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(Quantitative) Equational Theories

Fix a signature F and a set of variables X .

“Classical” setting:
Equations s ≈ t between terms s, t ∈ T (F ,X ).

Equations can be true or false (modulo a given theory E): either
s ≈E t, or s 6≈E t.
≈E is reflexive, transitive, symmetric, stable under substitutions and
compatible with F-operations

Quantitative setting:
Similarity/proximity rather than strict equality!
 Equip equations s ≈ t with some element ε that measures the
“degree to which they hold true”.
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Quantitative Equational Theories

Denote such equations by ε 
 s ≈ t.

Example

Fuzzy reasoning:
ε ∈ [0, 1] (∼probability that s and t are equal).

“Transitivity”: ε 
 t ≈ s, δ 
 s ≈ r =⇒ min(ε, δ) 
 t ≈ r
“Weakening”: ε > δ, ε 
 t ≈ s =⇒ δ 
 t ≈ s.

Quantitative equational theories (Mardare, Panangaden, and Plotkin
2016):
ε ∈ [0,∞] (∼“distance” between s and t).

“Transitivity”: ε 
 t ≈ s, δ 
 s ≈ r =⇒ ε+ δ 
 t ≈ r
“Weakening”: ε 6 δ, ε 
 t ≈ s =⇒ δ 
 t ≈ s.

Two main requirements for the degrees:
It should be possible to combine and compare them.
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Quantales

Definition (Quantale)

Quantale: 
 = (Ω,-,⊗, κ) such that

(Ω,-) is a complete lattice (poset where every subset has a
supremum and infimum, denoted ∨ and ∧)

(Ω,⊗, κ) is a monoid

satisfying the following distributivity laws:

δ ⊗

(∨
i∈I

εi

)
=
∨
i∈I

(δ ⊗ εi ),

(∨
i∈I

εi

)
⊗ δ =

∨
i∈I

(εi ⊗ δ).

Example

I = ([0, 1],6,min, 1) “fuzzy quantale”

L = ([0,∞],>,+, 0) “Lawvere quantale”

2 = ({0, 1},6, ·, 1) “Boolean quantale”
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Assume that we are working with Lawvereian quantales.

Definition

A quantale 
 = (Ω,-,⊗, κ) is called Lawvereian if

⊗ is commutative


 is integral: κ = >

 is co-integral: if ε⊗ δ = ⊥, then either ε = ⊥ or δ = ⊥ (where ⊥
is the bottom element)


 is non-trivial: κ 6= ⊥

Remark

For ε, δ ∈ Ω, there exists an element ε( δ (called adjoint), which has
the following property:

ε⊗ η - δ ⇐⇒ η - ε( δ.

It can be computed as ε( δ =
∨
{η | ε⊗ η - δ}.

Ehling & Kutsia Solving Quantitative Equations 5 / 19
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Inference rules for quantitative equational logic (Gavazzo
and Di Florio 2023)

(Ax)
ε 
 t ≈E s

ε 
 t =E s
(Refl)

κ
 t =E t
(Trans)

ε 
 t =E s δ 
 s =E r

ε⊗ δ 
 t =E r

(NExp)
ε1 
 t1 =E s1 · · · εn 
 tn =E sn

ε1 ⊗ · · · ⊗ εn 
 f (t1, . . . , tn) =E f (s1, . . . , sn)
(Sym)

ε 
 t =E s

ε 
 s =E t

(Ord)
ε 
 t =E s δ - ε

δ 
 t =E s
(Subst)

ε 
 t =E s

ε 
 tσ =E sσ

(Arch)
∀δ � ε. δ 
 t =E s

ε 
 t =E s
(Join)

ε1 
 t =E s · · · εn 
 t =E s

ε1 ∨ · · · ∨ εn 
 t =E s
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Remark

The examples mentioned before are recovered as special cases of
quantitative equational theories by fixing the quantale 
.


 = 2 = ({0, 1},6, ·, 1): Classical equational reasoning (read
1 
 s ≈E t as s ≈E t)


 = I = ([0, 1],6,min, 1): Fuzzy reasoning


 = L = ([0,∞],>,+, 0):
quantitative algebraic theories in the sense of Mardare, Panangaden,
and Plotkin 2016 (with slightly modified (NExp) rule)
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Unification Problems

Let s, t ∈ T (F ,X ) be terms, E a set of equations.

(Classical) Unification problem: s≈̂?
E t

Find a substitution σ such that sσ ≈E tσ.

Let s, t ∈ T (F ,X ) be terms, E a set of 
-equations, ε ∈ Ω.

Quantitative unification problem: s≈̂?
E ,εt

Find a substitution σ such that ε 
 sσ ≈E tσ.

Ehling & Kutsia Solving Quantitative Equations 8 / 19
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Useful concepts in the classical case:

Definition (Instantiation preorder)

For substitutions σ and τ and a theory E , set
σ .E τ :⇐⇒ ∃ϕ such that xσϕ ≈E xτ for every x ∈ X .

If σ solves s ≈?
E t and σ . τ , then τ solves s ≈?

E t.

Definition (mcsu)

Minimal complete set of unifiers (mcsu) of s and t modulo E :
A set U of substitutions such that

Each σ ∈ U is a solution of s ≈?
E t,

If ρ is a solution of s ≈?
E t, then σ . ρ holds for some σ ∈ U.

If σ, τ ∈ U satisfy σ 6 τ , then σ = τ .

If U is a mcsu of s ≈?
E t, then the set of all solutions of s ≈?

E t is given
by {στ | σ ∈ U, τ some substitution}.

Ehling & Kutsia Solving Quantitative Equations 9 / 19
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Quantitative analogues

“Quantitative instantiation” (for fixed ε ∈ Ω):
σ .E ,ε τ :⇐⇒ ∃ϕ such that ε 
 xσϕ ≈E xτ holds for every variable x .

Problem: .E ,ε is usually not transitive!
We only know that ρ .E ,δ σ, σ .E ,ε τ implies ρ .E ,ε+δ τ .
If ι ∈ Ω is idempotent (ι⊗ ι = ι), then .E ,ι is a preorder.

Definition

If ι ∈ Ω is idempotent and ι⊗ ε = ε, then a set C of (E , ε)-unifiers of s
and t is said to be ι-complete if it satisfies the following:

If τ is an (E , ε)-unifier of s and t, then σ .E ,ι τ holds for some σ ∈ C.

Remark

In an arbitrary quantale, we can always choose ι = κ.

If 
 is idempotent, we can even choose ι = ε.

Ehling & Kutsia Solving Quantitative Equations 10 / 19
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Definition

If ι ∈ Ω is idempotent and ι⊗ ε = ε, then a set C of (E , ε)-unifiers of s
and t is said to be ι-complete if it satisfies the following:

If τ is an (E , ε)-unifier of s and t, then σ .E ,ε τ holds for some σ ∈ C.

Minimality: C is a minimal ι-complete set of unifiers if moreover the
following holds:

If σ, τ ∈ C and σ .E ,ι τ , then σ = τ .

Goal:

General case: compute a κ-mcsu.

Idempotent case: compute an ε-mcsu.
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Assumptions

Assume that E is a finite set of quantitative equations of the form

ε 
 f (x1, . . . , xn) ≈ g(x1, . . . , xn),

where f , g are n-ary function symbols and x1, . . . , xn are distinct variable
symbols.

Main idea for unification:
Decomposition:
Instead of solving f (t1, . . . , tn) ≈?

ε g(s1, . . . , sn), solve

t1 ≈?
α1

s1, . . . , tn ≈?
αn

sn,

where α1, . . . , αn ∈ Ω are yet to be determined and should satisfy
dE (f , g)( ε - α1 ⊗ · · · ⊗ αn.

Here,

dE (f , g) :=
∨
{ε : ε 
 f (x1, . . . , xn) ≈E g(x1, . . . , xn)}.

Ehling & Kutsia Solving Quantitative Equations 12 / 19
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The calculus

Operate on configurations: Quadruples P;C ; δ;σ, where

P is a set of quantitative unification problems, indexed by
metavariables α1, . . . , αn (the remainder of the problem)

C is a constraint of the form α1 ⊗ · · · ⊗ αn - λ, where λ ∈ Ω

δ ∈ Ω (the current approximation degree)

σ is a substitution (the solution computed so far)

Ehling & Kutsia Solving Quantitative Equations 13 / 19
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Rules

Tri : Trivial

{t =?
α t} ] P; ζ - α⊗∆; δ;σ =⇒ P; ζ - ∆; δ;σ.

Dec : Decompose

{f (t1, . . . , tn) =?
α g(s1, . . . , sn)} ] P; ζ - α⊗∆; δ;σ =⇒

{t1 =?
β1

s1, . . . , tn =?
βn

sn} ∪ P;

dE (f , g)( ζ - β1 ⊗ · · · ⊗ βn ⊗∆; δ ⊗ dE (f , g);σ,

where β1, . . . , βn are new metavariables and ζ - dE (f , g).

Cla : Clash

{f (t1, . . . , tn) =?
α g(s1, . . . , sm)} ] P; ζ - α⊗∆; δ;σ =⇒ F,

if ζ 6- dE (f , g).

Ehling & Kutsia Solving Quantitative Equations 14 / 19
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Rules (cont.)

L− Sub : Substitute (lazy)

{x =?
α f (s1, . . . , sn)} ] P; ζ - α⊗∆; δ;σ =⇒

{x1 =?
β1
s1, . . . , xn =?

βn
sn} ∪ Pρ;

dE (f , g)( ζ - β1 ⊗ · · · ⊗ βn ⊗∆; δ ⊗ dE (f , g);σρ,

where x does not appear in an occurrence cycle in {x =?
α f (s1, . . . , sn)}∪P,

and ρ = {x 7→ g(x1, . . . , xn)} with x1, . . . , xn being fresh variables and
ζ - dE (f , g).

CCh : Cycle check

{x =?
α t} ] P;C ; δ;σ =⇒ F,

if x appears in an occurrence cycle in {x =?
α t} ] P.

Ori : Orient

{t =?
α x} ] P;C ; δ;σ =⇒ P ∪ {x =?

α t};C ; δ;σ, where t /∈ V.

Ehling & Kutsia Solving Quantitative Equations 15 / 19
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Unification algorithm Qunify

Input: E and t ≈?
ε s.

Initial configuration: {t ≈?
α s}; ε - α;κ; Id

Apply rules as long as possible.

Obtain F or a terminal configuration Pt ;C ; δ;σ, where Pt contains
only equations between variables.

Theorem (Termination)

Any run of Qunify terminates.

Theorem (Soundness and Completeness)

Soundness: If Qunify yields a terminal configuration, then any
“solution” of this configuration is an (E , ε)-unifier of t
and s.

Completeness: If σ is an (E , ε)-unifier of t and s, then there exists a run
of Qunify that yields a terminal configuration for which
σ is a “solution”

Ehling & Kutsia Solving Quantitative Equations 16 / 19
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Completeness: If σ is an (E , ε)-unifier of t and s, then there exists a run
of Qunify that yields a terminal configuration for which
σ is a “solution”

Definition (Solution of a configuration)

A substitution τ is a solution of the configuration
P; ζ - α1 ⊗ α2 ⊗ · · · ⊗ αn; δ;σ if there exists a function µ mapping
metavariables to elements of Ω such that

1 ζ - µ(α1)⊗ µ(α2)⊗ · · · ⊗ µ(αn) is valid,

2 µ(β) 
 sτ =E tτ holds for every equation s =?
β t in P.

3 xτ = xστ (syntactic equality) holds for every variable x ∈ dom(σ).
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Example derivation

Example


 = L, E = {1 
 f (x , y) ≈ g(x , y)}.
Unification problem: g(a, x) =?

3 f (y , g(b, z)).

{g(a, x) =?
α f (y , g(b, z))}; 3 > α; 0; Id

=⇒Dec {a =?
β1

y , x =?
β2

g(b, z)}; 2 > β1 + β2; 1; Id

=⇒Ori {y =?
β1

a, x =?
β2

g(b, z)}; 2 > β1 + β2; 1; Id

=⇒y 7→a
L−Sub {x =?

β2
g(b, z)}; 2 > β2; 1; {y 7→ a}

=⇒x 7→f (x1,x2)
L−Sub {x1 =?

γ1
b, x2 =?

γ2
z}; 1 > γ1 + γ2; 2;

{y 7→ a, x 7→ f (x1, x2)}

=⇒x1 7→b
L−Sub {x2 =?

γ2
z}; 1 > γ2; 2; {y 7→ a, x 7→ f (b, x2), x1 7→ b}
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Example derivation

Example


 = L, E = {1 
 f (x , y) ≈ g(x , y)}.
Unification problem: g(a, x) =?

3 f (y , g(b, z)).

Reached a terminal configuration:

{x2 =?
γ2

z}; 1 > γ2; 2; {y 7→ a, x 7→ f (b, x2), x1 7→ b}

Any substitution that solves this configuration is a solution.
Unifiers that can be obtained in this way include:

{y 7→ a, x 7→ f (b, u), z 7→ u}, where u is a fresh variable

{y 7→ a, x 7→ f (b, f (a, a)), z 7→ g(a, a)}
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Conclusion/Outlook

So far:

Established quantitative analogues of central notions of equational
unification (instantiation relation, mcsu)

Solved quantitative unification over a general quantale for a very
specific class of theories

Stronger results in the case of idempotent quantales

Future research directions:

Extend this approach to more general classes of theories

Quantitative anti-unification
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