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Quantitative Equational Reasoning
@®00000

(Quantitative) Equational Theories

Fix a signature F and a set of variables X.

o “Classical” setting:
Equations s ~ t between terms s, t € T(F, X).
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(Quantitative) Equational Theories

Fix a signature F and a set of variables X.
o “Classical” setting:
Equations s ~ t between terms s, t € T(F, X).
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Quantitative Equational Reasoning
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(Quantitative) Equational Theories

Fix a signature F and a set of variables X.
o “Classical” setting:
Equations s ~ t between terms s, t € T(F, X).
o Equations can be true or false (modulo a given theory E): either

S~ t,or s FEgt.
o =~ is reflexive, transitive, symmetric, stable under substitutions and

compatible with F-operations
@ Quantitative setting:

Similarity /proximity rather than strict equality!
~~ Equip equations s & t with some element ¢ that measures the

“degree to which they hold true”.
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Quantitative Equational Reasoning
0e0000

Quantitative Equational Theories

Denote such equations by € IF s =~ t.

@ Fuzzy reasoning:
¢ € [0,1] (~probability that s and t are equal).

“Transitivity”: el-t &~ s,0IF s~ r = min(g,d) IFt = r
“Weakening": e > 0§, clFtxs=0lFt =~ s.
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Quantitative Equational Theories

Denote such equations by € IF s =~ t.

@ Fuzzy reasoning:
¢ € [0,1] (~probability that s and t are equal).

“Transitivity”: el-t &~ s,0IF s~ r = min(g,d) IFt = r
“Weakening": e > 0§, clFtxs=0lFt =~ s.

o Quantitative equational theories (Mardare, Panangaden, and Plotkin
2016):

e € [0, 00] (~ “distance” between s and t).

“Transitivity”: elFt~s,0lFs~r=—c¢+dlFt~r
“Weakening": e < J,clFtxrs=0lFt~s.
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Quantitative Equational Reasoning
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Quantitative Equational Theories

Denote such equations by € IF s =~ t.

@ Fuzzy reasoning:
¢ € [0,1] (~probability that s and t are equal).

“Transitivity”: el-t &~ s,0IF s~ r = min(g,d) IFt = r
“Weakening": e > 0§, clFtxs=0lFt =~ s.

o Quantitative equational theories (Mardare, Panangaden, and Plotkin
2016):

e € [0, 00] (~ “distance” between s and t).

“Transitivity”: elFt~s,0lFs~r=—c¢+dlFt~r
“Weakening": e < J,clFtxrs=0lFt~s.

Two main requirements for the degrees:
It should be possible to combine and compare them.
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Quantitative Equational Reasoning
[o]e] lele]e]

Quantales

Definition (Quantale)
Quantale: = (Q, 3, ®, k) such that
o (Q,3) is a complete lattice (poset where every subset has a
supremum and infimum, denoted V and A)

o (2,®, k) is a monoid

satisfying the following distributivity laws:

5® (\/ s,-) =V ®e), (\/s;) ®6=\/(ci®9).

i€l iel iel icl
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Quantitative Equational Reasoning
[o]e] lele]e]

Quantales

Definition (Quantale)
Quantale: = (Q, 3, ®, k) such that
o (Q,3) is a complete lattice (poset where every subset has a
supremum and infimum, denoted V and A)

e (Q,®,k) is a monoid

satisfying the following distributivity laws:

5@ (\/ g,-> =V ®e), (\/s;) ®6=\/(ci®9).

i€l iel iel icl

o | =([0,1], <, min, 1) “fuzzy quantale”
e L =([0,00],>,+,0) “Lawvere quantale”
e 2=({0,1},<,-,1) "Boolean quantale”

A
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Quantitative Equational Reasoning
[e]e]e] le]e]

Assume that we are working with Lawvereian quantales.

A quantale = (Q,3,®,k) is called Lawvereian if
@ ® is commutative
o isintegrall k=TT
@ s co-integral: if e ® § = L, then either e = 1 or § = L (where L
is the bottom element)

@ is non-trivial: kK # L

A
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Quantitative Equational Reasoning
[e]e]e] le]e]

Assume that we are working with Lawvereian quantales.
A quantale = (Q,3,®,k) is called Lawvereian if
@ ® is commutative
o isintegrall k=TT

@ s co-integral: if e ® § = L, then either e = 1 or § = L (where L
is the bottom element)

@ is non-trivial: kK # L

A

For ,6 € Q, there exists an element £ — ¢ (called adjoint), which has
the following property:

ERNIO < n33e—0.

It can be computed as ¢ — 6 = \/{n | e ®@n 3 J}.
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Quantitative Equational Reasoning
0000e0

Inference rules for quantitative equational logic (Gavazzo

and Di Florio 2023)

celbt=gs e . elbt=gs 6lFs=r
N Fi=rs FVaFi=rt "™ T CeoFi=gr
ei1lFti=gs1 -+ e,lFt,=Es, elb-t=fs
(NExp) (Sym) —/———
E1Q--QenlFf(ty,...,t,) =€ f(s1,...,5n) elbs=gt
ond elbt=gs 6Z¢ b celFt=s
(Ord) 0lFt=s (USt)sll—to:Esa
Vo<edlFt=s ei1lbt=gs -+ eplk-t=fs
(Arch) (Join)
elFt=¢s

e1V---Ve,lkt=s
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Quantitative Equational Reasoning
00000e

The examples mentioned before are recovered as special cases of
quantitative equational theories by fixing the quantale
o =2=({0,1},<,-,1): Classical equational reasoning (read
1l smgtassmgt)
o =1=([0,1],<, min,1): Fuzzy reasoning
o =L=(0,00],>,+,0):
quantitative algebraic theories in the sense of Mardare, Panangaden,
and Plotkin 2016 (with slightly modified (NExp) rule)
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Unification Problems

®0000

Unification Problems

Let s,t € T(F, X) be terms, E a set of equations.

(Classical) Unification problem: s& Lt

Find a substitution o such that so =g to.
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Unification Problems

®0000

Unification Problems

Let s,t € T(F, X) be terms, E a set of equations.

(Classical) Unification problem: s& Lt

Find a substitution o such that so =g to.

E={f(x,y) = f(y,x)}.
The problem
f(g(x), f(b, a)) =E f(f(x,b),y)

has solution

oc={x—a,y— g(a)}
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Unification Problems

®0000

Unification Problems

Let s,t € T(F, X) be terms, E a set of equations.

(Classical) Unification problem: s& Lt

Find a substitution o such that so =g to.

Let s,t € T(F, X) be terms, E a set of -equations, ¢ € Q.

Quantitative unification problem: s&ést

Find a substitution o such that ¢ IF so =~ to.
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Unification Problems
[¢] le]e]e}

Useful concepts in the classical case:

Definition (Instantiation preorder)

For substitutions ¢ and 7 and a theory E, set
o Sg T <= Jp such that xop ~g x7 for every x € X.

? ?
If o solves s =~ t and o < 7, then 7 solves s ~ t.
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Unification Problems
[¢] le]e]e}

Useful concepts in the classical case:

Definition (Instantiation preorder)

For substitutions ¢ and 7 and a theory E, set
o Sg T <= Jp such that xop ~g x7 for every x € X.

? ?
If o solves s =~ t and o < 7, then 7 solves s ~ t.

Definition (mcsu)

Minimal complete set of unifiers (mcsu) of s and t modulo E:
A set U of substitutions such that

@ Each o € U is a solution of s zl- t,
e If pis a solution of s ~L t, then o < p holds for some o € U.

o If o,7 € U satisfy o < 7, then 0 = 7.

If U is a mcsu of s ~f t, then the set of all solutions of s ~L t is given
by {o7 | o € U, some substitution}.
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Unification Problems
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Quantitative analogues

“Quantitative instantiation” (for fixed ¢ € Q):
0 SEe T <= Jp such that € I xop ~g x7 holds for every variable x.
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Unification Problems
[e]e] lele}

Quantitative analogues

“Quantitative instantiation” (for fixed ¢ € Q):
0 SEe T <= Jp such that € I xop ~g x7 holds for every variable x.

Problem: <g. is usually not transitive!

We only know that p Sgs 0, 0 Sge 7 implies p Sgcqs 7.
If o € Qis idempotent (: ® ¢ = ¢), then <g, is a preorder.
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Unification Problems
[e]e] lele}

Quantitative analogues

“Quantitative instantiation” (for fixed ¢ € Q):
0 SEe T <= Jp such that € I xop ~g x7 holds for every variable x.

Problem: <g. is usually not transitive!

We only know that p Sgs 0, 0 Sge 7 implies p Sgcqs 7.
If o € Qis idempotent (: ® ¢ = ¢), then <g, is a preorder.

Definition

If L € Q is idempotent and ¢ ® € = ¢, then a set C of (E, €)-unifiers of s
and t is said to be t-complete if it satisfies the following:

If 7 is an (E, €)-unifier of s and t, then o Sg, 7 holds for some o € C.
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Unification Problems
[e]e] lele}

Quantitative analogues

“Quantitative instantiation” (for fixed ¢ € Q):
0 SEe T <= Jp such that € I xop ~g x7 holds for every variable x.

Problem: <g. is usually not transitive!

We only know that p Sgs 0, 0 Sge 7 implies p Sgcqs 7.
If o € Qis idempotent (: ® ¢ = ¢), then <g, is a preorder.

Definition

If L € Q is idempotent and ¢ ® € = ¢, then a set C of (E, €)-unifiers of s
and t is said to be t-complete if it satisfies the following:

If 7 is an (E, €)-unifier of s and t, then o Sg, 7 holds for some o € C.
v

@ In an arbitrary quantale, we can always choose ¢ = k.

o If isidempotent, we can even choose ¢ = ¢.

.
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Unification Problems
[e]e]e] lo}

Definition
If © € Q is idempotent and ¢ ® € = ¢, then a set C of (E, €)-unifiers of s
and t is said to be t-complete if it satisfies the following:

If 7 is an (E, €)-unifier of s and t, then o <g . 7 holds for some o € C.

Minimality: C is a minimal t-complete set of unifiers if moreover the
following holds:

If o,7€C and 0 Sg, 7, then 0 = 7.
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Unification Problems
[e]e]e] lo}

Definition
If © € Q is idempotent and ¢ ® € = ¢, then a set C of (E, €)-unifiers of s
and t is said to be t-complete if it satisfies the following:

If 7 is an (E, €)-unifier of s and t, then o <g . 7 holds for some o € C.

Minimality: C is a minimal t-complete set of unifiers if moreover the
following holds:

If o,7€C and 0 Sg, 7, then 0 = 7.

Goal:
o General case: compute a k-mcsu.

o Idempotent case: compute an e-mcsu.
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Unification Problems
[e]e]e]e] }

Assumptions

Assume that E is a finite set of quantitative equations of the form
elr Xty oy xn) = g(X1s -y Xn)s

where f, g are n-ary function symbols and xi, ..., x, are distinct variable
symbols.
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Unification Problems
[e]e]e]e] }

Assumptions

Assume that E is a finite set of quantitative equations of the form

elr Xty oy xn) = g(X1s -y Xn)s

where f, g are n-ary function symbols and xi, ..., x, are distinct variable
symbols.
Main idea for unification:
Decomposition:
Instead of solving f(t1,...,t,) ~. g(s1,...,sn), solve
? ?

1 Ry, Sty tn Ry, Sny
where aq,...,a, € Q are yet to be determined and should satisfy
0(f,8) e 31 ® - @ ap.
Here,

0e(f,g) = \/{5 celkf(xa, .. %) ~e g(x1, -y xn) }

Ehling & Kutsia Solving Quantitative Equations



Unification Method
®00000

The calculus

Operate on configurations: Quadruples P; C;¢; o, where

@ P is a set of quantitative unification problems, indexed by
metavariables oy, ..., a, (the remainder of the problem)

e C is a constraint of the form a3 ® --- ® o, 3 A\, where A € Q
@ 4 € Q (the current approximation degree)

@ o is a substitution (the solution computed so far)

Ehling & Kutsia Solving Quantitative Equations



Unification Method
O®0000

Rules

Tri : Trivial
{t="t}WP;(Z2a®A;§0= P;( IA;0.

Dec : Decompose
{f(ty,...,t)) =" g(s1,...,5)} WP, Sa®A; 60 =

{ts :Z% S1,..., 1t :zan Sn} UP;

V(f.8) 2 (Z3PL® @B @A V(f,8); 0,
where f1,. .., 8, are new metavariables and { 2 0g(f, g).
Cla: Clash

{f(t1,...,tn) :?a g(s1,. -y sm) WP, ¢ 2a®lA; 5,0 = F,

Ehling & Kutsia Solving Quantitative Equations



Unification Method
[e]e] le]ele}

Rules (cont.)

L — Sub : Substitute (lazy)
{x =0 f(s1,.., ) WP, ( Za®@ A 6,0 =
{xa =p st %0 =h, sn} U Pp;
0e(F,8) = (3 /1@ ®Br®A; 6 R Ve(F,8); 0p,

where x does not appear in an occurrence cycle in {x=/,f(s1,...,s,)}UP,
and p = {x — g(x1,...,%a)} with xq,...,x, being fresh variables and

CCh : Cycle check
{x=Lt}¥P;C;6;0 =F,
if x appears in an occurrence cycle in {x :?a t}wP.
Ori : Orient
{t= x}WP;C;6;0 = PU{x =], t};C;5,0, where t ¢ V.
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Unification Method
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Unification algorithm QUNIFY

Input: E and t ~] s.
o Initial configuration: {t m; sheZak Id
@ Apply rules as long as possible.

@ Obtain F or a terminal configuration P;; C; J; o, where P; contains
only equations between variables.
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Unification algorithm QUNIFY

Input: E and t ~] s.
o Initial configuration: {t m; sheZak Id
@ Apply rules as long as possible.

@ Obtain F or a terminal configuration P;; C; J; o, where P; contains
only equations between variables.

Theorem (Termination)

Any run of QUNIFY terminates.
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[e]e]e] lele}

Unification algorithm QUNIFY

Input: E and t ~] s.
o Initial configuration: {t %; sheZak Id
@ Apply rules as long as possible.

@ Obtain F or a terminal configuration P;; C; J; o, where P; contains
only equations between variables.

Theorem (Termination)

Any run of QUNIFY terminates.

Theorem (Soundness and Completeness)

Soundness: If QUNIFY yields a terminal configuration, then any
“solution” of this configuration is an (E,€)-unifier of t
and s.

Completeness: If o is an (E,€)-unifier of t and's, then there exists a run
of QUNIFY that yields a terminal configuration for which
o is a “solution”
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Theorem (Soundness and Completeness)

Soundness: If QUNIFY yields a terminal configuration, then any
“solution” of this configuration is an (E,&)-unifier of t
and s.

Completeness: If o is an (E,)-unifier of t and s, then there exists a run
of QUNIFY that yields a terminal configuration for which
o is a “solution”

Unification Method
0000e0

A

Definition (Solution of a configuration)

A substitution 7 is a solution of the configuration
Pi( 201 ®ax® -+ ® ap; d; o if there exists a function p mapping
metavariables to elements of Q such that

Q (T plen) ® po2) ® -+ @ plan) is valid,
@ u(B) IF st =g t7 holds for every equation s :75 tin P.

@ x7 = xo7 (syntactic equality) holds for every variable x € dom(o).

v

Ehling & Kutsia Solving Quantitative Equations
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Unification Method
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Example derivation
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Unification Method
[e]e]o]e]e] J

Example derivation

=L E={1IFf(x,y) = g(x,y)}
Unification problem: g(a,x) =5 f(y, g(b, 2)).

{g(a,x) =! f(y,g(bh,2))}; 3> ; 0; Id
—>pec {a=}, ¥, x=p, 8(b,2)}: 22 P14+ B2 1 1d
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Unification Method
[e]e]o]e]e] J

Example derivation

=L E={1IFf(x,y) = g(x,y)}
Unification problem: g(a,x) =5 f(y, g(b, 2)).
{g(a.x) =} f(v.g(b,2))}; 3> @; 0

— Dec {3 :Bl Y, X :Bz (b Z)} 2

= ori {y :?B1 a, x :?Bz g(b,z)}; 2

- Id
> p1+ B2 1, 1d
2> P14+ B2 1; Id
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Unification Method
[e]e]o]e]e] J

Example derivation

=L E={1IFf(x,y) = g(x,y)}
Unification problem: g(a,x) =5 f(y, g(b, 2)).
{g(a,x) =} f(y,g(b,2))}; 3> «; 0; Id
=>pec {3 =}, ¥y, x =p, &(b,2)}; 2> B1+ B2; 1; 1d
=>oni {y =h, 3 x=j, 8(b,2)}1 2> P1 + B2; 1; 1d
= Tew (x =5, 8(b,2)}: 2> B 1; {y = a}
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Unification Method
[e]e]o]e]e] J

Example derivation

=L E={1IFf(x,y) = g(x,y)}
Unification problem: g(a,x) =5 f(y, g(b, 2)).
{g(a.x) =4 f(v,8(b,2))} 3> ; 0; 1
=>pec {3 =}, ¥y, x =p, &(b,2)}; 2> B1+ B2; 1; 1d
=0 {y =h & x=p, &(b,2)}; 2> b1+ B2 1, 1d
= Tew (x =5, 8(b,2)}: 2> B 1; {y = a}
=70 Lq = b =1, 2l 1>+ i 2

{_y = a, X — f(Xl,Xz)}
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Unification Method
[e]e]o]e]e] J

Example derivation

=L E={1IFf(x,y) = g(x,y)}

Unification problem: g(a,x) =5 f(y, g(b, 2)).
{g(a.x) =4 f(v,8(b,2))} 3> ; 0; 1
=>pec {a =}, ¥, x =j, g(b,2)}; 2> p1 + f2; 1; 1d
=>oni {y =h, 3 x=j, 8(b,2)}1 2> P1 + B2; 1; 1d
=" {x =5, &(b,2)}; 2> B2, 1; {y = a}
=70 Lq = b =1, 2l 1>+ i 2

{y > a, X f(xl,x2)}

X1I—>b

=1"e 2 = Z} 1292 2, {y— a,x— f(b,x2),x3 — b}
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Unification Method
[e]e]o]e]e] J

Example derivation

=L, E={lIFf(x,y) = g(x,y)}
Unification problem: g(a,x) =5 f(y, g(b, 2)).

Reached a terminal configuration:

{x :'?yz z}; 12 9; 2, {y = a,x— f(b,x2), x1 — b}

.
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Unification Method
[e]e]o]e]e] J

Example derivation

=L, E={lIFf(x,y) = g(x,y)}
Unification problem: g(a,x) =5 f(y, g(b, 2)).

Reached a terminal configuration:
{x :'?yz z}; 12 9; 2, {y = a,x— f(b,x2), x1 — b}

Any substitution that solves this configuration is a solution.
Unifiers that can be obtained in this way include:

e {y — a,x+ f(b,u),z— u}, where u is a fresh variable
o {y—a,x— f(b,f(a,a)),z— g(a,a)}

.
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Conclusion
o

Conclusion/Outlook

So far:

o Established quantitative analogues of central notions of equational
unification (instantiation relation, mcsu)

@ Solved quantitative unification over a general quantale for a very
specific class of theories

@ Stronger results in the case of idempotent quantales
Future research directions:
@ Extend this approach to more general classes of theories

@ Quantitative anti-unification
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