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RISCAL & RISCTP

• RISCAL Language and Software
◦ Variant of FOL over finite domains of some size 𝑁.
◦ Rich variety of mathematical constructions and types.
◦ Fixed size 𝑁 := 𝑐: model checking.
◦ Arbitrary size 𝑁 ∈ N: theorem proving.

• RISCTP Theorem Proving Interface
◦ Language with abstraction level lower than RISCAL.
◦ FOL with equality, integers, maps (arrays, sets), algebraic data types (tuples).
◦ Interface to SMT-LIB based theorem provers (cvc5, Vampire, Z3).
◦ MESON prover for FOL with support for above theories.

Construction and visualization of human-understandable proofs.

https://www.risc.jku.at/research/formal/software/RISCAL
https://www.risc.jku.at/research/formal/software/RISCTP
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The RISCTP Language

// problem file "arrays.txt"
const N:Nat; axiom posN ⇔ N > 0;
type Index = Nat with value < N;
type Value; type Elem = Tuple[Int,Value]; type Array = Map[Index,Elem];
fun key(e:Elem):Int = e.1;
pred sorted(a:Array,from:Index,to:Index) ⇔

∀i:Index,j:Index. from ≤ i ∧ i < j ∧ j ≤ to ⇒ key(a[i]) ≤ key(a[j]);
theorem T ⇔

∀a:Array,from:Index,to:Index,x:Int.
from ≤ to ∧ sorted(a,from,to) ⇒
let i = choose i:Index with from ≤ i ∧ i ≤ to in
key(a[i]) < x ⇒ ¬∃j:Index. from ≤ j ∧ j < i ∧ key(a[j]) = x;
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Baseline Goal

Automatically generate “reasonably understandable” proofs for the verification
conditions generated by RISCAL for programs that operate on arrays.

• Minimum/maximum element and position.

• Summation.

• Linear and binary search.

• Sorting.

• . . .

Typical problems presented in my “Formal Methods” course; now handled in
RISCAL by checking finite models via state space enumeration or SMT solving
and in RISCTP by applying external SMT-based provers as “black boxes”.
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The Processing Pipeline

RISCAL
↓

RISCTP
↓

First-Order Logic
↓

Sequent Problems
↓

Clause Problems
↓

Proofs

Language Reduction

Language Reduction

Problem Decomposition/Simplification/Knowledge Generation

Clause Generation

MESON
↔ SMT Solving
↔ Equality Handling

(Viktoria: Resolution)

This presentation focuses on the relationship of MESON, SMT solving, equality
handling, and problem decomposition/simplification/knowledge generation.
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The Core: A MESON Prover

MESON: Model Elimination, Subgoal-Oriented.

• Judgment Rs ⊢Ls𝜎 𝐺: (∧(Rs ∪ Ls) ⇒ 𝐺)𝜎 is valid.
◦ Set Rs of “rules” (∀𝑥 . . .) (𝐴1 ∧ . . . ∧ 𝐴𝑎 ⇒ 𝐵1 ∨ . . . ∨ 𝐵𝑏) [= (∀𝑥 . . .) (𝐿1 ∨ . . . ∨ 𝐿𝑎+𝑏)].

Atoms 𝐴𝑖 , 𝐵𝑖 , positive or negative atoms (literals) 𝐿𝑖 .
◦ “Goal” 𝐺 = (∃𝑥 . . .) (𝐺1 ∧ . . . ∧ 𝐺𝑔) with literals 𝐺𝑖 .
◦ Set Ls of literals, variable substitution 𝜎.

Rs ⊢Ls𝜎 ⊤
(AX)

L ∈ Ls 𝐺1𝜎 and 𝐿𝜎 have mgu 𝜎1

Rs ⊢Ls𝜎𝜎1
(𝐺2 ∧ . . . ∧𝐺𝑔 )

Rs ⊢Ls𝜎 (𝐺1 ∧𝐺2 ∧ . . . ∧𝐺𝑔≥1 )
(ASS)

𝑅 := (𝐿1 ∨ . . . ∨ 𝐿𝑖 ∨ . . . ∨ 𝐿𝑎+𝑏 ) ∈ 𝐹 𝐿𝑖𝜎𝜎0 and 𝐺1𝜎 have mgu 𝜎1

𝜎0 is a bijective renaming of the variables in 𝑅𝜎 such that 𝑅𝜎𝜎0 and 𝐺𝜎 have no common variables

Rs ⊢Ls∪{𝐺1}
𝜎𝜎0𝜎1

(𝐿1 ∧ . . . ∧ 𝐿𝑖−1 ∧ 𝐿𝑖+1 ∧ . . . ∧ 𝐿𝑎+𝑏 ) Rs ⊢Ls𝜎𝜎0𝜎1
(𝐺2 ∧ . . . ∧𝐺𝑔 )

Rs ⊢Ls𝜎 𝐺 := (𝐺1 ∧𝐺2 ∧ . . . ∧𝐺𝑔≥1 )
(MESON)

A generalization of Prolog-like “backward chaining” to full first-order logic.
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Proof Search

An implementation of the calculus (implicitly) constructs a proof tree (below the
special case of Prolog-like Horn clauses is depicted):
⊤
𝐵1

(⊤ ⇒ 𝐵1 )

𝐴1
(𝐵1 ⇒ 𝐴1 )

⊤
𝐵2

(⊤ ⇒ 𝐵2 )

𝐴2
(𝐵2 ⇒ 𝐴2 )

𝐺1
(𝐴1 ∧ 𝐴2 ⇒ 𝐺1 )

⊤
𝐷1

(⊤ ⇒ 𝐷1 )

𝐶1
(𝐷1 ⇒ 𝐶1 )

⊤
𝐷2

(⊤ ⇒ 𝐷2 )

𝐶2
(𝐷2 ⇒ 𝐶2 )

𝐺2
(𝐶1 ∧𝐶2 ⇒ 𝐺1 )

⊤
𝐹1

(⊤ ⇒ 𝐹1 )

𝐸1
(𝐹1 ⇒ 𝐸1 )

⊤
𝐹2

(⊤ ⇒ 𝐹2 )

𝐸2
(𝐹2 ⇒ 𝐸2 )

𝐺3
(𝐸1 ∧ 𝐸2 ⇒ 𝐺1 )

𝐺1 ∧𝐺2 ∧𝐺3

• Solving substitution 𝜎: determined during the construction of the tree.
◦ Starting with 𝜎 = ∅, rule (MESON) chooses for every node some rule and extends 𝜎.

• Completeness of the proof search.
◦ All possible rule choices have to be considered; this requires a suitable organization of

the construction process.
◦ All clauses arising from the theorem to be proved have to be attempted (but not the

clauses arising from theory axioms provided that they are satisfiable).

An intuitively understandable strategy.
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A Note on Proofs by Cases

Rs := {𝑝 ∨ 𝑞, 𝑝 ⇒ 𝑟, 𝑞 ⇒ 𝑟} 𝐺 := 𝑟

• Natural style reasoning: we have 𝑝 ∨ 𝑞.
◦ In case of 𝑝, (𝑝 ⇒ 𝑟) implies 𝑟.
◦ In case of 𝑞, (𝑞 ⇒ 𝑟) implies 𝑟.

• MESON pursues goal sequence 𝑟 → 𝑝 → ¬𝑞 → ¬𝑟.

Rs ⊢{¬𝑟 ,¬𝑝,𝑞} ¬𝑟
(ASS)

Rs ⊢{¬𝑟 ,¬𝑝} ¬𝑞
(𝑞 ⇒ 𝑟)

Rs ⊢{¬𝑟 } 𝑝
(𝑝 ∨ 𝑞)

Rs ⊢∅ 𝑟
(𝑝 ⇒ 𝑟)

◦ The case condition (𝑝 ∨ 𝑞) “inverts” the proof direction.

MESON cannot apply “case distinction” (the sequent calculus “cut rule”) to split
proof situations (a “deficiency” mitigated a bit by some measures shown later).
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Theories: SMT Solving

Especially consider theory symbols, i.e., symbols with “fixed” interpretation.(∧(Rs ) ∧∧(Ls )𝜎 ∧ ¬𝐺1𝜎
)

is unsatisfiable Rs ⊢Ls𝜎 (𝐺2 ∧ . . . ∧𝐺𝑔 )

Rs ⊢Ls𝜎 𝐺 := (𝐺1 ∧𝐺2 ∧ . . . ∧𝐺𝑔 )
(SMT)

•
(∧(Rs) ∧∧(Ls)𝜎 ∧ ¬𝐺1𝜎

)
is unsatisfiable:

◦ Consider only unquantified (variable-free) clauses from Rs.
◦ Replace variables in

∧(Ls)𝜎 ∧ ¬𝐺1𝜎 by constants.
◦ Result is a quantifier-free closed formula.

• RISCTP option “SMT”:
◦ Apply an external SMT solver (cvc5, Z3).
◦ Unrestricted application slows down proof search substantially.
◦ However, when applied up to depth 2 only, many proofs are sped up.

Still an explicit axiomatization of theories is needed to expose proof situations
where a goal (𝐺1) follows from facts (Rs) and collected assumptions (Ls).
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Axiomatization of Theories

• Maps/Arrays
∀𝑎1, 𝑎2. (∀𝑖. 𝑎1 [𝑖] = 𝑎2 [𝑖]) ⇒ 𝑎1 = 𝑎2

∀𝑎, 𝑖.𝑒. 𝑎[𝑖 ↦→ 𝑒] [𝑖] = 𝑒

∀𝑎, 𝑖, 𝑗 , 𝑒. 𝑖 ≠ 𝑗 ⇒ 𝑎[𝑖 ↦→ 𝑒] [ 𝑗] = 𝑎[ 𝑗]

• Tuples
∀𝑥1, 𝑥2, 𝑦1, 𝑦2. ⟨𝑥1, 𝑥2⟩ = ⟨𝑦1, 𝑦2⟩ → 𝑥1 = 𝑥2 ∧ 𝑦1 = 𝑦2

∀𝑥1, 𝑥2. ⟨𝑥1, 𝑥2⟩.1 = 𝑥1

∀𝑥1, 𝑥2. ⟨𝑥1, 𝑥2⟩.2 = 𝑥2

∀𝑡, 𝑥1. (𝑡 with .1 = 𝑥1).1 = 𝑥1

∀𝑡, 𝑥2. (𝑡 with .2 = 𝑥2).2 = 𝑥2

• Algebraic Data Types
◦ Axiomatization of constructor, selecter, tester operations. . .

• Integers
◦ A (necessarily incomplete) axiomatization of the integer operations. . .
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Axiomatization of Integers
axiom ’0+1’ ⇔ 0+1 = 1;
axiom ’1+0’ ⇔ 1+0 = 1;
axiom ’+-1’ ⇔ ∀x:Int. (x+1)-1 = x;
axiom ’-+1’ ⇔ ∀x:Int. (x-1)+1 = x;
axiom ’comm+’ ⇔ ∀x:Int,y:Int. x+y = y+x;
axiom ’assoc+’ ⇔ ∀x:Int,y:Int,z:Int. x+(y+z) = (x+y)+z;
axiom ’neut+’ ⇔ ∀x:Int. x+0 = x;
axiom ’inv+’ ⇔ ∀x:Int. x-x = 0;
axiom ’def-’ ⇔ ∀x:Int,y:Int. x-y = x+(-y);
axiom ’inv-’ ⇔ ∀x:Int. -(-x) = x;
axiom ’distrib-’ ⇔ ∀x:Int,y:Int. -(x+y) = (-x)+(-y);

axiom ’div2a’ ⇔ ∀x:Int,y:Int. let z = (x+y)/2 in x ≤ y ⇒
(’=’(x,y) {*} ∧ z = x ∧ z = y) ∨ (x < y ∧ x ≤ z ∧ z < y);

axiom ’div2b’ ⇔ ∀x:Int,y:Int. let z = (x+y)/2 in
x ≤ y ⇒ x ≤ z ∧ z ≤ y;

axiom ’preserve<+1’ ⇔ ∀x:Int,y:Int,z:Int. x < y ⇒ x+z < y+z;
axiom ’preserve<+2’ ⇔ ∀x:Int,y:Int,z:Int. x < y ⇒ z+x < z+y;
axiom ’preserve≤+1’ ⇔ ∀x:Int,y:Int,z:Int. x ≤ y ⇒ x+z ≤ y+z;
axiom ’preserve≤+2’ ⇔ ∀x:Int,y:Int,z:Int. x ≤ y ⇒ z+x ≤ z+y;
axiom ’preserve<-’ ⇔ ∀x:Int,y:Int,z:Int. x < y ⇒ z-y < z-x;
axiom ’preserve≤-’ ⇔ ∀x:Int,y:Int,z:Int. x ≤ y ⇒ z-y ≤ z-x;
axiom ’add<’ ⇔ ∀x:Int,y:Int. 0 < y ⇒ x < x+y;
axiom ’add≤’ ⇔ ∀x:Int,y:Int. 0 ≤ y ⇒ x ≤ x+y;

axiom ’trans<’ ⇔ ∀x:Int,y:Int,z:Int. x < y ∧ y < z ⇒ x < z;
axiom ’trans≤’ ⇔ ∀x:Int,y:Int,z:Int. x ≤ y ∧ y ≤ z ⇒ x ≤ z;
axiom ’trans1≤’ ⇔ ∀x:Int,y:Int,z:Int. x ≤ y ∧ y < z ⇒ x < z;
axiom ’trans2≤’ ⇔ ∀x:Int,y:Int,z:Int. x < y ∧ y ≤ z ⇒ x < z;
axiom ’trich’ ⇔ ∀x:Int,y:Int. x < y ∨ y < x ∨ ’=’(x,y) {*} ;
axiom ’part1’ ⇔ ∀x:Int,y:Int. x ≤ y ∨ y < x;
axiom ’part2’ ⇔ ∀x:Int,y:Int. ¬(x ≤ y ∧ y < x);
axiom ’def1≤’ ⇔ ∀x:Int,y:Int. x < y ∨ x = y ⇒ x ≤ y ;
axiom ’def2≤’ ⇔ ∀x:Int,y:Int. x ≤ y ⇒ x < y ∨ ’=’(x,y) {*} ;
axiom ’excl<’ ⇔ ∀x:Int,y:Int. ¬(x < y ∧ x = y);
axiom ’excl2<’ ⇔ ∀x:Int,y:Int. ¬(y < x ∧ x = y);
axiom ’+-1<’ ⇔ ∀x:Int,y:Int. ’<’(x,y){*} ⇒ ¬(y < x+1) ∧ ¬(y-1 < x);
axiom ’+1≤’ ⇔ ∀x:Int,y:Int. x < y ⇔ x+1 ≤ y;
axiom ’+1<’ ⇔ ∀x:Int,y:Int. x ≤ y ⇔ x < y+1 ;
axiom ’-1≤’ ⇔ ∀x:Int,y:Int. x < y ⇔ x ≤ y-1;
axiom ’-1<’ ⇔ ∀x:Int,y:Int. x ≤ y ⇔ x-1 < y;
axiom ’x-1<x’ ⇔ ∀x:Int. x-1 < x;
axiom ’x<x+1’ ⇔ ∀x:Int. x < x+1;
axiom ’≤0’ ⇔ ∀x:Int. 0 ≤ x ⇒ -x ≤ 0;
axiom ’<0’ ⇔ ∀x:Int. 0 < x ⇒ -x < 0;
axiom ’x≤y’ ⇔ ∀x:Int,y:Int. x ≤ y ⇒ 0 ≤ y-x;
axiom ’x<y’ ⇔ ∀x:Int,y:Int. x < y ⇒ 0 < y-x;
axiom ’0≤0’ ⇔ 0 ≤ 0;
axiom ’0<1’ ⇔ 0 < 1;
axiom ’-1<0’ ⇔ -1 < 0;
axiom ’irrefl<’ ⇔ ∀x:Int. ¬(x < x);
axiom ’refl≤’ ⇔ ∀x:Int. x ≤ x; 10/19



Preventing Literals as Proof Targets

Clause 𝐴1 ∧ 𝐴2 ⇒ 𝐵1 ∨ 𝐵2.

• Syntactic sugar for an “undirected” disjunction:
¬𝐴1 ∨ ¬𝐴2 ∨ 𝐵1 ∨ 𝐵2

• Each atom becomes target of a proof rule:

𝐴2 ∧ ¬𝐵1 ∧ ¬𝐵2 ⇒ ¬𝐴1

𝐴1 ∧ ¬𝐵1 ∧ ¬𝐵2 ⇒ ¬𝐴2

𝐴1 ∧ 𝐴2 ∧ ¬𝐵2 ⇒ 𝐵1

𝐴1 ∧ 𝐴2 ∧ ¬𝐵1 ⇒ 𝐵2

◦ May lead to proof attempts that are unlikely to succeed.

• Clause 𝐴1{∗} ∧ 𝐴2{∗} ⇒ 𝐵1 ∨ 𝐵2{∗} with atoms marked as “non-goals” {∗}.
◦ Only proof rule: 𝐴1 ∧ 𝐴2 ∧ ¬𝐵2 ⇒ 𝐵1

axiom ’trich’ ⇔ ∀x:Int,y:Int. x < y ∨ y < x ∨ ’=’(x,y) {*} ;

Without this, the proof search space may explode. 11/19



Equality: Paramodulation-Style Rewriting

A natural adaptation of rule (MESON).

𝑅 := (𝐿1 ∨ . . . ∨ (𝑙 = 𝑟 ) ∨ . . . ∨ 𝐿𝑎+𝑏 ) ∈ 𝐹 𝑡𝜎𝜎0 and 𝑙𝜎 have mgu 𝜎1

𝜎0 is a bijective renaming of the variables in 𝐶𝜎 such that 𝐶𝜎𝜎0 and 𝐺𝜎 have no common variables

Rs ⊢Ls∪{𝐺1}
𝜎𝜎0𝜎1

(𝐿1 ∧ . . . ∧ 𝐿𝑖−1 ∧ 𝐿𝑖+1 ∧ . . . ∧ 𝐿𝑎+𝑏 ) Rs ⊢Ls𝜎𝜎0𝜎1
(𝐺1 [𝑟 ] ∧𝐺2 ∧ . . . ∧𝐺𝑔 )

Rs ⊢Ls𝜎 𝐺 := (𝐺1 [𝑡 ] ∧𝐺2 ∧ . . . ∧𝐺𝑔≥1 )
(PARA)

𝐿 [𝑡]: literal 𝐿 with subterm 𝑡.

Search space explodes; application of the rule has to be appropriately limited.
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Rewriting Control

• Avoid rewrite cycles: if 𝑡1 has been rewritten to 𝑡2, do not rewrite 𝑡2 to 𝑡1 in same proof branch.
• Do not apply non-goals: ignore equalities marked as {∗}.
• Restrict rewrite positions: only consider term positions in uninstantiated literal 𝐺𝑖 (not in 𝐺𝑖𝜎).
• Prohibit variable rewrites: do not rewrite variable 𝑥 to some term 𝑡.
• Direct equations: do not apply 𝑙 = 𝑟 if 𝑟 ≻ 𝑙 for a variant of lexicographic path order:

◦ 𝑙 ∈ var (𝑟 ) and 𝑙 ≠ 𝑟 .

◦ 𝑟 = 𝑓 (𝑟1, . . . , 𝑟𝑚 ) and 𝑙 = 𝑔 (𝑙1, . . . , 𝑙𝑛 ) and

𝑟𝑖 ⪰ 𝑙 for some 𝑖, or
𝑓 ≻ 𝑔 and 𝑟 ≻ 𝑙 𝑗 for all 𝑗 , or
𝑓 = 𝑔 and 𝑟 ≻ 𝑙 𝑗 for all 𝑗 and (𝑟1, . . . , 𝑟𝑚) ≻lex (𝑙1, . . . , 𝑙𝑛).

◦ We consider 𝑓 ≻ 𝑔 iff 𝑓 was declared in the theory later than 𝑔.
◦ Variant: 𝑡 ≻ 𝑓 (𝑡 ) if 𝑡 is of an algebraic data type and 𝑓 is a selector of that type.

Various settings: “Off” (no rewriting), “Min” (rewriting with all restrictions, the
default), “Med” (also consider non-goals, do not restrict rewrite positions), “High”
(also allow variable rewrites), “Max” (also do not direct equations).
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More Equality Rules

Actually RISCTP also implements the following rules.

𝑡 𝜎 = 𝑠𝜎 Rs ⊢Ls𝜎 𝐺

Rs ⊢Ls𝜎 (𝑡 = 𝑠) ∧𝐺
(EQAX)

𝑥 ∉ sup (𝜎) 𝑥 ≠ 𝑡 Rs ⊢Ls
𝜎 [𝑥 ↦→𝑡𝜎 ] 𝐺

Rs ⊢Ls𝜎 (𝑥 = 𝑡 ) ∧𝐺
(EQSUBST)

𝑡 𝜎 ≠ 𝑠𝜎 Rs ⊢Ls𝜎 (𝑡 = 𝑠) ∧𝐺

Rs ⊢Ls𝜎 𝑓 (𝑡1, . . . , 𝑡 , . . . , 𝑡𝑛 ) = 𝑓 (𝑡1, . . . , 𝑠, . . . , 𝑡𝑛 ) ∧𝐺)
(FEQ)

¬(𝑡:Int) 𝑅 := (𝐿1 ∨ . . . ∨𝐺1 [𝑠] ∨ . . . ∨ 𝐿𝑎+𝑏 ) ∈ 𝐹 𝑡𝜎 ≠ 𝑠𝜎

Rs ⊢Ls∪{𝐺1}
𝜎 (𝐿1 ∧ . . . ∧ 𝐿𝑖−1 ∧ 𝐿𝑖+1 ∧ . . . ∧ 𝐿𝑎+𝑏 ∧ (𝑠 = 𝑡 ) ) Rs ⊢Ls𝜎 (𝐺2 ∧ . . . ∧𝐺𝑔 )

Rs ⊢Ls𝜎 (𝐺1 [𝑡 ] ∧𝐺2 ∧ . . . ∧𝐺𝑔≥1 )
(EQ)

𝑡:Int 𝑅 := (𝐿1 ∨ . . . ∨𝐺1 [𝑠] ∨ . . . ∨ 𝐿𝑎+𝑏 ) ∈ 𝐹 𝑡𝜎 ≠ 𝑠𝜎

Rs ⊢Ls∪{𝐺1}
𝜎 (𝐿1 ∧ . . . ∧ 𝐿𝑖−1 ∧ 𝐿𝑖+1 ∧ . . . ∧ 𝐿𝑎+𝑏 ∧ (𝑠 ≤ 𝑡 ) ∧ ¬(𝑠 < 𝑡 ) ) Rs ⊢Ls𝜎 (𝐺2 ∧ . . . ∧𝐺𝑔 )

Rs ⊢Ls𝜎 (𝐺1 [𝑡 ] ∧𝐺2 ∧ . . . ∧𝐺𝑔≥1 )
(LEQ)

The application of rule (LEQ) leads in the subsequent proof to a “goal split” based
on the relative order of the values of integer terms 𝑡 and 𝑠. 14/19



Completeness of Equality Reasoning

Does all of this make the equality reasoning complete?

• Resolution: paramodulation is complete.
◦ Provided that we add the reflexivity axiom 𝑥 = 𝑥 and one function reflexivity

axiom 𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑓 (𝑥1, . . . , 𝑥𝑛) for every function symbol 𝑓 .

• MESON: paramodulation-style rewriting is incomplete.
◦ Rs := {𝑝(𝑥) ⇒ 𝑓 (𝑥) = 𝑐, 𝑝(𝑥) ⇒ 𝑔(𝑥) = 𝑐,¬𝑝(𝑥) ⇒ 𝑓 (𝑥) = 𝑑,¬𝑝(𝑥) ⇒ 𝑔(𝑥) = 𝑑},

𝐺 := 𝑓 (𝑥) = 𝑔(𝑥)
◦ Resolution: can derive from Rs the knowledge 𝑝(𝑥) ⇒ 𝑓 (𝑥) = 𝑔(𝑥) and

¬𝑝(𝑥) ⇒ 𝑓 (𝑥) = 𝑔(𝑥) and from this the goal 𝐺.
◦ MESON: no proof can be found (from any clause as a starting point).

Unclear (to me) whether/how extension to a complete calculus is possible that
preserves the goal-directed flavor of MESON.
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Problem Decomposition

Before applying MESON, a decomposition of the proof problem according to the
rules of the sequent calculus is performed.

Γ,Δ ⊢ 𝐴,Λ

Γ,¬𝐴,Δ ⊢ Λ (¬-L) 𝐴, Γ ⊢ Δ,Λ
Γ ⊢ Δ,¬𝐴,Λ (¬-R)

Γ, 𝐴, 𝐵,Δ ⊢ Λ
Γ, 𝐴 ∧ 𝐵,Δ ⊢ Λ (∧-L) Γ ⊢ Δ, 𝐴,Λ Γ ⊢ Δ, 𝐵,Λ

Γ ⊢ Δ, 𝐴 ∧ 𝐵,Λ
(∧-R)

Γ, 𝐴,Δ ⊢ Λ Γ, 𝐵,Δ ⊢ Λ
Γ, 𝐴 ∨ 𝐵,Δ ⊢ Λ (∨-L) Γ ⊢ Δ, 𝐴, 𝐵,Λ

Γ ⊢ Δ, 𝐴 ∨ 𝐵,Λ
(∨-R)

Γ,Δ ⊢ 𝐴,Λ Γ, 𝐵,Δ ⊢ Λ
Γ, 𝐴 ⇒ 𝐵,Δ ⊢ Λ (⇒-L) 𝐴, Γ ⊢ Δ, 𝐵,Λ

Γ ⊢ Δ, 𝐴 ⇒ 𝐵,Λ
(⇒-R)

Γ, 𝐴[𝑦/𝑥],Δ ⊢ Λ
Γ, (∃𝑥. 𝐴),Δ ⊢ Λ (∃-L)

Γ ⊢ Δ, 𝐴[𝑦/𝑥],Λ
Γ ⊢ Δ, (∀𝑥. 𝐴),Λ (∀-R)

Resulting formulas are either atomic or quantified.
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Problem Simplification and Knowledge Generation
In the presence of integer axioms, MESON proof search is only realistic up to depth 4 or so; thus
proof problems have to be considerably simplified before/in the decomposition stage.

• Reduce operations: >, ≥, ≠ are reduced to <, ≤, =.

• Inline explicitly defined constants/functions: application 𝑓 (𝑡) is replaced by 𝑠[𝑡].
• Insert axioms for implicitly defined functions: application 𝑓 (𝑡) yields knowledge 𝐹 [𝑡].
• Close the proof: apply axioms (Γ, 𝐴,Δ ⊢ Λ, 𝐴,Φ), (Γ,⊥,Δ ⊢ Λ), (Γ ⊢ Δ,⊤,Λ).
• Cleanup the proof: apply rules (Γ,⊤,Δ ⊢ Λ) → (Γ,Δ ⊢ Λ) and (Γ ⊢ Δ,⊥,Λ) → (Γ ⊢ Δ,Λ).
• Simplify formulas: apply (theory) knowledge to reduce (sub)formula to ⊤/⊥ and simplify result.

• Split arithmetic cases: replace (𝑡 < 𝑠 + 1) by (𝑡 < 𝑠 ∨ 𝑡 = 𝑠) and (𝑡 ≤ 𝑠 + 1) by (𝑡 ≤ 𝑠 ∨ 𝑡 = 𝑠 + 1).
• Reduce arithmetic cases: replace knowledge (𝑡 ≤ 𝑠) and ¬(𝑡 < 𝑠) by 𝑡 = 𝑠.

• Normalize arithmetic equalities/inequalities: e.g., 𝑎 − 𝑏 < 𝑎 − 𝑐 is transformed to 𝑐 < 𝑏.

• Simplify arithmetic inequalities: replace 𝑡 ≤ 𝑢 + 1 by 𝑡 < 𝑢.

• Generalize arithmetic non-equalities: extend knowledge 𝑡 < 𝑢 by ¬(𝑡 = 𝑢) and ¬(𝑢 = 𝑡).
• Apply arithmetic transitivity: extend, e.g., knowledge 𝑡 ≤ 𝑠 and 𝑠 < 𝑢 by 𝑡 < 𝑢.

Generate smaller problems with more knowledge; close simple problems. 17/19



Conclusions

What I (believe to) have learned so far. . .

• Pure first-order proving is comparatively simple (with the RISCTP implementation of
MESON all proofs from Harrison Chapter 3 can be quickly found).

• However, in the presence of integer arithmetic, the “backward” proof search of
MESON has to be complemented with “forward” proof decomposition, simplification,
knowledge generation to be effective.

• SMT solving can be indeed helpful to enable/speed up some proofs; however with
forward knowledge generation the direct use of integer rules is often competitive (at
least for simple problems).

• Equality reasoning is the hardest part; it depends on a tricky trade-off between
efficiency (reduce the space of applicability of rewriting rules) and reasoning strength
(preserve the important rewrites).

Many of the stated goal problems can now be solved, I hope to soon provide a
suitable release of RISCAL/RISCTP for my next semester’s course. 18/19
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