
Approximate Unification with
Fuzzy Relations: A Survey

Bachelor Thesis

Paul-Gabriel Turcuman

May, 28 2024

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 1 / 49



Introduction

Process of solving satisfiability problems:

Given: A set of identities E and two terms s and t
Find: A substitution σ with σ(s) ≈E σ(t)

In syntactic unification: E = ∅
Given: Two terms s and t

Find: A substitution σ with σ(s) = σ(t)

Basis of logic programming

Used in program transformation

etc.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 2 / 49



Introduction
Classic Unification

Introduced by Robinson in 1965

In the thesis the focus is on the rule-based algorithm

(Pseudocode included only for reference)

Var(t) denotes the set of variables present in term t

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 3 / 49



Introduction
Algorithm

Classic-Trivial: (C-Tri)
{s =? s} ⊎ P ′;σ ⇒ P ′;σ, where s can be a variable or a constant.

Classic-Decomposition: (C-Dec)
{f (s1, ..., sn) =? f (t1, ..., tn)}⊎P ′;σ ⇒ {s1 =? t1, ..., sn =? tn}∪P ′;σ,
where n ≥ 0.

Classic-Symbol Clash: (C-SC)
{f (s1, ..., sn) =? g(t1, ..., tn)} ⊎ P ′;σ ⇒ ⊥, if f ̸= g .

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 4 / 49



Introduction
Algorithm

Classic-Orient: (C-Or)
{t =? x} ⊎ P ′;σ ⇒ {x =? t} ∪ P ′;σ, if t /∈ V.

Classic-Occurs Check: (C-OC)
{x =? t} ∪ P ′;σ ⇒ ⊥, if x ∈ Var(t) but x ̸= t.

Classic-Variable Elimination: (C-VE)
{x =? t} ∪ P ′;σ ⇒ P ′{x 7→ t};σ{x 7→ t} ∪ {x 7→ t}, if x /∈ Var(t).

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 5 / 49



Example

We want to unify p(f (x), y) and p(f (a), g(a)).

Applying the algorithm gives:
{p(f (x), y) =? p(f (a), g(a))}; ∅ ⇒C-Dec

{f (x) =? f (a), y =? g(a)}; ∅ ⇒C-VE

{f (x) =? f (a)}; {y 7→ g(a)} ⇒C-Dec

{x =? a}; {y 7→ g(a)} ⇒C-VE

∅; {x 7→ a, y 7→ g(a)}.
Substituion σ = {x 7→ a, y 7→ g(a)} is a solution

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 6 / 49



Motivation

With different symbols classical algorithm fails (eg. p(x) with q(a))

Or different arities

But we want to be able to unify such terms as well

What to do?

Introduce a fuzzy relation between the two symbols

We need to define the notions of proximity and similarity for them

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 7 / 49



Motivation

Two kinds of signatures, depending how fuzzy relations are defined on the
set of function symbols:

More special: basic fuzzy signatures. Proximal/similar function
symbols can have different names, but not different arities.

More general: fully fuzzy signatures. Proximal/similar function
symbols can have different names and different arities.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 8 / 49



Approximate Unification

Prox-class

Sim

Prox-block

[Ses02]

[IR15]

[KP19]

[AP20]

[PK21]

[CMR18]

[Dun+20]

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 9 / 49



General Preliminaries

We need to know what proximity and similarity relations are:

Definition

A proximity relation P : U × U → [0, 1] is a fuzzy subset of U × U , where
U is a domain, that satisfies the following:

i. P is reflexive (i.e. P(x , x) = 1 for all x ∈ U);
ii. P is symmetric (i.e. P(x , y) = P(y , x) for all x , y ∈ U).

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 10 / 49



General Preliminaries

Definition

A similarity relation S : U ×U → [0, 1] is a proximity relation that also has
the transitivity regarding a t-norm (in our case the minimum t-norm) as
one of its properties (i.e. S(x , z) ≥ S(x , y) ∧S(y , z) for all x , y , z ∈ U).

We also need the notion of the λ-cut:

Definition

Let U be a domain and F be a relation on U (can be either a proximity or
a similarity relation). We define the λ-cut of F, for any λ ∈ [0, 1], as the
relation ≃F,λ with: x ≃F,λ y ⇔ F(x , y) ≥ λ for all x , y ∈ [0, 1].

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 11 / 49



Similarity Unification

Prox-class

Sim

Prox-block

[Ses02]

[IR15]

[KP19]

[AP20]

[PK21]

[CMR18]

[Dun+20]

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 12 / 49



Similarity Unification - Basic Case

We now use the system P;α;σ, where α denotes the similarity degree

Trivial, Orient, Occurs Check, Variable Elimination remain the same

Only changes occur in Decomposition and Symbol Clash:

Similarity-Symbol Clash: (S-SC)
{f (s1, ..., sn) ≃?

S,λ g(t1, ..., tm)} ⊎ P ′;α;σ ⇒ ⊥, if S(f , g) < λ.

Similarity-Decomposition: (S-Dec)
{f (s1, ..., sn) ≃?

S,λ g(t1, ..., tn)} ⊎ P ′;α;σ ⇒
{s1 ≃?

S,λ t1, ..., sn ≃?
S,λ tn} ∪ P ′;α ∧S(f , g);σ, if S(f , g) ≥ λ,

where n ≥ 0.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 13 / 49



Example

The following similarity relation is given:
S(f , g) = 0.6,S(p, q) = 0.7,S(a, b) = S(b, c) = 0.4 and
S(a, c) = 0.8, the cut value λ = 0.2 and the terms that need to be
unified are f (x , p(y), b) and g(a, q(c), y).

Applying the algorithm gives:
{f (x , p(y), b) ≃S,0.2 g(a, q(c), y)}; 1; id ⇒S-Dec

{x ≃S,0.2 a, p(y) ≃S,0.2 q(c), b ≃S,0.2 y}; 0.6; id ⇒S-VE

{p(y) ≃S,0.2 q(c), b ≃S,0.2 y}; 0.6; {x 7→ a} ⇒S-Or

{p(y) ≃S,0.2 q(c), y ≃S,0.2 b}; 0.6; {x 7→ a} ⇒S-VE

{p(b) ≃S,0.2 q(c)}; 0.6; {x 7→ a, y 7→ b} ⇒S-Dec

{b ≃S,0.2 c}; 0.6; {x 7→ a, y 7→ b} ⇒S-Dec

∅; 0.5; {x 7→ a, y 7→ b}
Substituion σ = {x 7→ a, y 7→ b} is a solution with degree α = 0.5.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 14 / 49



Similarity Unification

Prox-class

Sim

Prox-block

[Ses02]

[IR15]

[KP19]

[AP20]

[PK21]

[CMR18]

[Dun+20]

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 15 / 49



Similarity Unification - Fully Fuzzy Case

Take into consideration arity mismatch

For each pair of functors f , g with arities m, respectively n, where
0 ≤ m ≤ n there exists an injective mapping
ρfg : {1, 2, ...,m} → {1, 2, ..., n}
The mapping associates each of the m argument positions of f with a
unique position among the n arguments of g

It should also hold:
1) ρff = the identity function (i.e 1 7→ 1, 2 7→ 2, etc .);
2) ρfg ◦ ρgf = the identity function, if f and g have the same arity;
3) for three terms f , g and h with arities m, n and respectively l , with

0 ≤ m ≤ n ≤ l : ρfh = ρgh ◦ ρfg .
Meaning it should be consistent

(Functor meaning either function or predicate symbols)

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 16 / 49



Similarity Unification - Fully Fuzzy Case

We use again the system P;α;σ

Trivial, Symbol Clash, Orient, Occurs Check, Variable Elimination
remain the same

Only changes occur in Decomposition and Symbol Clash

Introduce a new rule: Equation Orient

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 17 / 49



Algorithm

Fully Fuzzy Similarity-Symbol Clash: (FFS-SC)
{f (s1, ..., sm) ≃?

S,λ g(t1, ..., tn)} ⊎ P ′;α;σ ⇒ ⊥, if S(f , g) < λ.

Fully Fuzzy Similarity-Decomposition: (FFS-Dec)
{f (s1, ..., sm) ≃?

S,λ g(t1, ..., tn)} ⊎ P ′;α;σ ⇒
{s1 ≃?

S,λ tρfg (1), ..., sm ≃?
S,λ tρfg (m)} ∪ P ′;α ∧S(f , g);σ, if

S(f , g) ≥ λ, where n ≥ m ≥ 0 with respect to the mapping ρ.

Fully Fuzzy Similarity-Equation Orient: (FFS-EO)
{g(t1, ..., tn) ≃?

S,λ f (s1, ...sm)} ⊎ P ′;α;σ ⇒
{f (s1, ...sm) ≃?

S,λ g(t1, ..., tn)} ∪ P ′;α;σ, if n > m ≥ 0.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 18 / 49



Example

The following similarity relation is given:
S(p, q) = 0.7,S(h, g) = 0.3,S(c , d) = 0.5 with cut value λ = 0.2,
the mapping ρqp = {1 7→ 1, 2 7→ 3}, ρgh = {1 7→ 2} and the terms
that need to be unified are p(h(x , y), a, y) and q(g(c), d).

Applying the algorithm gives:
{p(h(x , y), a, y) ≃S,0.2 q(g(c), d)}; 1; id ⇒FFS-EO

{q(g(c), d) ≃S,0.2 p(h(x , y), a, y)}; 1; id ⇒FFS-Dec

{g(c) ≃S,0.2 h(x , y), d ≃S,0.2 y}; 0.7; id ⇒FFS-Or

{g(c) ≃S,0.2 h(x , y), y ≃S,0.2 d}; 0.7; id ⇒FFS-VE

{g(c) ≃S,0.2 h(x , d)}; 0.7; {y 7→ d} ⇒FFS-Dec

{c ≃S,0.2 d}; 0.3; {y 7→ d} ⇒FFS-Dec

∅; 0.3; {y 7→ d}
Substituion σ = {y 7→ d} is a solution with degree α = 0.3

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 19 / 49



Block- and Class-based Approach for Proximity

Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based vs class-based

block of a: class of a:
a clique to which a belongs the neighborhood of a

{x ≃P,λ b, x ≃P,λ c} {x ≃P,λ b, x ≃P,λ c}
not solvable solved by {x 7→ a}

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 20 / 49



Block- and Class-based Approach for Proximity

Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based vs class-based

block of a: class of a:
a clique to which a belongs the neighborhood of a

{x ≃P,λ b, x ≃P,λ c} {x ≃P,λ b, x ≃P,λ c}
not solvable solved by {x 7→ a}

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 20 / 49



Block- and Class-based Approach for Proximity

Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based vs class-based

block of a: class of a:
a clique to which a belongs the neighborhood of a

b a c

{x ≃P,λ b, x ≃P,λ c} {x ≃P,λ b, x ≃P,λ c}
not solvable solved by {x 7→ a}

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 20 / 49



Block- and Class-based Approach for Proximity

Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based vs class-based

block of a: class of a:
a clique to which a belongs the neighborhood of a

b a c

b a c

{x ≃P,λ b, x ≃P,λ c} {x ≃P,λ b, x ≃P,λ c}
not solvable solved by {x 7→ a}

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 20 / 49



Block- and Class-based Approach for Proximity

Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based vs class-based

block of a: class of a:
a clique to which a belongs the neighborhood of a

b a c

b a c

{x ≃P,λ b, x ≃P,λ c} {x ≃P,λ b, x ≃P,λ c}
not solvable solved by {x 7→ a}

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 20 / 49



Block- and Class-based Approach for Proximity

Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based vs class-based

block of a: class of a:
a clique to which a belongs the neighborhood of a

b a c

b a c

{x ≃P,λ b, x ≃P,λ c} {x ≃P,λ b, x ≃P,λ c}
not solvable solved by {x 7→ a}

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 20 / 49



Block- and Class-based Approach for Proximity

Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based vs class-based

block of a: class of a:
a clique to which a belongs the neighborhood of a

b a c b a c

{x ≃P,λ b, x ≃P,λ c} {x ≃P,λ b, x ≃P,λ c}
not solvable solved by {x 7→ a}

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 20 / 49



Block- and Class-based Approach for Proximity

Looking at proximity relations as undirected graphs, one can talk
about cliques and neighborhoods in them.

One distinguishes between block- and class-based approaches towards
solving symbolic constraints for proximity relations.

block-based vs class-based

block of a: class of a:
a clique to which a belongs the neighborhood of a

b a c b a c

{x ≃P,λ b, x ≃P,λ c} {x ≃P,λ b, x ≃P,λ c}
not solvable solved by {x 7→ a}

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 20 / 49



Proximity Unification

Prox-class

Sim

Prox-block

[Ses02]

[IR15]

[KP19]

[AP20]

[PK21]

[CMR18]

[Dun+20]

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 21 / 49



Proximity Unification - Block-Based Basic Case

Before the rule-based algorithm some notions need to be introduced

Definition

Given a proximity relation P on a domain U , a proximity block of level λ
(λ-block), denoted as Bλ

i (where i is the index of the block), is a subset of
U such that ≃P,λ |Bλ

i
is total and maximal.

Maximal in this case means that the elements of the proximity block
are not contained in another set that restricts ≃P,λ to form a total
relation.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 22 / 49



Proximity Unification - Block-Based Basic Case

Definition

Let S := C ⊎ F ⊎ P be the union set of constants, function symbols and
predicate symbols of L. Then we define a proximity constraint a ≈ b as an
unordered pair of elements a, b ∈ S .

The following definition will also be needed

Definition

Given a proximity relation P, a cut value λ ∈ [0, 1] and a set C of
proximity constraints, the function Sat looks at all the constraints a ≈ b in
this set C , and takes the value fail if and only if it finds a ≈ b in C with
P(a, b) < λ. Otherwise Sat(C ) returns success.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 23 / 49



Algorithm

We use the system P;C ;α;σ, where C is the set of proximity
constraints

Trivial, Orient, Variable Elimination and Occurs Check remain the
same

Decomposition changes into 2 rules

Symbol Clash changes

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 24 / 49



Algorithm

Block-Based Proximity-Decomposition1: (BBP-Dec1)
{f (s1, ..., sn) ≃?

P,λ f (t1, ..., tn)} ⊎ P ′;C ;α;σ ⇒
{s1 ≃?

P,λ t1, ..., sn ≃?
P,λ tn} ∪ P ′;C ;α;σ, where n ≥ 0.

Block-Based Proximity-Decomposition2: (BBP-Dec2)
{f (s1, ..., sn) ≃?

P,λ g(t1, ..., tn)} ⊎ P ′;C ;α;σ ⇒
{s1 ≃?

P,λ t1, ..., sn ≃?
P,λ tn} ∪ P ′;C ∪ {f ≈ g};α ∧P(f , g);σ,

if P(f , g) ≥ λ, Sat(C ∪ {f ≈ g}) ̸= fail, where n ≥ 0.

Block-Based Proximity-Symbol Clash: (BBP-SC)
{f (s1, ..., sn) ≃?

P,λ g(t1, ..., tm)} ⊎ P ′;C ;α;σ ⇒ ⊥, if
n ̸= m,P(f , g) < λ or Sat(C ∪ {f ≈ g}) = fail .

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 25 / 49



Example

The following proximity relation is given:
P(f , g) = 0.5,P(a, c) = 0.2,P(b, d) = 0.3,P(p, q) = 0.6, the cut
value λ = 0.4 and the terms that need to be unified f (x , p(x), b, y)
respectively g(a, q(c), d , p(d)).

Applying the algorithm gives:
{f (x , p(x), b, y) ≃P,0.4 g(a, q(c), d , p(d))}; ∅; 1; id ⇒BBP-Dec

{x ≃P,0.4 a, p(x) ≃P,0.4 q(c), b ≃P,0.4 d ,
y ≃P,0.4 p(d)}; 0.5; id ⇒BBP-VE

{p(a) ≃P,0.4 q(c), b ≃P,0.4 d , y ≃P,0.4 p(d)}; {f ≈ g};
0.5; {x 7→ a} ⇒BBP-Dec

{a ≃P,0.4 c , b ≃P,0.4 d , y ≃P,0.4 p(d)}; {f ≈ g , p ≈ q};
0.5; {x 7→ a} ⇒BBP-Dec

{b ≃P,0.4 d , y ≃P,0.4 p(d)}; {f ≈ g , p ≈ q, a ≈ c}; 0.5; {x 7→ a}.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 26 / 49



Example

{b ≃P,0.4 d , y ≃P,0.4 p(d)}; {f ≈ g , p ≈ q, a ≈ c}; 0.5; {x 7→ a}
⇒BBP-Dec

{y ≃P,0.4 p(d)}; {f ≈ g , p ≈ q, a ≈ c, b ≈ d}; 0.5; {x 7→ a} ⇒BBP-VE

∅; 0.5; {f ≈ g , p ≈ q, a ≈ c , b ≈ d}; {x 7→ a, y 7→ p(d)}.
Substituion σ = {x 7→ a, y 7→ p(d)} is a solution with degree α = 0.5
and constraints set C = {f ≈ g , p ≈ q, a ≈ c , b ≈ d}.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 27 / 49



Proximity Unification

Prox-class

Sim

Prox-block

[Ses02]

[IR15]

[KP19]

[AP20]

[PK21]

[CMR18]

[Dun+20]

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 28 / 49



Proximity Unification - Block-Based Fully Fuzzy Case

Algorithm only takes into consideration the case where the terms to
be unified contain only constants

Solution after applying the algorithm would then remain id

Only the degree changes

Definition
1) Let S be a set containing S1, ...,Sk (which are named ”sorts”).

2) We denote XSi ,YSi the sets containing all constants of sort Si from
the terms that we want to unify (named ”sort sets”).

3) The degree between XSi and YSi is the maximal degree between the
constants from XSi and YSi via a proximity relation P.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 29 / 49



Algorithm

We use the system P;α;σ

Trivial, Occurs Check and Orient remain the same

We don’t have the Variable Elimination rule anymore

Decomposition and Symbol Clash split into 2 rules

New rule is added: Equation Elimination

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 30 / 49



Algorithm

Fully Fuzzy Block-Based Proximity-Decomposition1:
(FFBBP-Dec1)
{f (s1, ..., sn) ≃?

P,λ g(t1, ..., tn)} ⊎ P ′;α;σ ⇒
{XS1 ≃?

P,λ YS1 , ...,XSk ≃?
P,λ YSk} ∪ P ′;α ∧P(f , g);σ, where n ≥ 0,

k ≥ 0 and P(f , g) ≥ λ.
Also each Xs and Ys contain the arguments of f respectively g that
belong to their respective sort s.

Fully Fuzzy Block-Based Proximity-Decomposition2:
(FFBBP-Dec2)
{XSi ≃?

P,λ YSi} ⊎ P ′;α;σ ⇒ P ′;α ∧P(XSi ,YSi );σ if
P(XSi ,YSi ) ≥ λ, where n ≥ 0, i ≥ 0.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 31 / 49



Algorithm

Fully Fuzzy Block-Based Proximity-Symbol Clash1:
(FFBBP-SC1)
{f (s1, ..., sn) ≃?

P,λ g(t1, ..., tm)} ⊎ P;α;σ ⇒ ⊥, if P(f , g) < λ.

Fully Fuzzy Block-Based Proximity-Symbol Clash2:
(FFBBP-SC2)
{XSi ≃?

P,λ YSi} ⊎ P;α;σ ⇒ ⊥, if P(XSi ,YSi ) < λ.

Fully Fuzzy Block-Based Proximity-Equation Elimination:
(FFBBP-EE)
{XSi ≃?

P,λ YSi} ∪ P ′;α;σ ⇒ P ′;α;σ, if XSi = ∅ and/or YSi = ∅.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 32 / 49



Example

The following proximity relation is given:
P(f , g) = 0.6,P(a, b) = 0.4,P(b, c) = 0.3,P(a, c) = 0.3, the cut
value λ = 0.2, the set of sorts S = {S1, S2,S3}, with
S1 = {a, b},S2 = {c}, S3 = {d} and the terms that need to be
unified f (a, c , b) respectively g(d , a).

Applying the algorithm gives:
{f (a, c , b) ≃P,0.2 g(d , a)}; 1; id ⇒FFBBP-Dec1

{XS1 ≃?
P,0.2 YS1 ,XS2 ≃?

P,0.2 YS2 ,XS3 ≃?
P,0.2 YS3}; 0.6; id , where

XS1 = {a, b},XS2 = {c},XS3 = ∅,YS1 = {a},YS2 = ∅ and
YS3 = {d} ⇒FFBBP-EE

{XS1 ≃?
P,0.2 YS1 ,XS2 ≃?

P,0.2 YS2}; 0.6; id ⇒FFBBP-EE

{XS1 ≃?
P,0.2 YS1}; 0.6; id ⇒FFBBP-Dec2

∅; 0.6; id
Substituion σ = id is a solution with degree α = 0.6.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 33 / 49



Proximity Unification

Prox-class

Sim

Prox-block

[Ses02]

[IR15]

[KP19]

[AP20]

[PK21]

[CMR18]

[Dun+20]

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 34 / 49



Proximity Unification - Class-Based Basic Case

We use now proximity classes:

Definition

We have a proximity relation P on a set S and a cut-value λ ∈ (0, 1].
Then we define the proximity class of level λ of s ∈ S (denoted as
pc(s,P)), as the set: pc(s,P) := {t ∈ S | P(s, t) ≥ λ}.

We also need the notion of extended terms:

Definition

An extended term is a term that includes, besides variables and function
symbols, finite sets of function symbols, whose elements have the same
arity. We denote them in bold: t for eg.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 35 / 49



Proximity Unification - Class-Based Basic Case

a) We consider now the countable set N the set of names. Names are
symbols with associated arity (like function symbols). We assume
that N ∩ F = ∅,N ∩ V = ∅. They are denoted as N, M, K.

b) Now a neighborhood is either a name or a finite subset of F , where
all elements have the same arity. We denote it as Nb.

c) We denote Φ as a name-neighborhood mapping, which is a finite
mapping from names to non-name neighborhoods.

d) A neighborhood equation is a pair of neighborhoods that needs to be
solved, i.e. F =? G.

e) A neighborhood constraint is a finite set of neighborhood equations.

f) We say that {x ≃P,λ t} ⊎ P contains an occurence cycle for the
variable x , if t /∈ V and there exist (x0, t0), (x1, t1), ..., (xn, tn) such
that x0 = x , t0 = t, for each 0 ≤ i ≤ n P contains an equation
xi ≃P,λ ti or ti ≃P,λ xi , and xi+1 ∈ V(ti ), where xn+1 = x0.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 36 / 49



Pre-Unification Algorithm

Use the system P;C ;α;σ, where C is the set of proximity constraints
that need to be solved

First apply the pre-unification algorithm to get σ

Then apply constraint solving algorithm to computed C to get Φ

The solution will be then Φ(σ)

Trivial, Orient and Occurs Check remain the same

Decomposition and Variable Elimination change

Symbol Clash transforms to Clash

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 37 / 49



Pre-Unification Algorithm

Class-Based Proximity-Decomposition: (CBP-Dec)
{F(s1, ..., sn) ≃?

P,λ G(t1, ..., tn)} ⊎ P ′;C ;α;σ ⇒
{s1 ≃?

P,λ t1, ..., sn ≃?
P,λ tn} ∪ P ′; {F ≈? G} ∪ C ;α ∧P(F,G);σ,

where n ≥ 0 and P(F,G) ≥ λ.

Class-Based Proximity-Clash: (CBP-C)
{F(s1, ..., sn) ≃?

P,λ G(t1, ..., tm)} ⊎ P ′;C ;α;σ ⇒ ⊥, if n ̸= m.

Class-Based Proximity-Variable Elimination: (CBP-VE)
{x ≃?

P,λ t} ∪ P ′;C ;α;σ ⇒
{t′ ≃?

P,λ t} ∪ P ′{x 7→ t′};C ;α;σ{x 7→ t′} ∪ {x 7→ t′}, where t /∈ V,
there is no occurrence cycle for x in {x ≃P,λ t}, and t′ is a a fresh
copy of t.

There is also such an algorithm that solves the constraints obtained
from this one.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 38 / 49



Example

We want to unify p(x , y , x) and q(f (a), g(d), y), with the proximity
relation: P(f , g) = 0.3,P(a, b) = 0.2,P(p, q) = 0.7,P(c , d) =
0.75,P(b, c) = 0.35 and the cut value λ = 0.2.

We use then the pre-unification algorithm first:
{p(x , y , x) ≃?

P,0.2 q(f (a), g(d), y)}; ∅; 1; id ⇒CBP-Dec

{x ≃?
P,0.2 f (a), y ≃?

P,0.2 g(d), x ≃?
P,0.2 y}; {p ≈ q}; 0.7; id ⇒CBP-VE

{N2 ≃?
P,0.2 a, y ≃?

P,0.2 g(d), t
′ ≃?

P,0.2 y}; {p ≈ q,N1 ≈ f };
0.7; {x 7→ t ′}, where t ′ = N1(N2) ⇒CBP-VE

{y ≃?
P,0.2 g(d), t

′ ≃?
P,0.2 y}; {p ≈ q,N1 ≈ f ,N2 ≈ a};

0.7; {x 7→ t ′} ⇒CBP-VE

{N4 ≃?
P,0.2 d , t

′ ≃?
P,0.2 s

′};
{p ≈ q,N1 ≈ f ,N2 ≈ a,N3 ≈ g}; 0.7; {x 7→ t ′, y 7→ s ′}, where
s ′ = N3(N4).

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 39 / 49



Example

{N4 ≃?
P,0.2 d , t

′ ≃?
P,0.2 s

′}; {p ≈ q,N1 ≈ f ,N2 ≈ a,N3 ≈ g};
0.7; {x 7→ t ′, y 7→ s ′}, where s ′ = N3(N4)

⇒CBP-VE

{N1(N2) ≃?
P,0.2 N3(N4)};

{p ≈ q,N1 ≈ f ,N2 ≈ a,N3 ≈ g ,N4 ≈ d}; 0.7; {x 7→ t ′, y 7→ s ′}
⇒CBP-Dec

{N2 =
? N4};

{p ≈ q,N1 ≈ f ,N2 ≈ a,N3 ≈ g ,N4 ≈ d ,N1 ≈ N3}; 0.3; {x 7→ t ′, y 7→ s ′}
⇒CBP-Dec

∅; {p ≈ q,N1 ≈ f ,N2 ≈ a,N3 ≈ g ,N4 ≈ d ,N1 ≈ N3,N2 ≈ N4};
0.3; {x 7→ N1(N2), y 7→ N3(N4)}.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 40 / 49



Example

Then by applying the constraint solving algorithm on
{p ≈ q,N1 ≈ f ,N2 ≈ a,N3 ≈ g ,N4 ≈ d ,N1 ≈ N3,N2 ≈ N4}, we get
the substitution
Φ = {N1 7→ {f , g},N2 7→ {b},N3 7→ {f , g},N4 7→ {c}}.
One of the solutions is then Φ(σ) = {x 7→ f (b), y 7→ g(c)}, with
degree α = 0.3.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 41 / 49



Proximity Unification

Prox-class

Sim

Prox-block

[Ses02]

[IR15]

[KP19]

[AP20]

[PK21]

[CMR18]

[Dun+20]

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 42 / 49



Proximity Unification - Class-Based Fully Fuzzy Case

Again take into consideration arity mismatch

Introduce argument relation ρ

We use the system P;α;σ

Trivial, Orient and Occurence Check stay the same

Decomposition, Symbol Clash and Variable Elimination change

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 43 / 49



Algorithm

Fully Fuzzy Class-Based Proximity-Decomposition: (FFCBP-Dec)
{f (s1, ..., sm) ≃?

P,λ g(t1, ..., tn)} ⊎ P ′;α;σ ⇒
{si ≃?

P,λ tj | (i , j) ∈ ρ} ∪ P ′;α ∧P(f , g);σ if P(f , g) ≥ λ, where
n,m ≥ 0 with respect to the relation ρ.

Fully Fuzzy Class-Based Proximity-Symbol Clash: (FFCBP-SC)
{f (s1, ..., sn) ≃?

P,λ g(t1, ..., tm)} ⊎ P ′;α;σ ⇒ ⊥ if P(f , g) < λ.

Fully Fuzzy Class-Based Proximity-Variable Elimination:
(FFSCBP-VE)
{x ≃?

P,λ g(s1, ..., sn)} ∪ P ′;α;σ ⇒
P ′θ ∪ {vi ≃?

P,λ sj | (i , j) ∈ ρ};α ∧P(f , g);σθ ∪ {x 7→ t}, where
{x ≃?

P,λ g(s1, ..., sn)} does not contain an occurrence cycle for x ,
θ = {x 7→ f (v1, ..., vm)}, with fresh variables v1, ..., vm, P(f , g) ≥ λ,
with respect to ρ and n,m ≥ 0.

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 44 / 49



Example

The following proximity relation is given:
P(f , g) = 0.6,P(f , h) = 0.7,P(a, b) = 0.4,P(b, c) = 0.3, the cut
value λ = 0.2, the relations ρfg = {(1, 1), (2, 1)},
ρfh = {(1, 1), (2, 2)} and the terms that need to be unified are f (x , x)
and f (g(a), h(a, c)).

Applying the algorithm gives:
{f (x , x) ≃P,0.2 f (g(a), h(a, c))}; 1; id ⇒FFCBP-Dec

{x ≃P,0.2 g(a), x ≃P,0.2 h(a, c)}; 1; id ⇒FFCBP-VE

{v1 ≃?
P,0.2 a, v2 ≃?

P,0.2 a, f (v1, v2) ≃?
P,0.2 h(a, c)};

0.6; {x 7→ f (v1, v2)} ⇒FFCBP-Dec

{v1 ≃?
P,0.2 a, v2 ≃?

P,0.2 a, v1 ≃?
P,0.2 a, v2 ≃?

P,0.2 c};
0.6; {x 7→ f (v1, v2)} ⇒FFCBP-VE

{v2 ≃?
P,0.2 a, a ≃?

P,0.2 a, v2 ≃?
P,0.2 c};

0.6; {x 7→ f (a, v2), v1 7→ a} ⇒FFCBP-Tri

{v2 ≃?
P,0.2 a, v2 ≃?

P,0.2 c}; 0.6; {x 7→ f (a, v2), v1 7→ a}

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 45 / 49



Example

{v2 ≃?
P,0.2 a, v2 ≃?

P,0.2 c}; 0.6; {x 7→ f (a, v2), v1 7→ a} ⇒FFCBP-VE

{b ≃?
P,0.2 c}; 0.6; {x 7→ f (a, b), v1 7→ a, v2 7→ b} ⇒FFCBP-Dec

∅; 0.3; {x 7→ f (a, b), v1 7→ a, v2 7→ b}
Substituion σ = {x 7→ f (a, b)} is a solution with degree α = 0.3

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 46 / 49



Multiple Similarities Unification

Prox-class

Sim

Prox-block

[Ses02]

[IR15]

[KP19]

[AP20]

[PK21]

[CMR18]

[Dun+20]

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 47 / 49



Multiple Similarities

Take into consideration the case when there are more similarity
relations between objects

The ”relation” between those similarities become a proximity relation

New algorithm for multiple similarities

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 48 / 49



Conclusion

We saw the respective algorithms on how to deal with different
symbols and not fail, using fuzzy relations

And on how to deal with different arities

− I implemented Sessa’s algorithm in Prolog

⋄ This work showed that it would be interesting to extend fully fuzzy
block-based proximity unification by taking variables into
consideration

⋄ It is a potential future work, using CI-unification algorithm

Paul-Gabriel Turcuman Approximate Unification with Fuzzy Relations: A Survey May, 28 2024 49 / 49


