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Problem statement

(Proximity-based) Matching

Given:

▶ a proximity relation R
▶ a cut value λ

▶ two terms t and s

Find: all (R, λ)-matchers of t to s, i.e. substitutions σ such that
R(tσ, s) ≥ λ.

For computing proximity degrees of terms, T-Norms are used.
R(f (t1, . . . , tn), g(s1, . . . , sn)) =
R(f , g)⊗R(t1, s1)⊗ . . .⊗R(tn, sn)
State of the art: Proximity-based matching algorithms for
t ⊗ s = min(t, s) (Gödel- or Minimum-T-Norm)
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Problem statement

Why are general T-Norms so different to the Minimum-Norm?

Example

L R = {a ≈0.8 c ≈0.8 b, a ≈0.9 d ≈0.9 b}, we match
f (x , y) ⪯ f (a, b) with 0.75 = λ-cut.
We can see that x 7→ c matches a with proximity degree 0.8 and
y 7→ d matches b with proximity degree 0.9. In the case of the
Minimum-T-Norm, these two can be viewed independently from
each other. With general T-Norms, both substitutions depend on
each other.



Inference system M

A set of rewrite rules that works on tuples of the form M;S ;D.

▶ M := {t ⪯δ s} (matching problems)

▶ S := {x ≈ r} (variable constraints)

▶ D ≥ λ (constraint factor)
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▶ M := {t ⪯δ s} (matching problems)

▶ S := {x ≈ r} (variable constraints)

▶ D ≥ λ (constraint factor)

M; ∅; 1 =⇒+ ∅;S ;D, where
S and D form constraints which are met by substitutions iff they
are a (R, λ)-matcher of the original problem.
Thus, constraint solving is also part of the algorithm.

Alternatively: M; ∅; 1 =⇒+ ⊥ if unsatisfiability is detected early
on.



Inference system M

A set of rewrite rules that works on tuples of the form M;S ;D.

▶ M := {t ⪯δ s} (matching problems)

▶ S := {x ≈ r} (variable constraints)

▶ D ≥ λ (constraint factor)

M; ∅; 1 =⇒+ ∅;S ;D, where
S and D form constraints which are met by substitutions iff they
are a (R, λ)-matcher of the original problem.
Thus, constraint solving is also part of the algorithm.

Alternatively: M; ∅; 1 =⇒+ ⊥ if unsatisfiability is detected early
on.



Inference system M

A set of rewrite rules that works on tuples of the form M;S ;D.

▶ M := {t ⪯δ s} (matching problems)

▶ S := {x ≈ r} (variable constraints)

▶ D ≥ λ (constraint factor)

r denotes a graded set of terms, i.e. {(r , αr ) | r ∈ T ∧ αr ∈ [0, 1]}.

If r is a proximity class pcR,δ(r
′) of a term r , then it equals

{(r , αr ) | αr = R(r , r ′) ≥ δ}.

The intersection of such sets is defined as pcR,δ1(t) ⊓ pcR,δ2(s) :=
{(r , αr ) | ∃(p,αp)∈pcR,δ1

(t)

(q,αq)∈pcR,δ2
(s)

: p = q = r ∧ αr = αp ⊗αq}
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Rules

Decomposition

{f (t1, . . . , tn) ⪯δ g(s1, . . . , sn)} ⊎M;S ;D =⇒
M ∪ {ti ⪯δi si | 1 ≤ i ≤ n}; S ;D ⊗R(f , g),

if R(f , g) ≥ λ.

Dec-Clash

{f (t1, . . . , tn) ⪯δ g(s1, . . . , sm)} ⊎M;S ;D =⇒ ⊥

if n ̸= m or R(f , g) < λ

Solve

{x ⪯δ t} ⊎M;S ;D =⇒ M;S ∪ {x ≈ pcR,δ(t)};D

Merge

M;S ⊎ {x ≈ t, x ≈ s};D =⇒ M; S ∪ {x ≈ t ⊓ s};D
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Rules: Remarks

Early failure detection
The Clash rule for the case R(f , g) < λ during Decomposition,
which allows us to stop the algorithm prematurely, is not needed
for proving correctness, because the failure would be detected
during constraint solving anyway.
However, it is important for efficiency.

There are other cases where the inference rules can be refined.

Merging: Also the Merge rule is technically not necessary, since it
is only a different way of stating how close x has to be to which
terms.
It helps however in avoiding blowups in term and set
representation.
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Termination
Termination of a rule-based system can be shown by

▶ defining a well-founded ordering on the expressions the system
operates on, and

▶ proving that each rule strictly decreases the ordering.

Definition
With

▶ size(t): the number of symbols in a term t,

▶ size(M) :=
∑

t⪯s∈M
(size(t) + size(s)),

▶ |S | is the cardinality of S , i.e. the number of equations of the
form x ≈ r,

the ordering ▷ for our systems is defined as:

M;S ;D ▷M ′;S ′;D ′ iff size(M) + |S |> size(M ′) + |S ′|
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Termination

The ordering ▷ is obviously well-founded.

For each rule performing M; S ;D =⇒ M ′;S ′;D ′, we have
M;S ;D ▷M ′; S ′;D ′ because

▶ Decomposition reduces the size of M without affecting S ,

▶ Solve increases |S | by one, but decreases the size of M by at
least two,

▶ Merge decreases |S | without affecting M.



Example

We solve {f (x , x) ⪯ g(f (a, b), h(c , d))} with λ = 0.3 and R :=

▶ {f ≈0.9 g , g ≈0.8 h, h ≈0.25 f }∪
▶ {a ≈0.95 b, b ≈0.75 c, c ≈0.85 d , d ≈0.82 a}

Steps:

{f (x , x) ⪯δ g(f (a, b), h(c, d))}; ∅; 1 =⇒DEC

{x ⪯δ1 f (a, b), x ⪯δ2 h(c , d)}; ∅; 1⊗R(f , g) =⇒SOL

{x ⪯δ2 h(c , d)}; {x ≈ pcR,δ1(f (a, b))}; 1⊗R(f , g) =⇒SOL

∅; {x ≈ pcR,δ1(f (a, b)), x ≈ pcR,δ2(h(c , d))};
1⊗R(f , g) =⇒MER

∅; {x ≈ pcR,δ1(f (a, b)) ⊓ pcR,δ2(h(c , d))};
1⊗R(f , g)



Defining solutions

Definition
A substitution σ is an (R, λ)-matcher of M;S ;D iff the following
conditions hold:

1. σ is an (R, λ)-matcher of M under D and S , i.e.⊗
t⪯s∈M

R(tσ, s)
⊗

x≈rδ∈S
δ⊗D ≥ λ

2. for all (x ≈ rδ) ∈ S , we have
∨

(r ,αr )∈rδ
(xσ = r) ∧ (αr = δ)

This definition coincides for the initial step M; ∅; 1 with the
definition of a matcher of the original problem.
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Defining solutions

Lemma
If M1; S1;D1 =⇒ M2;S2;D2 is a step of the generalized matching
algorithm, then σ is a matcher of M1; S1;D1 iff it is a matcher of
M2; S2;D2.

Proof. A step of the algorithm is an application of one of the rules,
thus it has to hold for each individually.

▶ Dec: S1 = S2. Let w.l.o.g.
M1 = t := f (t1, . . . , tn) ⪯ s := g(s1, . . . , sn), thus
M2 = {t1 ⪯ s1, . . . , tn ⪯ sn}.

Since D2 = D1⊗R(f , g), we get
D1⊗R(tσ, s) ≥ λ ⇐⇒ D2⊗

⊗
1≤i≤n

R(tiσ, si ) ≥ λ.
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algorithm, then σ is a matcher of M1; S1;D1 iff it is a matcher of
M2; S2;D2.

Proof. A step of the algorithm is an application of one of the rules,
thus it has to hold for each individually.

▶ Sol: D2 = D1 and let M1 := {x ⪯δ t} and S1 := ∅. Now
S2 = {x ≈ pcR,δ(t)} implies for a matcher σ that ∃(r ,α) with
α = R(xσ = r , t) = δ and thus

D1⊗R(xσ, t) ≥ λ ⇐⇒ D2⊗ δ ≥ λ.



Defining solutions

Lemma
If M1; S1;D1 =⇒ M2;S2;D2 is a step of the generalized matching
algorithm, then σ is a matcher of M1; S1;D1 iff it is a matcher of
M2; S2;D2.

Proof. A step of the algorithm is an application of one of the rules,
thus it has to hold for each individually.

▶ Mer: M1 = M2, D1 = D2. The rest follows from the definition
of the intersection ⊓.



Soundness and Completeness

If M on input t ⪯ s, λ and R terminates on ∅;S ;D, then by
induction on the length of a derivation {t ⪯ s}; ∅; 1 =⇒+ ∅; S ;D,
we can conclude that if the constraints

⊗
x≈rδ∈S

δ⊗D ≥ λ and∨
(r ,αr )∈rδ

αr = δ for all (x ≈ rδ) ∈ S are satisfiable for some set of δ,

then any substitution σ that satisfies
⊗

x≈rδ∈S
δ⊗D ≥ λ and∨

(r ,αr )∈rδ
(xσ = r) ∧ (αr = δ) for all (x ≈ rδ) ∈ S is an

(R, λ)-matcher of t to s.

Thus, it suffices to solve the set of constraints⋃
(x≈rδ)∈S

{
∨

(r ,αr )∈rδ
αr = δ} ∪ {

⊗
x≈rδ∈S

δ⊗D ≥ λ}

and then obtaining the proximity degrees and respective classes
from the equations in S .



Soundness and Completeness

If M on input t ⪯ s, λ and R terminates on ∅;S ;D, then by
induction on the length of a derivation {t ⪯ s}; ∅; 1 =⇒+ ∅; S ;D,
we can conclude that if the constraints

⊗
x≈rδ∈S

δ⊗D ≥ λ and∨
(r ,αr )∈rδ

αr = δ for all (x ≈ rδ) ∈ S are satisfiable for some set of δ,

then any substitution σ that satisfies
⊗

x≈rδ∈S
δ⊗D ≥ λ and∨

(r ,αr )∈rδ
(xσ = r) ∧ (αr = δ) for all (x ≈ rδ) ∈ S is an

(R, λ)-matcher of t to s.

Thus, it suffices to solve the set of constraints⋃
(x≈rδ)∈S

{
∨

(r ,αr )∈rδ
αr = δ} ∪ {

⊗
x≈rδ∈S

δ⊗D ≥ λ}

and then obtaining the proximity degrees and respective classes
from the equations in S .



Obtaining Solutions

Taking the example from above with output
∅; {x ≈ pcR,δ1(f (a, b)) ⊓ pcR,δ2(h(c , d))};R(f , g), constraints are
now obtained by conjuncting:

▶ λ ≤ 1⊗R(f , g)⊗ δ1⊗ δ2

▶
∨

(r ,αr )∈pcR,δ1
(f (a,b))⊓pcR,δ2

(h(c,d))

αr = δ1⊗ δ2
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If we expand this, it looks like:

λ ≤ R(f , g)⊗ δ1⊗ δ2 ∧ (

δ1⊗ δ2 = R(g(b, c), f (a, b))⊗R(g(b, c), h(c , d))∨
δ1⊗ δ2 = R(h(d , a), f (a, b))⊗R(h(d , a), h(c , d))∨
δ1⊗ δ2 = R(f (b, d), f (a, b))⊗R(f (b, d), h(c , d))∨
. . .

)

If we had more variables, we would have more clauses.



Obtaining Solutions

Taking the example from above with output
∅; {x ≈ pcR,δ1(f (a, b)) ⊓ pcR,δ2(h(c , d))};R(f , g), constraints are
now obtained by conjuncting:

▶ λ ≤ 1⊗R(f , g)⊗ δ1⊗ δ2

▶
∨

(r ,αr )∈pcR,δ1
(f (a,b))⊓pcR,δ2

(h(c,d))

αr = δ1⊗ δ2

If we expand this, it looks like:

λ ≤ R(f , g)⊗ δ1⊗ δ2 ∧ (

δ1⊗ δ2 = R(g(b, c), f (a, b))⊗R(g(b, c), h(c , d))∨
δ1⊗ δ2 = R(h(d , a), f (a, b))⊗R(h(d , a), h(c , d))∨
δ1⊗ δ2 = R(f (b, d), f (a, b))⊗R(f (b, d), h(c , d))∨
. . .

)

If we had more variables, we would have more clauses.



Obtaining Solutions

With our values λ = 0.3 and R :=

▶ {f ≈0.9 g , g ≈0.8 h, h ≈0.25 f }∪
▶ {a ≈0.95 b, b ≈0.75 c, c ≈0.85 d , d ≈0.82 a},

plugged in, we get:

0.3 ≤ 0.9⊗ δ1⊗ δ2 ∧ (

δ1⊗ δ2 = 0.9⊗ 0.95⊗ 0.75⊗ 0.8⊗ 0.75⊗ 0.85∨
δ1⊗ δ2 = 0.25⊗ 0.82⊗ 0.95⊗ 0.8⊗ 0.85⊗ 0.82∨
δ1⊗ δ2 = 1⊗ 0.95⊗ 0⊗ 0.25⊗ 0.75⊗ 1∨
. . .

)



Compact representation

How does an expression like pcR,δ1(f (a, b)) ⊓ pcR,δ2(h(c, d)) look
like?



Compact representation

How does an expression like pcR,δ1(f (a, b)) ⊓ pcR,δ2(h(c, d)) look
like?

First the individual proximity classes:
pcR,δ1(f (a, b)) =
{(f (a, b), 1), (g(a, b), 0.9), . . . , (g(b, c), 0.9⊗ 0.95⊗ 0.75),
. . . , (h(c , d), 0.25⊗ 0⊗ 0)}

in compact representation: {{(f , 1), (g , 0.9), (h, 0.25)}
({(a, 1), (b, 0.95), (c , 0), (d , 0.82)}, {(a, 0.95), (b, 1), (c , 0.75), (d , 0)})}



Compact representation

How does an expression like pcR,δ1(f (a, b)) ⊓ pcR,δ2(h(c, d)) look
like?

pcR,δ1(h(c , d)) =
{(h(c , d), 1), (g(c , d), 0.8), . . . , g(b, c), 0.8⊗ 0.75⊗ 0.85),
. . . , (h(c , d), 1⊗ 0⊗ 0)}

in compact representation: {{(f , 0.25), (g , 0.8), (h, 1)}
({(a, 0), (b, 0.75), (c , 1), (d , 0.85)}, {(a, 0.82), (b, 0), (c , 0.85), (d , 1)})}



Compact representation

How does an expression like pcR,δ1(f (a, b)) ⊓ pcR,δ2(h(c, d)) look
like?

{pcR,δ1(f (a, b)) ⊓ pcR,δ2(h(c , d))} =
{{(f , 0.25⊗ 1), (g , 0.9⊗ 0.8), (h, 0.25⊗ 1)}(. . .)}



Compact Representation: Degree constraints

Degree constraints

If a variable x has to be matched to n different terms t1, . . . , tn
with |Pos(ti )|= k , then without a compact representation, then for
every variable, we get an exponential blowup in k of the number of
disjunctions. If we use compact representation, this gets reduced
to around k disjunctions nested in conjunctions. The exact number
depends on the cardinality of R in each arity.

Representation: Correctness

If we use compact representation, then we have to reformulate
x ≈ u to x ≈ τ(u) where τ(u) = {(t, α) ∈ T × [0, 1] |
Pos(u) = Pos(t)∧ ∀p∈Pos(u)(∃(s,β)∈u|

p

s = t|p ∧ β = α)}, as in, the
set of terms spanned by the compact representation.


