; {x — a} =BBP-Dec
{a~posac,b=poad,y ~poap(d)};{f~g p=aq};
0.5; {X —> a} = BBP-Dec
{b~poad,y ~poap(d)}i{f~g,p~qg,a~c} 05 {x— a}.

Paul-Gabriel Turcuman May, 28 2024 26 /49

Example

o {brpoad,y ~posp(d)}i{f~g pxgqg,a~c}05 {x— a}
= BBP-Dec
{y ~poap(d)}i{f =g, p=qg,a~c,brd};05 {x— a} =pep.vE
0;05,{f~g,p~qga~c,brd};{x— ay— p(d)}.

@ Substituion o = {x + a,y — p(d)} is a solution with degree o = 0.5
and constraints set C = {f ~ g,p~ q,a~ c,b~ d}.

Paul-Gabriel Turcuman May, 28 2024 27 /49

Proximity Unification

[KP19] [PK21]
[Dun+26] [Ses02] [AP20]
Sim /
[IR15] [CMR18]]

Paul-Gabriel Turcuman May, 28 2024 28 /49

Proximity Unification - Block-Based Fully Fuzzy Case

@ Algorithm only takes into consideration the case where the terms to
be unified contain only constants
@ Solution after applying the algorithm would then remain id

@ Only the degree changes

Definition

@ Let . be a set containing Si, ..., S (which are named "sorts").

@ We denote X, Ys, the sets containing all constants of sort S; from
the terms that we want to unify (named "sort sets”).

Q@ The degree between Xs, and Y, is the maximal degree between the
constants from Xs, and Ys, via a proximity relation ‘.)

Paul-Gabriel Turcuman May, 28 2024 29 /49

Algorithm

We use the system P; ;0
Trivial, Occurs Check and Orient remain the same
We don’t have the Variable Elimination rule anymore

Decomposition and Symbol Clash split into 2 rules

New rule is added: Equation Elimination

Paul-Gabriel Turcuman May, 28 2024 30/49

Algorithm

o Fully Fuzzy Block-Based Proximity-Decompositionl:
(FFBBP-Decl)
{f(s1, .-y 5n) :%’A g(ty, ..., tn)} WP a0 =
{Xs, 25) Yop,0 Xs, =1y Vs, } U P a AP(F, g); 0, where n > 0,
k >0 and P(f,g) > A.
Also each Xs and Y; contain the arguments of f respectively g that
belong to their respective sort s.

o Fully Fuzzy Block-Based Proximity-Decomposition2:
(FFBBP-Dec2)
{Xs, :‘?137/\ Ys} WP a0 = P,anNP(Xs, Ys,); o if
PB(Xs,, Ys,) > A, where n >0,/ > 0.

Paul-Gabriel Turcuman May, 28 2024 31/49

Algorithm

o Fully Fuzzy Block-Based Proximity-Symbol Clashl:
(FFBBP-SC1)

{f(s1, .-, 5n) :%’A gt,....tm)} WP, a;0 = L, if P(f,g) < A

o Fully Fuzzy Block-Based Proximity-Symbol Clash2:
(FFBBP-SC2)
{Xs, :gw Ys}WP ;0= L, if B(Xs,, Ys.) < \.

o Fully Fuzzy Block-Based Proximity-Equation Elimination:
(FFBBP-EE)
{Xs, 2‘?43,A Ys}UPa;0 = P a;0,if Xs, =0 and/or Ys, = 0.

Paul-Gabriel Turcuman May, 28 2024 32/49

Example

@ The following proximity relation is given:
B(f,g) =0.6,B(a, b) = 0.4,B(b, c) = 0.3,%B(a,c) = 0.3, the cut
value A = 0.2, the set of sorts ./ = {51, Sz, S3}, with
S1 ={a, b}, S2 = {c}, S3 = {d} and the terms that need to be
unified f(a, c, b) respectively g(d, a).
o Applying the algorithm gives:
{f(a,c,b) ~yp02g(d,a)}; 1 id =FrBBP-Dect
{Xs, 2;"’B,O.Z Ys,, Xs, 2‘33,0.2 Ys,, Xs; :53,0.2 Ys,}:0.6;id, where
)(51 = {a, b},X52 = {C},Xs3 = @, Y51 = {a}, YSZ = @ and
Ys, = {d} =rreBP-EE
{Xs, 502 Vi, Xs, =302 Vs, }:0.6; id =rrepp-ec
{Xs, ’153,0.2 Ys, }:0.6; id = FFBBP-Dec2
0:0.6; id

@ Substituion o = id is a solution with degree o = 0.6.

Paul-Gabriel Turcuman May, 28 2024 33/49

Proximity Unification

[KP19] [PK21]
[Dun+26] [Ses02] [AP20]
Sim /
[IR15] [CMR1s]]

Paul-Gabriel Turcuman May, 28 2024 34 /49

Proximity Unification - Class-Based Basic Case

We use now proximity classes:
Definition
We have a proximity relation B3 on a set S and a cut-value A € (0, 1].

Then we define the proximity class of level A of s € S (denoted as

pc(s,P)), as the set: pe(s,P) := {t € S| P(s,t) > A}

We also need the notion of extended terms:
Definition
An extended term is a term that includes, besides variables and function

symbols, finite sets of function symbols, whose elements have the same
arity. We denote them in bold: t for eg.

Paul-Gabriel Turcuman May, 28 2024 35/49

Proximity Unification - Class-Based Basic Case

Q

We consider now the countable set A the set of names. Names are
symbols with associated arity (like function symbols). We assume
that VN F =0,N NV = (. They are denoted as N, M, K.

Now a neighborhood is either a name or a finite subset of F, where
all elements have the same arity. We denote it as Nb.

We denote ¢ as a name-neighborhood mapping, which is a finite
mapping from names to non-name neighborhoods.

A neighborhood equation is a pair of neighborhoods that needs to be
solved, i.e. F =’ G.

A neighborhood constraint is a finite set of neighborhood equations.

We say that {x ~p) t} & P contains an occurence cycle for the
variable x, if t ¢ V and there exist (xo,to), (x1,t1), ..., (Xn, tn) such
that xg = x,tg = t, for each 0 </ < n P contains an equation

Xi > tioor tj ~p 3 X, and xj41 € V(t,’), where x,11 = xg.

Paul-Gabriel Turcuman May, 28 2024 36 /49

Pre-Unification Algorithm

Use the system P; C; «; o, where C is the set of proximity constraints
that need to be solved

First apply the pre-unification algorithm to get o

Then apply constraint solving algorithm to computed C to get ¢
The solution will be then ®(o)

Trivial, Orient and Occurs Check remain the same

Decomposition and Variable Elimination change

Symbol Clash transforms to Clash

Paul-Gabriel Turcuman May, 28 2024 37 /49

Pre-Unification Algorithm

o Class-Based Proximity-Decomposition: (CBP-Dec)
{F(sl,.. n) ‘~?B7)\ G(t1,.. t) WP, Cao=
{s1 >~y t1,..,8n _;p t,) UP {F~"G}UC;a AB(F,G);0
Where n > 0 and B(F,G) > \.

o Class-Based Proximity-Clash: (CBP-C)
{F(s1,...,5n) 2‘?&)\ G(ty,....tym)}WP,; Caso= L, if n#m.

o Class-Based Proximity-Variable Elimination: (CBP-VE)
{x_m)\t}UP'; Ca o=
{t' ~ —‘ﬁ,k t}UP{x—t}, Cao{x—tU{x—t}, wheret ¢V,
there is no occurrence cycle for x in {x >~y) t}, and t’ is a a fresh
copy of t.

@ There is also such an algorithm that solves the constraints obtained
from this one.

Paul-Gabriel Turcuman May, 28 2024 38/49

Example

o We want to unify p(x, y, x) and q(f(a),g(d),y), with the proximity
relation: P(f, g) = 0.3,B(a, b) = 0.2,B(p, q) = 0.7,°B(c, d) =
0.75,B(b, ¢) = 0.35 and the cut value A = 0.2.

o We use then the pre-unification algorithm first:

{p(x,y,%) =302 a(f(a),&(d), y)}: 0; 1; id =cBP-Dec
{x ’igp,o_z f(a),y 23;3,0.2 g(d), x 253,0_2 y}i{p~q};0.7; id =cpp-ve
? ? ?
{N: =p.029Y Zpo.2 g(d),t =%,0.2 yhip=~q, Ny~ f};
0.7, {X — t,}, where t’ = Nl(Nz) = CBP-VE
{y 257;3,0.2 g(d),t 2a?p,oAz yhi{p=q, Ny~ f, Ny =~ a};
0.7, {X — t,} = CBP-VE
{Na 1’53,0.2 dt' 2gp,o.z s'};
{p~q, Ny = f Ny~ a, N3~ g};07;{x+— t',y+— s}, where
s = N3(N4).

Paul-Gabriel Turcuman May, 28 2024 39/49

Example

{N4 :;i;,o.z da t/ 25370,2 Sl}; {p ~dq, Nl ~ fa N2 ~ a, N3 ~ g},
0.7, {x = t',y — s'}, where s’ = N3(N,)
= CBP-VE ,
{N1(N2) ~g5 0.5 N3(Na)};
{pr~qg Ny =Ff Nr~a Ns~g, Ny~d};07;,{x—t y—s}
:>CBP—Pec
{N2 =" Ng};
{p~q,Ny~f Ny~a N3~ g, Ng~d Ny~ N3};03 {x—t,y—s}
=”CBP-Dec
0;{p~q Ny~ f Ny=a, N3~ g,Ny~d,Ni ~ N3, No= Ny}
0.3; {X — Nl(Ng),y — N3(N4)}.

Paul-Gabriel Turcuman May, 28 2024 40 /49

Example

@ Then by applying the constraint solving algorithm on
{p~q,Ni~Ff Ny~ a, N3~ g, Ny~ d, Ny~ N3, Np = Ny}, we get
the substitution
¢ = {Nl — {fvg}v N2 = {b}7 N3 = {fvg}7 N4 — {C}}

@ One of the solutions is then ®(c) = {x — f(b),y — g(c)}, with
degree a« = 0.3.

Paul-Gabriel Turcuman May, 28 2024 41/49

Proximity Unification

[KP19] [PK21]
[Dun+26] [Ses02] [AP20]
Sim /
[IR15] [CMR1s]]

Paul-Gabriel Turcuman May, 28 2024 42 /49

Proximity Unification - Class-Based Fully Fuzzy Case

Again take into consideration arity mismatch
Introduce argument relation p
We use the system P; ;0

Trivial, Orient and Occurence Check stay the same

Decomposition, Symbol Clash and Variable Elimination change

Paul-Gabriel Turcuman May, 28 2024 43 /49

Algorithm

o Fully Fuzzy Class-Based Proximity-Decomposition: (FFCBP-Dec)
{f(s1, .-, Sm) 253,)\ g(t,....th) WP a0 =

{si 2‘?13)\ tj | (i,j) € py UP a NB(f,g); 0 if B(f,g) > A, where
n,m > 0 with respect to the relation p.

o Fully Fuzzy Class-Based Proximity-Symbol Clash: (FFCBP-SC)
{f(s1, .-, 5n) :%’A gt ..,tm)} WP a0 = Lif P(f,g) < A

o Fully Fuzzy Class-Based Proximity-Variable Elimination:
(FFSCBP-VE)
{x 253’)\ g(s1,...sn)UP a0 =
PO U {v; 2537)\ si|(i,j) € pliaNPB(f,g); 00U {x — t}, where
{x zg?n)\ g(s1,...,5n)} does not contain an occurrence cycle for x,
0 = {x— f(v1,...,vm)}, with fresh variables vi, ..., v, P(f,g) > A,
with respect to p and n,m > 0.

Paul-Gabriel Turcuman May, 28 2024 44 /49

Example

@ The following proximity relation is given:
B(f,g) = 0.6,B(f, h) =0.7,B(a, b) = 0.4,B(b, c) = 0.3, the cut
value A = 0.2, the relations pg = {(1,1),(2,1)},
pm = {(1,1),(2,2)} and the terms that need to be unified are f(x, x)
and f(g(a), h(a, c)).
@ Applying the algorithm gives:
{f(x,x) =po02 f(g(a), h(a, c))}; 1; id = FrcBP-Dec
{x =102 g(a),x ~1p.02 h(a, c)}; 1; I'7d = FFCBP-VE
{»n 5023 V2 200 f(vi,v2) ~n02 h(a,c)};
i . 0.6; ix = f(v, \;2)} =>FFCBP-Dec
{n 3023 V2 00 3 V1 00 3, V2 S0 cti
i i 0-6:7{X > f(v1,v2)} =FrcBP-VE
{v2 3,02 99 Fpo02 V2 Fpo0 cl;
0.6; {x > f(a, v2), v1 > a} =FFcBP-Tri
{va =00 3, v2 =05 €} 0.6; {x = f(a,), v1 — a}

Paul-Gabriel Turcuman May, 28 2024 45 /49

Example

o {v 2%370_2 a, v2 25370_2 c};0.6; {x — f(a, v2), v1 — a} =FrcBP-vE
{b ’;";?43’0.2 C}; 0.6; {X — f(a, b), Vit a,vo b} = FFCBP-Dec
0;0.3; {x +— f(a,b),v1 — a,vo — b}

@ Substituion o = {x — f(a, b)} is a solution with degree a = 0.3

Paul-Gabriel Turcuman May, 28 2024 46 /49

Multiple Similarities Unification

[KP19] [PK21]
[Dun+26] [Ses02] [AP20]
Sim /
[IR15] [CMR1s]]

Paul-Gabriel Turcuman May, 28 2024 47 /49

Multiple Similarities

o Take into consideration the case when there are more similarity
relations between objects

@ The "relation” between those similarities become a proximity relation
o New algorithm for multiple similarities

Paul-Gabriel Turcuman May, 28 2024 48 /49

Conclusion

@ We saw the respective algorithms on how to deal with different
symbols and not fail, using fuzzy relations

@ And on how to deal with different arities
— | implemented Sessa’s algorithm in Prolog

o This work showed that it would be interesting to extend fully fuzzy
block-based proximity unification by taking variables into
consideration

o It is a potential future work, using Cl-unification algorithm

Paul-Gabriel Turcuman May, 28 2024 49 /49

