THE RISCTP SOFTWARE

Combining Multiple Proving Strategies

4

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz, Austria

JOHANNES KEPLER
Jzu UNIVERSITY LINZ E-{

RISCAL & RISCTP —

e RISCAL Language and Software

o Variant of FOL over finite domains of some size N.

o Rich variety of mathematical constructions and types.

o Fixed size N := ¢: model checking. -~

o Arbitrary size N € N: theorem proving.
e RISCTP Theorem Proving Interface @~ =

o Language with abstraction level lower than RISCAL. =
FOL with equality, integers, maps (arrays, sets), algebraic data types (tuples)
Interface to SMT-LIB based theorem provers (cvch, Vampire, Z3).
MESON prover for FOL with support for above theories.

= Construction and visualization of human-understandable proofs.

[}

o

(e)

https://www.risc. jku.at/research/formal/software/RISCAL
https://www.risc. jku.at/research/formal/software/RISCTP

119

https://www.risc.jku.at/research/formal/software/RISCAL
https://www.risc.jku.at/research/formal/software/RISCTP

The RISCTP Language

// problem file "arrays.txt"
const N:Nat; axiom posN & N > 0;
type Index = Nat with value < N;

type Value; type Elem = Tuple[Int,Value]; type Array = Map[Index,Elem];
fun key(e:Elem):Int = e.1;
pred sorted(a:Array,from:Index,to:Index) &

Vi:Index,j:Index. from < i A 1 < j A j < to = key(alil) < key(aljl);

theorem T &

Va:Array,from:Index,to:Index,x:Int.
from < to A sorted(a,from,to) =
let i = choose i:Index with from < i A i < to in
key(ali]) < x = -3j:Index. from < j A j < i A key(aljl) = x;

2/19

Baseline Goal

Automatically generate “reasonably understandable” proofs for the verification
conditions generated by RISCAL for programs that operate on arrays.

e Minimum/maximum element and position.

Summation.

Linear and binary search.

Sorting.

Typical problems presented in my “Formal Methods” course; now handled in
RISCAL by checking finite models via state space enumeration or SMT solving
and in RISCTP by applying external SMT-based provers as “black boxes”.

3/19

The Processing Pipeline

! Language Reduction

! Language Reduction
‘ First-Order Logic ‘

l Problem Decomposition/Simplification/Knowledge Generation
| Sequent Problems|

! Clause Generation

\ Clause Problems \

! mEsoN < SMTSoing i ia: Resolution)
< Equality Handling

This presentation focuses on the relationship of MESON, SMT solving, equality

handling, and problem decomposition/simplification/knowledge generation.
4/19

The Core: A MESON Prover

MESON: Model Elimination, Subgoal-Oriented.

e Judgment Rs +2 G: (A(Rs U Ls) = G)o is valid.

o Set Rs of “rules (Vx..)(A1A...ANAG=>B1V...VBp) [=(¥x..)(L1 V...V Lgp)]-

= Atoms A;, B;, positive or negative atoms (literals) L
o “Goal’ G = (Ax...)(G1 A ... AGyg) with literals G;.
o Set Ls of literals, variable substitution o .

Le Ls G1o and Lo have mgu o
RstLs (Gan...AGy)
(AX)

RstLs T Rst+Ls (Gi AGa A ... AGgs1)

(ASS)

R:=(L1V...VLiV...VLawp)€F LioogandG;o have mgu o1
o is a bijective renaming of the variables in Ro such that Ro o and G o- have no common variables

.)
Rs r;;’(ﬁ?,}} (LiA-o ALt ALt Ao ALgyp) Rs iy o (G2 A...AGg)

(MESON)
RstLls G:=(GiAGaA...ANGgx1)

A generalization of Prolog-like “backward chaining” to full first-order logic. 51

Proof Search

An implementation of the calculus (implicitly) constructs a proof tree (below the
special case of Prolog-like Horn clauses is depicted):

=+ (T=B) Bl (T = B2) Dl (T=D1) Dl (T= Ds) Fl (T F) & (T=)

o Bi=A) 2 (B2 A2) & D1=C) & (D2=C) = (Fi=E1) = (F2= Es)

2 0 0 0 o2 (A1 /\A2:>G1) = =2 (CI/\C2:>G1) 2 (El /\E2:>G1)
G Go Gs

G1 AG2 AG3
e Solving substitution o: determined during the construction of the tree.
o Starting with o = 0, rule (MESON) chooses for every node some rule and extends o.
e Completeness of the proof search.
o All possible rule choices have to be considered; this requires a suitable organization of
the construction process.
o All clauses arising from the theorem to be proved have to be attempted (but not the
clauses arising from theory axioms provided that they are satisfiable).

An intuitively understandable strategy.
6/19

A Note on Proofs by Cases
Rs={pvg,p=>r,q=>r} G:=r

o Natural style reasoning: we have p v q.

o Incase of p, (p = r) implies r.

o Incase of g, (¢ = r) implies r.
e MESON pursues goal sequence r — p — —~g — -r.
(ASS)
(g=r)
(pVaq)
(p=r)

Rs rlororal o
Rs virort oy
o The case condition (p Vv g) “inverts” the proof direction.

MESON cannot apply “case distinction” (the sequent calculus “cut rule”) to split

proof situations (a “deficiency” mitigated a bit by some measures shown later).
7119

Theories: SMT Solving

Especially consider theory symbols, i.e., symbols with “fixed” interpretation.

(A(Rs) A A(Ls)o A =Gy o) is unsatisfiable Rs +L* (Ga A ... A Gyg)

Ls (SMT)
Rst+5 G = (Gl/\Gz/\.../\Gg)

e (A(Rs) A N(Ls)o A =G1o) is unsatisfiable:
o Consider only unquantified (variable-free) clauses from Rs.
o Replace variables in A(Ls)o A =G0 by constants.
o Result is a quantifier-free closed formula.
e RISCTP option “SMT”:
o Apply an external SMT solver (cvc5h, Z3).
o Unrestricted application slows down proof search substantially.
o However, when applied up to depth 2 only, many proofs are sped up.

Still an explicit axiomatization of theories is needed to expose proof situations

where a goal (G1) follows from facts (Rs) and collected assumptions (Ls).
8/19

Axiomatization of Theories

e Maps/Arrays
Vai,az. (Vi. a1[i] = a2[i]) = a1 = as
Va,i.e.ali— e]li] =e
Ya,i,j,e.i# j=ali— e][j]=alj]

e Tuples
VX1, %2, Y1, 2. (X1,%2) = (y1,¥2) = X1 = X2 A y1 = y2
Vx1,x9. {(x1,x2).1 =x1
Vx1,x2. {(x1,Xx2).2 = x2
Vt,x1. (twith .1 =x1).1=x1
Vt,xg. (t with .2 =x2).2 =x29

e Algebraic Data Types
o Axiomatization of constructor, selecter, tester operations. ..
¢ Integers
o A (necessarily incomplete) axiomatization of the integer operations. ..

9/19

Axiomatization of Integers

axiom ’trans<’ & Vx:Int,y:Int,z:Int. x <y Ay <z = x < z;

axiom ’0+1’ & 0+1 = 1; axiom ’trans<’ & Vx:Int,y:Int,z:Int. x < y Ay <z = x < z;
axiom ’1+0’ & 1+0 = 1; axiom ’transl<’ & Vx:Int,y:Int,z:Int. x < y Ay <z = x < z;
axiom ’+-1° & Vx:Int. (x+1)-1 = x; axiom ’trans2<’ & Vx:Int,y:Int,z:Int. x<yAy<z=zx<z;
axiom ’-+1’ & Vx:Int. (x-1)+1 = x; axiom ’trich’ & Vx:Int,y:Int. x <y Vy <x V ’=2(x,y) {*} ;
axiom ’comm+’ < Vx:Int,y:Int. x+y = y+x; axiom ’partl’ & Vx:Int,y:Int. x <y Vy < x;
axiom ’assoc+’ & Vx:Int,y:Int,z:Int. x+(y+z) = (x+y)+z; axiom ’part2’ & Vx:Int,y:Int. -(x <y Ay < x);
axiom ’neut+’ & Vx:Int. x+0 = x; axiom ’def1<’ & Vx:Int,y:Int. x <y Vx=y =>x <y ;
axiom ’inv+’ & Vx:Int. x-x = 0; axiom ’def2<’ & Vx:Int,y:Int. x <y = x <y V ’=2(x,y) {*} ;
axiom ’def-’ & Vx:Int,y:Int. x-y = x+(-y); axiom ’excl<’ & Vx:Int,y:Int. = (x <y A x = y);
axiom ’inv-’ & Vx:Int. -(-x) = x; axiom ’excl2<’ & Vx:Int,y:Int. = (y < x A x =y);
axiom ’distrib-’ & Vx:Int,y:Int. -(x+y) = (-x)+(-y); axiom ’+-1<’ & Vx:Int,y:Int. ’<(x,y7){*} = =(y < x+1) A =(y-1 < x);
axiom ’+1<’ & Vx:Int,y:Int. x <y & x+1 < y;
axiom ’div2a’ < Vx:Int,y:Int. let z = (x+y)/2 in x < y = axiom ’+1<’ & Vx:Int,y:Int. x < y & x < y+1 ;
C=Exy) (K} ANz=xAz=y) VEG<yAx<zAz<y); axiom ’-1<’ & Vx:Int,y:Int. x <y & x < y-1;
axiom ’div2b’ & Vx:Int,y:Int. let z = (x+y)/2 in axiom ’-1<’ & Vx:Int,y:Int. x < y & x-1 < y;
x<y=>x<zAz<y; axiom ’x-1<x’ & Vx:Int. x-1 < x;
axiom ’x<x+1’ & Vx:Int. x < x+1;
axiom ’preserve<+l’ & Vx:Int,y:Int,z:Int. x <y = x+tz < y+z; axiom ’<0’ & Vx:Int. 0 < x = -x < 0;
axiom ’preserve<+2’ & Vx:Int,y:Int,z:Int. x < y = z+x < z+y; axiom ’<0’ & Vx:Int. 0 < x = -x < 03

axiom ’preserve<+1’ & Vx:Int,y:Int,z:Int. x < y = x+z < y+z; axiom ’x<y’ & Vx:Int,y:Int. x < y = 0 < y-x;
axiom ’preserve<+2’ & Vx:Int,y:Int,z:Int. x < y = z+x < z+y; axiom ’x<y’ & Vx:Int,y:Int. x <y = 0 < y-x;

axiom ’preserve<-’ & Vx:Int,y:Int,z:Int. x <y = z-y < z-Xx; axiom ’0<0’ & 0 < 0;

axiom ’preserve<-’ & Vx:Int,y:Int,z:Int. x < y = z-y < z-x; axiom ’0<1’ & 0 < 1;

axiom ’add<’ & Vx:Int,y:Int. 0 <y = x < x+y; axiom ’-1<0’ & -1 < 0;

axiom ’add<’ & Vx:Int,y:Int. 0 < y = x < x+y; axiom ’irrefl<’ & Vx:Int. —(x < x);

axiom ’refl<’ & Vx:Int. x < x; 10/19

Preventing Literals as Proof Targets

Clause A1 A Ay = By V Bs.

e Syntactic sugar for an “undirected” disjunction:
-A1V-A2V B1V By
o Each atom becomes target of a proof rule:
As AN=B1 A=By; = =A;
A1 A=Bi A=By = =Ay
A1 N As A =Bs = B
A1 NAs A =By = B
o May lead to proof attempts that are unlikely to succeed.

o Clause A;{x} A A2{*} = By V Bo{*} with atoms marked as “non-goals” {x}.
o Only proof rule: A} A A3 A =B2 = By

axiom ’trich’ & Vx:Int,y:Int. x <y V y <x V ’=2(x,y) {*} ;

Without this, the proof search space may explode. 11/19

Equality: Paramodulation-Style Rewriting

A natural adaptation of rule (MESON).

R:=(Li1V...V(=r)V...VL4wp) €F toogandlo have mgu o

oy is a bijective renaming of the variables in C o such that C o-0y and G o- have no common variables
Rs v G (T0 A AL IALii A-..ALgsp) Rstks (Gi[r]AG2 A...NGg)

oopo1 gop01

RstEs G = (Gi[t]AGaA...AGgz1)

(PARA)

L[t]: literal L with subterm .

Search space explodes; application of the rule has to be appropriately limited.

12/19

Rewriting Control

e Avoid rewrite cycles: if #1 has been rewritten to 2, do not rewrite ¢ to #1 in same proof branch.
Do not apply non-goals: ignore equalities marked as {x}.
Restrict rewrite positions: only consider term positions in uninstantiated literal G; (notin G;o).
Prohibit variable rewrites: do not rewrite variable x to some term .
Direct equations: do not apply / = r if r > [for a variant of lexicographic path order:
o lewar(ryandl #r.
or=f(r,...,rmyandl=g(l,...,1l,)and
= r; > [for some i, or
m f>gandr>I;forall j, or
m f=gandr>I[;forall jand (r1,...,7m) >lex (I1,--..1n).
o We consider f > g iff f was declared in the theory later than g.
o Variant: r > f(t) if ¢ is of an algebraic data type and f is a selector of that type.

Various settings: “Off” (no rewriting), “Min” (rewriting with all restrictions, the
default), “Med” (also consider non-goals, do not restrict rewrite positions), “High”

(also allow variable rewrites), “Max” (also do not direct equations).
13/19

More Equality Rules

Actually RISCTP also implements the following rules.

to = Rstbs G x¢sup(o) x#t Rs I—LSXH o
727 T 7 (EQAX) o7l — (eQsuBsT)
Rsl—g.s(t:s')/\G Rsl—é’.s(x:t)/\G

to#so Rsvk (1=5)AG (FEQ)

Rs+ls f(rr, .oty tn) = f(t1, ooy Senastn) AG)
=(t:Int) R:=(L1V...VGi[s|V...VLgyp)€F to#so
Rsl—g.SU{Gl}(L_l/\.../\Li_l/\Li+1/\.../\La+b/\(s:t)) RSP-‘I;.S (GQ/\.../\Gg)

Rs+Ls (G1[1]AG2 A ... AGgs1)

(EQ)

t:int R:=(L1V...VG{[s|V...VLyp)€EF to#+so
Rs v EC (TN AL AT A e ALgip A(s 1) A=(s <1)) Rs+h (GaA...AGyg)

Rs L (G1[1] AGa A...AGgz1)

(LEQ)

The application of rule (LEQ) leads in the subsequent proof to a “goal split” based
on the relative order of the values of integer terms r and s. 14/19

Completeness of Equality Reasoning

Does all of this make the equality reasoning complete?

e Resolution: paramodulation is complete.
o Provided that we add the reflexivity axiom x = x and one function reflexivity
axiom f(xy,...,xn) = f(x1,...,x,) for every function symbol f.
e MESON: paramodulation-style rewriting is incomplete.
o Rs:={p(x) = f(x) =c,p(x) = g(x) =c,~px) = f(x) =d,~p(x) = g(x) =d},
G = f(x) =g(x)
o Resolution: can derive from Rs the knowledge p(x) = f(x) = g(x) and
-p(x) = f(x) = g(x) and from this the goal G.
o MESON: no proof can be found (from any clause as a starting point).

Unclear (to me) whether/how extension to a complete calculus is possible that
preserves the goal-directed flavor of MESON.

15/19

Problem Decomposition

Before applying MESON, a decomposition of the proof problem according to the

rules of the sequent calculus is performed.

I'AFAA
I-A, A+ A
IA,B,A+ A
T,ANBAFA
IAJLAFA T,B,A+A
I'AVB,A+A
IAFAA T,B,ArA
A= B,A+rA
ILA[y/x],AFA
I,(3x. A),A+r A

(=L

(A-D)

(v-b)

(=)

(3L

't AJAJLA T+ABA

AT HAA

TrA -AA (=R

I'tA,AANB,A

T'rA A= BA

(A-R)

I'cA A B, A
I'tA,AV B, A
A,T'FA B A

(V-R)

(=-R)

kA Aly/x],A

TFA, (Vx. A),A (V-R)

Resulting formulas are either atomic or quantified.

16/19

Problem Simplification and Knowledge Generation

In the presence of integer axioms, MESON proof search is only realistic up to depth 4 or so; thus
proof problems have to be considerably simplified before/in the decomposition stage.

Generate smaller problems with more knowledge; close simple problems.

Reduce operations: >, >, # are reduced to <, <, =.

Inline explicitly defined constants/functions: application f(¢) is replaced by sz].

Insert axioms for implicitly defined functions: application f(z) yields knowledge F|[¢].

Close the proof: apply axioms (I', A,A+ A, A, @), (T, L,A+A), (THAT,A).

Cleanup the proof: apply rules (I, T,A+ A) - (I',Ar A)yand (T + A, L,A) = (T'+ A, A).
Simplify formulas: apply (theory) knowledge to reduce (sub)formula to T/L and simplify result.
Split arithmetic cases: replace (t < s+1)by (t <svi=s)yand (t <s+1)by (t <sVvi=s+1).
Reduce arithmetic cases: replace knowledge (r < s) and —=(z < s) by 7 = s.

Normalize arithmetic equalities/inequalities: e.g., a — b < a — c is transformed to ¢ < b.
Simplify arithmetic inequalities: replace t < u+1by ¢ < u.

Generalize arithmetic non-equalities: extend knowledge ¢ < u by —(r = u) and —(u = 1).

Apply arithmetic transitivity: extend, e.g., knowledge r < sand s <u by ¢ < u.
17/19

Conclusions

What | (believe to) have learned so far. ..

e Pure first-order proving is comparatively simple (with the RISCTP implementation of
MESON all proofs from Harrison Chapter 3 can be quickly found).

e However, in the presence of integer arithmetic, the “backward” proof search of
MESON has to be complemented with “forward” proof decomposition, simplification,
knowledge generation to be effective.

e SMT solving can be indeed helpful to enable/speed up some proofs; however with
forward knowledge generation the direct use of integer rules is often competitive (at
least for simple problems).

e Equality reasoning is the hardest part; it depends on a tricky trade-off between
efficiency (reduce the space of applicability of rewriting rules) and reasoning strength
(preserve the important rewrites).

Many of the stated goal problems can now be solved, | hope to soon provide a
suitable release of RISCAL/RISCTP for my next semester’s course. 18/19

Demo

19/19

