Solving Quantitative Equations Formal Methods and Automated Reasoning Seminar

Georg Ehling

Temur Kutsia

April 23rd, 2024

Quantitative Equational Reasoning •00000	Unification Problems	Unification Method 000000	Conclusion O	References
(Quantitative)	Equational The	eories		

 "Classical" setting: Equations s ≈ t between terms s, t ∈ T(F, X).

Quantitative Equational Reasoning •00000	Unification Problems 00000	Unification Method	Conclusion O	References
(Quantitative)	Equational The	eories		

- "Classical" setting: Equations $s \approx t$ between terms $s, t \in T(\mathcal{F}, X)$.
 - Equations can be true or false (modulo a given theory E): either s ≈_E t, or s ∉_E t.
 - \approx_E is reflexive, transitive, symmetric, stable under substitutions and compatible with \mathcal{F} -operations

Quantitative Equational Reasoning •00000	Unification Problems	Unification Method	Conclusion O	References
(Quantitative)	Equational The	eories		

• "Classical" setting:

Equations $s \approx t$ between terms $s, t \in T(\mathcal{F}, X)$.

- Equations can be true or false (modulo a given theory *E*): either $s \approx_E t$, or $s \not\approx_E t$.
- \approx_E is reflexive, transitive, symmetric, stable under substitutions and compatible with \mathcal{F} -operations
- Quantitative setting:

Similarity/proximity rather than strict equality!

Quantitative Equational Reasoning •00000	Unification Problems	Unification Method	Conclusion O	References
(Quantitative)	Equational The	eories		

"Classical" setting:

Equations $s \approx t$ between terms $s, t \in T(\mathcal{F}, X)$.

- Equations can be true or false (modulo a given theory *E*): either $s \approx_E t$, or $s \not\approx_E t$.
- \approx_E is reflexive, transitive, symmetric, stable under substitutions and compatible with \mathcal{F} -operations
- Quantitative setting:

Similarity/proximity rather than strict equality!

 \rightsquigarrow Equip equations $s \approx t$ with some element ε that measures the "degree to which they hold true".

Quantitative Equational Reasoning 0●0000	Unification Problems 00000	Unification Method	Conclusion O	References
Quantitative Eq	uational Thec	ories		
Denote such equa	tions by $\varepsilon \Vdash s \approx t$.			

• Fuzzy reasoning:

 $\varepsilon \in [0,1]$ (~probability that s and t are equal).

```
"Transitivity": \varepsilon \Vdash t \approx s, \delta \Vdash s \approx r \Longrightarrow \min(\varepsilon, \delta) \Vdash t \approx r
"Weakening": \varepsilon \ge \delta, \varepsilon \Vdash t \approx s \Longrightarrow \delta \Vdash t \approx s.
```

Quantitative Equational Reasoning ○●○○○○	Unification Problems	Unification Method	Conclusion O	References
Quantitative Equ	iational Theo	ories		

Denote such equations by $\varepsilon \Vdash s \approx t$.

Example

- Fuzzy reasoning:
 - $\varepsilon \in [0,1]$ (~probability that s and t are equal).

"Transitivity": $\varepsilon \Vdash t \approx s, \delta \Vdash s \approx r \Longrightarrow \min(\varepsilon, \delta) \Vdash t \approx r$ "Weakening": $\varepsilon \ge \delta, \varepsilon \Vdash t \approx s \Longrightarrow \delta \Vdash t \approx s$.

Quantitative equational theories (Mardare, Panangaden, and Plotkin 2016):
 ε ∈ [0,∞] (~ "distance" between s and t).

```
"Transitivity": \varepsilon \Vdash t \approx s, \delta \Vdash s \approx r \Longrightarrow \varepsilon + \delta \Vdash t \approx r
"Weakening": \varepsilon \leq \delta, \varepsilon \Vdash t \approx s \Longrightarrow \delta \Vdash t \approx s.
```

Quantitative Equational Reasoning ○●○○○○	Unification Problems	Unification Method	Conclusion O	References
Quantitative Equ	iational Theo	ories		

Denote such equations by $\varepsilon \Vdash s \approx t$.

Example

- Fuzzy reasoning:
 - $\varepsilon \in [0,1]$ (~probability that s and t are equal).

"Transitivity": $\varepsilon \Vdash t \approx s, \delta \Vdash s \approx r \Longrightarrow \min(\varepsilon, \delta) \Vdash t \approx r$ "Weakening": $\varepsilon \ge \delta, \varepsilon \Vdash t \approx s \Longrightarrow \delta \Vdash t \approx s$.

Quantitative equational theories (Mardare, Panangaden, and Plotkin 2016):
 ε ∈ [0,∞] (~ "distance" between s and t).

```
"Transitivity": \varepsilon \Vdash t \approx s, \delta \Vdash s \approx r \Longrightarrow \varepsilon + \delta \Vdash t \approx r
"Weakening": \varepsilon \leq \delta, \varepsilon \Vdash t \approx s \Longrightarrow \delta \Vdash t \approx s.
```

Quantitative Equational Reasoning ○●○○○○	Unification Problems	Unification Method	Conclusion O	References
Quantitative Equ	uational Theo	ories		

Denote such equations by $\varepsilon \Vdash s \approx t$.

Example

- Fuzzy reasoning:
 - $\varepsilon \in [0,1]$ (~probability that s and t are equal).

"Transitivity": $\varepsilon \Vdash t \approx s, \delta \Vdash s \approx r \Longrightarrow \min(\varepsilon, \delta) \Vdash t \approx r$ "Weakening": $\varepsilon \ge \delta, \varepsilon \Vdash t \approx s \Longrightarrow \delta \Vdash t \approx s$.

• Quantitative equational theories (Mardare, Panangaden, and Plotkin 2016): $\varepsilon \in [0, \infty]$ (~"distance" between s and t).

"Transitivity": $\varepsilon \Vdash t \approx s, \delta \Vdash s \approx r \Longrightarrow \varepsilon + \delta \Vdash t \approx r$ "Weakening": $\varepsilon \leq \delta, \varepsilon \Vdash t \approx s \Longrightarrow \delta \Vdash t \approx s$.

Two main requirements for the degrees:

It should be possible to combine and compare them.

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References
000000	00000	000000		
Quantales				

Definition (Quantale)

Quantale: $\Omega = (\Omega, \preceq, \otimes, \kappa)$ such that

- (Ω, \precsim) is a complete lattice (poset where every subset has a supremum and infimum, denoted \lor and \land)
- $(\Omega, \otimes, \kappa)$ is a monoid

satisfying the following distributivity laws:

$$\delta \otimes \left(\bigvee_{i \in I} \varepsilon_i\right) = \bigvee_{i \in I} (\delta \otimes \varepsilon_i), \qquad \left(\bigvee_{i \in I} \varepsilon_i\right) \otimes \delta = \bigvee_{i \in I} (\varepsilon_i \otimes \delta).$$

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References
00000	00000	000000		
Quantales				

Definition (Quantale)

Quantale: $\Omega = (\Omega, \precsim, \otimes, \kappa)$ such that

- (Ω, \preceq) is a complete lattice (poset where every subset has a supremum and infimum, denoted \lor and \land)
- $(\Omega, \otimes, \kappa)$ is a monoid

satisfying the following distributivity laws:

$$\delta \otimes \left(\bigvee_{i \in I} \varepsilon_i\right) = \bigvee_{i \in I} (\delta \otimes \varepsilon_i), \qquad \left(\bigvee_{i \in I} \varepsilon_i\right) \otimes \delta = \bigvee_{i \in I} (\varepsilon_i \otimes \delta).$$

- $\mathbb{I} = ([0,1],\leqslant,\min,1)$ "fuzzy quantale"
- $\mathbb{L} = ([0,\infty], \geqslant, +, 0)$ "Lawvere quantale"
- $2 = (\{0,1\},\leqslant,\cdot,1)$ "Boolean quantale"

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References
000000	00000	000000	0	

Assume that we are working with Lawvereian quantales.

Definition

A quantale $\Omega = (\Omega, \precsim, \otimes, \kappa)$ is called *Lawvereian* if

- Sis commutative
- Ω is integral: $\kappa = \top$
- Ω is *co-integral*: if $\varepsilon \otimes \delta = \bot$, then either $\varepsilon = \bot$ or $\delta = \bot$ (where \bot is the bottom element)
- Ω is non-trivial: $\kappa \neq \bot$

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References
000000	00000	000000	0	

Assume that we are working with Lawvereian quantales.

Definition

A quantale $\Omega = (\Omega, \precsim, \otimes, \kappa)$ is called *Lawvereian* if

- Sis commutative
- Ω is integral: $\kappa = \top$
- Ω is *co-integral*: if $\varepsilon \otimes \delta = \bot$, then either $\varepsilon = \bot$ or $\delta = \bot$ (where \bot is the bottom element)
- Ω is non-trivial: $\kappa \neq \bot$

Remark

For $\varepsilon, \delta \in \Omega$, there exists an element $\varepsilon \multimap \delta$ (called *adjoint*), which has the following property:

$$\varepsilon \otimes \eta \precsim \delta \iff \eta \precsim \varepsilon \multimap \delta.$$

It can be computed as $\varepsilon \multimap \delta = \bigvee \{\eta \mid \varepsilon \otimes \eta \precsim \delta \}.$

and Di Florio 2023)

$$(Ax) \frac{\varepsilon \Vdash t \approx_E s}{\varepsilon \Vdash t =_E s} \quad (Refl) \frac{\varepsilon \Vdash t =_E s}{\kappa \Vdash t =_E t} \quad (Trans) \frac{\varepsilon \Vdash t =_E s}{\varepsilon \otimes \delta \Vdash t =_E r}$$

$$(\mathsf{NExp}) \frac{\varepsilon_1 \Vdash t_1 =_E s_1 \cdots \varepsilon_n \Vdash t_n =_E s_n}{\varepsilon_1 \otimes \cdots \otimes \varepsilon_n \Vdash f(t_1, \dots, t_n) =_E f(s_1, \dots, s_n)} \quad (\mathsf{Sym}) \frac{\varepsilon \Vdash t =_E s}{\varepsilon \Vdash s =_E t}$$

$$(\operatorname{Ord}) \frac{\varepsilon \Vdash t =_{E} s \quad \delta \precsim \varepsilon}{\delta \Vdash t =_{E} s} \qquad (\operatorname{Subst}) \frac{\varepsilon \Vdash t =_{E} s}{\varepsilon \Vdash t \sigma =_{E} s \sigma}$$
$$(\operatorname{Arch}) \frac{\forall \delta \ll \varepsilon. \delta \Vdash t =_{E} s}{\varepsilon \Vdash t =_{E} s} \qquad (\operatorname{Join}) \frac{\varepsilon_{1} \Vdash t =_{E} s \quad \cdots \quad \varepsilon_{n} \Vdash t =_{E} s}{\varepsilon_{1} \lor \cdots \lor \varepsilon_{n} \Vdash t =_{E} s}$$

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References
000000				

Remark

The examples mentioned before are recovered as special cases of quantitative equational theories by fixing the quantale $\Omega.$

- $\Omega = 2 = (\{0, 1\}, \leq, \cdot, 1)$: Classical equational reasoning (read $1 \Vdash s \approx_E t$ as $s \approx_E t$)
- $\Omega = \mathbb{I} = ([0, 1], \leqslant, \min, 1)$: Fuzzy reasoning
- $\Omega = \mathbb{L} = ([0, \infty], \ge, +, 0)$: quantitative algebraic theories in the sense of Mardare, Panangaden, and Plotkin 2016 (with slightly modified (NExp) rule)

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References
000000	00000	000000		
Unification Prob	lems			

Let $s, t \in T(\mathcal{F}, X)$ be terms, E a set of equations.

(Classical) Unification problem: $s \hat{\approx}_{E}^{?} t$

Find a substitution σ such that $s\sigma \approx_E t\sigma$.

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References
000000	00000	000000		
Unification Prob	lems			

Let $s, t \in T(\mathcal{F}, X)$ be terms, E a set of equations.

(Classical) Unification problem: $s \hat{\approx}_{E}^{?} t$

Find a substitution σ such that $s\sigma \approx_E t\sigma$.

Example

$$E = \{f(x, y) \approx f(y, x)\}.$$

The problem

$$f(g(x), f(b, a)) \approx^?_E f(f(x, b), y)$$

has solution

$$\sigma = \{ x \mapsto a, y \mapsto g(a) \}.$$

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References
000000	00000	000000		
Unification Prob	lems			

Let $s, t \in T(\mathcal{F}, X)$ be terms, E a set of equations.

(Classical) Unification problem: $s \hat{\approx}_{E}^{?} t$

Find a substitution σ such that $s\sigma \approx_E t\sigma$.

Let $s, t \in T(\mathcal{F}, X)$ be terms, E a set of Ω -equations, $\varepsilon \in \Omega$.

Quantitative unification problem: $s \hat{\approx}_{E,\varepsilon}^{?} t$

Find a substitution σ such that $\varepsilon \Vdash s\sigma \approx_E t\sigma$.

Useful concepts in	the classical	case.			
000000	00000	000000			
Quantitative Equational Reasoning	Unification Problems Unification Method		Conclusion	References	

Definition (Instantiation preorder)

For substitutions σ and τ and a theory E, set $\sigma \lesssim_E \tau : \iff \exists \varphi \text{ such that } x \sigma \varphi \approx_E x \tau \text{ for every } x \in X.$

If σ solves $s \approx_E^{?} t$ and $\sigma \lesssim \tau$, then τ solves $s \approx_E^{?} t$.

Useful concepts	in the classic	al case.		
000000	00000	000000	0	
Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References

Definition (Instantiation preorder)

For substitutions σ and τ and a theory E, set $\sigma \lesssim_E \tau : \iff \exists \varphi \text{ such that } x \sigma \varphi \approx_E x \tau \text{ for every } x \in X.$

If σ solves $s \approx_E^{?} t$ and $\sigma \lesssim \tau$, then τ solves $s \approx_E^{?} t$.

Definition (mcsu)

Minimal complete set of unifiers (mcsu) of s and t modulo E: A set U of substitutions such that

- Each $\sigma \in U$ is a solution of $s \approx_E^? t$,
- If ρ is a solution of $s \approx_E^{?} t$, then $\sigma \leq \rho$ holds for some $\sigma \in U$.
- If $\sigma, \tau \in U$ satisfy $\sigma \leq \tau$, then $\sigma = \tau$.

If U is a mcsu of $s \approx_E^{?} t$, then the set of all solutions of $s \approx_E^{?} t$ is given by $\{\sigma \tau \mid \sigma \in U, \tau \text{ some substitution}\}$.

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion O	References
Quantitative analo	ogues			

 $\sigma \lesssim_{E,\varepsilon} \tau : \iff \exists \varphi \text{ such that } \varepsilon \Vdash x \sigma \varphi \approx_E x \tau \text{ holds for every variable } x.$

Quantitative Equational Reasoning 000000	Unification Problems	Unification Method	Conclusion O	References
Quantitative analog	ogues			

 $\sigma \lesssim_{E,\varepsilon} \tau : \iff \exists \varphi \text{ such that } \varepsilon \Vdash x \sigma \varphi \approx_E x \tau \text{ holds for every variable } x.$

Problem: $\leq_{E,\varepsilon}$ is usually not transitive! We only know that $\rho \leq_{E,\delta} \sigma$, $\sigma \leq_{E,\varepsilon} \tau$ implies $\rho \leq_{E,\varepsilon+\delta} \tau$. If $\iota \in \Omega$ is idempotent ($\iota \otimes \iota = \iota$), then $\leq_{E,\iota}$ is a preorder.

Quantitative analogues				
Quantitative Equational Reasoning	00000	OOOOOO	O	References

 $\sigma \lesssim_{E,\varepsilon} \tau : \iff \exists \varphi \text{ such that } \varepsilon \Vdash x \sigma \varphi \approx_E x \tau \text{ holds for every variable } x.$

Problem: $\leq_{E,\varepsilon}$ is usually not transitive! We only know that $\rho \leq_{E,\delta} \sigma$, $\sigma \leq_{E,\varepsilon} \tau$ implies $\rho \leq_{E,\varepsilon+\delta} \tau$. If $\iota \in \Omega$ is idempotent $(\iota \otimes \iota = \iota)$, then $\leq_{E,\iota}$ is a preorder.

Definition

If $\iota \in \Omega$ is idempotent and $\iota \otimes \varepsilon = \varepsilon$, then a set C of (E, ε) -unifiers of s and t is said to be ι -complete if it satisfies the following:

If τ is an (E, ε) -unifier of s and t, then $\sigma \lesssim_{E,\iota} \tau$ holds for some $\sigma \in \mathcal{C}$.

Quantitative Equational Reasoning 000000	Unification Problems	Unification Method 000000	Conclusion O	References
Quantitative analo	ogues			

 $\sigma \lesssim_{E,\varepsilon} \tau : \iff \exists \varphi \text{ such that } \varepsilon \Vdash x \sigma \varphi \approx_E x \tau \text{ holds for every variable } x.$

Problem: $\leq_{E,\varepsilon}$ is usually not transitive! We only know that $\rho \leq_{E,\delta} \sigma$, $\sigma \leq_{E,\varepsilon} \tau$ implies $\rho \leq_{E,\varepsilon+\delta} \tau$. If $\iota \in \Omega$ is idempotent $(\iota \otimes \iota = \iota)$, then $\leq_{E,\iota}$ is a preorder.

Definition

If $\iota \in \Omega$ is idempotent and $\iota \otimes \varepsilon = \varepsilon$, then a set C of (E, ε) -unifiers of s and t is said to be ι -complete if it satisfies the following:

If τ is an (E, ε) -unifier of s and t, then $\sigma \lesssim_{E,\iota} \tau$ holds for some $\sigma \in \mathcal{C}$.

Remark

- In an arbitrary quantale, we can always choose $\iota = \kappa$.
- If Ω is idempotent, we can even choose $\iota = \varepsilon$.

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References
000000	00000	000000		

Definition

If $\iota \in \Omega$ is idempotent and $\iota \otimes \varepsilon = \varepsilon$, then a set C of (E, ε) -unifiers of s and t is said to be ι -complete if it satisfies the following:

If τ is an (E, ε) -unifier of s and t, then $\sigma \lesssim_{E,\varepsilon} \tau$ holds for some $\sigma \in C$.

Minimality: C is a *minimal* ι -complete set of unifiers if moreover the following holds:

If $\sigma, \tau \in \mathcal{C}$ and $\sigma \lesssim_{E,\iota} \tau$, then $\sigma = \tau$.

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References
000000	00000	000000		

Definition

If $\iota \in \Omega$ is idempotent and $\iota \otimes \varepsilon = \varepsilon$, then a set C of (E, ε) -unifiers of s and t is said to be ι -complete if it satisfies the following:

If τ is an (E, ε) -unifier of s and t, then $\sigma \lesssim_{E,\varepsilon} \tau$ holds for some $\sigma \in C$.

Minimality: C is a *minimal* ι -complete set of unifiers if moreover the following holds:

If
$$\sigma, \tau \in \mathcal{C}$$
 and $\sigma \lesssim_{E,\iota} \tau$, then $\sigma = \tau$.

Goal:

- General case: compute a κ -mcsu.
- Idempotent case: compute an ε -mcsu.

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion O	References
Assumptions				

Assume that E is a finite set of quantitative equations of the form

$$\varepsilon \Vdash f(x_1,\ldots,x_n) \approx g(x_1,\ldots,x_n),$$

where f, g are *n*-ary function symbols and x_1, \ldots, x_n are distinct variable symbols.

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References
000000	0000●	000000	O	
Assumptions				

Assume that E is a finite set of quantitative equations of the form

$$\varepsilon \Vdash f(x_1,\ldots,x_n) \approx g(x_1,\ldots,x_n),$$

where f, g are *n*-ary function symbols and x_1, \ldots, x_n are distinct variable symbols.

Main idea for unification:

Decomposition:

Instead of solving $f(t_1, \ldots, t_n) \approx_{\varepsilon}^{?} g(s_1, \ldots, s_n)$, solve

$$t_1 \approx^?_{\alpha_1} s_1, \ldots, t_n \approx^?_{\alpha_n} s_n,$$

where $\alpha_1, \ldots, \alpha_n \in \Omega$ are yet to be determined and should satisfy $\mathfrak{d}_E(f,g) \multimap \varepsilon \precsim \alpha_1 \otimes \cdots \otimes \alpha_n$. Here,

$$\mathfrak{d}_{E}(f,g) := \bigvee \{ \varepsilon : \varepsilon \Vdash f(x_{1},\ldots,x_{n}) \approx_{E} g(x_{1},\ldots,x_{n}) \}.$$

Quantitative Equational Reasoning	Unification Problems 00000	Unification Method •00000	Conclusion O	References
The calculus				

Operate on **configurations**: Quadruples *P*; *C*; δ ; σ , where

- P is a set of quantitative unification problems, indexed by metavariables α₁,..., α_n (the remainder of the problem)
- C is a constraint of the form $\alpha_1 \otimes \cdots \otimes \alpha_n \precsim \lambda$, where $\lambda \in \Omega$
- $\delta \in \Omega$ (the current approximation degree)
- σ is a substitution (the solution computed so far)

Quantitative Equational Reasoning 000000	Unification Problems 00000	Unification Method	Conclusion O	References
Rules				

Tri : Trivial

$$\{t \stackrel{?}{=_{\alpha}} t\} \uplus P; \zeta \precsim \alpha \otimes \Delta; \delta; \sigma \Longrightarrow P; \zeta \precsim \Delta; \delta; \sigma.$$

Dec : Decompose

$$\{f(t_1, \ldots, t_n) =_{\alpha}^{?} g(s_1, \ldots, s_n)\} \uplus P; \zeta \precsim \alpha \otimes \Delta; \delta; \sigma \Longrightarrow$$
$$\{t_1 =_{\beta_1}^{?} s_1, \ldots, t_n =_{\beta_n}^{?} s_n\} \cup P;$$
$$\mathfrak{d}_E(f,g) \multimap \zeta \precsim \beta_1 \otimes \cdots \otimes \beta_n \otimes \Delta; \delta \otimes \mathfrak{d}_E(f,g); \sigma,$$
where β_1, \ldots, β_n are new metavariables and $\zeta \precsim \mathfrak{d}_E(f,g).$

Cla: Clash

$$\{f(t_1,\ldots,t_n) \stackrel{?}{=}_{\alpha}^{\gamma} g(s_1,\ldots,s_m)\} \uplus P; \zeta \precsim \alpha \otimes \Delta; \delta; \sigma \Longrightarrow \mathbf{F},$$

if $\zeta \precsim \mathfrak{d}_E(f,g).$

Quantitative Equational Reasoning	Unification Problems 00000	Unification Method	Conclusion O	References
Rules (cont.)				

$$\begin{aligned} & \{x = -Sub: \text{ Substitute (lazy)} \\ & \{x = \alpha^{?} f(s_{1}, \dots, s_{n})\} \uplus P; \zeta \precsim \alpha \otimes \Delta; \delta; \sigma \Longrightarrow \\ & \{x_{1} = \beta_{1}^{?} s_{1}, \dots, x_{n} = \beta_{n}^{?} s_{n}\} \cup P\rho; \\ & \mathfrak{d}_{E}(f, g) \multimap \zeta \precsim \beta_{1} \otimes \dots \otimes \beta_{n} \otimes \Delta; \delta \otimes \mathfrak{d}_{E}(f, g); \sigma\rho, \end{aligned}$$

where x does not appear in an occurrence cycle in $\{x =_{\alpha}^{?} f(s_1, \ldots, s_n)\} \cup P$, and $\rho = \{x \mapsto g(x_1, \ldots, x_n)\}$ with x_1, \ldots, x_n being fresh variables and $\zeta \preceq \mathfrak{d}_E(f, g)$.

CCh: Cycle check

 $\{x =_{\alpha}^{?} t\} \uplus P; C; \delta; \sigma \Longrightarrow \mathbf{F},$

if x appears in an occurrence cycle in $\{x =_{\alpha}^{?} t\} \uplus P$.

Ori : Orient

$$\{t =^{?}_{\alpha} x\} \uplus P; C; \delta; \sigma \Longrightarrow P \cup \{x =^{?}_{\alpha} t\}; C; \delta; \sigma, \text{ where } t \notin \mathcal{V}.$$

Quantitative Equational Reasoning 000000	Unification Problems	Unification Method	Conclusion O	References
Unification algor	ithm QUNIFY	7		

Input: *E* and $t \approx_{\varepsilon}^{?} s$.

- Initial configuration: $\{t \approx_{\alpha}^{?} s\}; \varepsilon \preceq \alpha; \kappa; \mathrm{Id}$
- Apply rules as long as possible.
- Obtain F or a terminal configuration P_t; C; δ; σ, where P_t contains only equations between variables.

Quantitative Equational Reasoning 000000	Unification Problems 00000	Unification Method	Conclusion O	References
Unification algorit	hm QUNIFY			

Input: *E* and $t \approx_{\varepsilon}^{?} s$.

- Initial configuration: $\{t \approx_{\alpha}^{?} s\}; \varepsilon \preceq \alpha; \kappa; \mathrm{Id}$
- Apply rules as long as possible.
- Obtain F or a terminal configuration P_t; C; δ; σ, where P_t contains only equations between variables.

Theorem (Termination)

Any run of QUNIFY terminates.

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References
000000	00000	000●00	O	
Unification algorit	hm \mathbf{Q} UNIFY			

Input: *E* and $t \approx_{\varepsilon}^{?} s$.

- Initial configuration: $\{t \approx_{\alpha}^{?} s\}; \varepsilon \preceq \alpha; \kappa; \mathrm{Id}$
- Apply rules as long as possible.
- Obtain F or a terminal configuration P_t; C; δ; σ, where P_t contains only equations between variables.

Theorem (Termination)

Any run of QUNIFY terminates.

Theorem (Soundness and Completeness)

Soundness: If QUNIFY yields a terminal configuration, then any "solution" of this configuration is an (E, ε) -unifier of t and s.

Completeness: If σ is an (E, ε) -unifier of t and s, then there exists a run of QUNIFY that yields a terminal configuration for which σ is a "solution"

Quantitative Equational Reasoning	Unification Problems	Unification Method	Conclusion	References
000000	00000	000000	0	

Theorem (Soundness and Completeness)

Soundness: If QUNIFY yields a terminal configuration, then any "solution" of this configuration is an (E, ε) -unifier of t and s.

Completeness: If σ is an (E, ε) -unifier of t and s, then there exists a run of QUNIFY that yields a terminal configuration for which σ is a "solution"

Definition (Solution of a configuration)

A substitution τ is a *solution* of the configuration $P; \zeta \preceq \alpha_1 \otimes \alpha_2 \otimes \cdots \otimes \alpha_n; \delta; \sigma$ if there exists a function μ mapping metavariables to elements of Ω such that

- **2** $\mu(\beta) \Vdash s\tau =_E t\tau$ holds for every equation $s =_{\beta}^{?} t$ in *P*.

(3) $x\tau = x\sigma\tau$ (syntactic equality) holds for every variable $x \in dom(\sigma)$.

Quantitative Equational Reasoning 000000	Unification Problems	Unification Method	Conclusion O	References
Example derivation	on			

$$\Omega = \mathbb{L}, E = \{1 \Vdash f(x, y) \approx g(x, y)\}.$$

Unification problem: $g(a, x) =_3^7 f(y, g(b, z)).$

$$\{g(a,x) =^{?}_{\alpha} f(y,g(b,z))\}; 3 \ge \alpha; 0; \text{ Id}$$

Quantitative Equational Reasoning 000000	Unification Problems	Unification Method	Conclusion O	References
Example derivatio	n			

$$\Omega = \mathbb{L}, E = \{1 \Vdash f(x, y) \approx g(x, y)\}.$$

Unification problem: $g(a, x) = \frac{?}{3} f(y, g(b, z)).$

$$\begin{aligned} \{g(a,x) &=_{\alpha}^{?} f(y,g(b,z))\}; \ 3 \ge \alpha; \ 0; \ \mathrm{Id} \\ &\Longrightarrow_{Dec} \left\{a =_{\beta_{1}}^{?} y, \ x =_{\beta_{2}}^{?} g(b,z)\}; \ 2 \ge \beta_{1} + \beta_{2}; \ 1; \ \mathrm{Id} \end{aligned}$$

Quantitative Equational Reasoning 000000	Unification Problems 00000	Unification Method	Conclusion O	References
Example derivation	n			

$$\Omega = \mathbb{L}, E = \{1 \Vdash f(x, y) \approx g(x, y)\}.$$

Unification problem: $g(a, x) = \frac{?}{3} f(y, g(b, z)).$

$$\{g(a, x) =_{\alpha}^{?} f(y, g(b, z))\}; 3 \ge \alpha; 0; \text{ Id} \\ \Longrightarrow_{Dec} \{a =_{\beta_{1}}^{?} y, x =_{\beta_{2}}^{?} g(b, z)\}; 2 \ge \beta_{1} + \beta_{2}; 1; \text{ Id} \\ \Longrightarrow_{Ori} \{y =_{\beta_{1}}^{?} a, x =_{\beta_{2}}^{?} g(b, z)\}; 2 \ge \beta_{1} + \beta_{2}; 1; \text{ Id}$$

Quantitative Equational Reasoning 000000	Unification Problems	Unification Method	Conclusion O	References
Example derivation	า			

$$\Omega = \mathbb{L}, E = \{1 \Vdash f(x, y) \approx g(x, y)\}.$$

Unification problem: $g(a, x) = \frac{?}{3} f(y, g(b, z)).$

$$\{g(a, x) =_{\alpha}^{?} f(y, g(b, z))\}; 3 \ge \alpha; 0; \text{ Id} \\ \Longrightarrow_{Dec} \{a =_{\beta_{1}}^{?} y, x =_{\beta_{2}}^{?} g(b, z)\}; 2 \ge \beta_{1} + \beta_{2}; 1; \text{ Id} \\ \Longrightarrow_{Ori} \{y =_{\beta_{1}}^{?} a, x =_{\beta_{2}}^{?} g(b, z)\}; 2 \ge \beta_{1} + \beta_{2}; 1; \text{ Id} \\ \Longrightarrow_{L-Sub}^{y \mapsto a} \{x =_{\beta_{2}}^{?} g(b, z)\}; 2 \ge \beta_{2}; 1; \{y \mapsto a\}$$

Quantitative Equational Reasoning 000000	Unification Problems	Unification Method	Conclusion O	References
Example derivation	า			

$$\Omega = \mathbb{L}, E = \{1 \Vdash f(x, y) \approx g(x, y)\}.$$

Unification problem: $g(a, x) = \frac{?}{3} f(y, g(b, z)).$

$$\{g(a, x) =_{\alpha}^{?} f(y, g(b, z))\}; 3 \ge \alpha; 0; \text{ Id} \Longrightarrow_{Dec} \{a =_{\beta_{1}}^{?} y, x =_{\beta_{2}}^{?} g(b, z)\}; 2 \ge \beta_{1} + \beta_{2}; 1; \text{ Id} \Longrightarrow_{Ori} \{y =_{\beta_{1}}^{?} a, x =_{\beta_{2}}^{?} g(b, z)\}; 2 \ge \beta_{1} + \beta_{2}; 1; \text{ Id} \Longrightarrow_{L-Sub}^{y \mapsto a} \{x =_{\beta_{2}}^{?} g(b, z)\}; 2 \ge \beta_{2}; 1; \{y \mapsto a\} \Longrightarrow_{L-Sub}^{x \mapsto f(x_{1}, x_{2})} \{x_{1} =_{\gamma_{1}}^{?} b, x_{2} =_{\gamma_{2}}^{?} z\}; 1 \ge \gamma_{1} + \gamma_{2}; 2; \{y \mapsto a, x \mapsto f(x_{1}, x_{2})\}$$

Quantitative Equational Reasoning	Unification Problems 00000	Unification Method	Conclusion O	References
Example derivation	n			

$$\Omega = \mathbb{L}, E = \{1 \Vdash f(x, y) \approx g(x, y)\}.$$

Unification problem: $g(a, x) =_3^7 f(y, g(b, z)).$

$$\{g(a, x) =_{\alpha}^{?} f(y, g(b, z))\}; 3 \ge \alpha; 0; \text{ Id}$$

$$\Longrightarrow_{Dec} \{a =_{\beta_{1}}^{?} y, x =_{\beta_{2}}^{?} g(b, z)\}; 2 \ge \beta_{1} + \beta_{2}; 1; \text{ Id}$$

$$\Longrightarrow_{L-Sub}^{Y \mapsto a} \{x =_{\beta_{2}}^{?} g(b, z)\}; 2 \ge \beta_{1} + \beta_{2}; 1; \text{ Id}$$

$$\Longrightarrow_{L-Sub}^{Y \mapsto a} \{x =_{\beta_{2}}^{?} g(b, z)\}; 2 \ge \beta_{2}; 1; \{y \mapsto a\}$$

$$\Longrightarrow_{L-Sub}^{x \mapsto f(x_{1}, x_{2})} \{x_{1} =_{\gamma_{1}}^{?} b, x_{2} =_{\gamma_{2}}^{?} z\}; 1 \ge \gamma_{1} + \gamma_{2}; 2;$$

$$\{y \mapsto a, x \mapsto f(x_{1}, x_{2})\}$$

$$\Longrightarrow_{L-Sub}^{x_{1} \mapsto b} \{x_{2} =_{\gamma_{2}}^{?} z\}; 1 \ge \gamma_{2}; 2; \{y \mapsto a, x \mapsto f(b, x_{2}), x_{1} \mapsto b\}$$

Quantitative Equational Reasoning 000000	Unification Problems	Unification Method	Conclusion O	References
Example derivation	n			

 $\Omega = \mathbb{L}, E = \{1 \Vdash f(x, y) \approx g(x, y)\}.$ Unification problem: $g(a, x) =_3^? f(y, g(b, z)).$

Reached a terminal configuration:

$$\{x_2 \stackrel{?}{_{\gamma_2}} z\}; 1 \geqslant \gamma_2; 2; \{y \mapsto a, x \mapsto f(b, x_2), x_1 \mapsto b\}$$

Quantitative Equational Reasoning 000000	Unification Problems	Unification Method	Conclusion O	References
Example derivation	n			

 $\Omega = \mathbb{L}, E = \{1 \Vdash f(x, y) \approx g(x, y)\}.$ Unification problem: $g(a, x) = \frac{?}{3} f(y, g(b, z)).$

Reached a terminal configuration:

$$\{x_2 \stackrel{?}{\underset{\gamma_2}{\rightarrow}} z\}; \ 1 \geqslant \gamma_2; \ 2; \ \{y \mapsto a, x \mapsto f(b, x_2), x_1 \mapsto b\}$$

Any substitution that solves this configuration is a solution. Unifiers that can be obtained in this way include:

• $\{y \mapsto a, x \mapsto f(b, u), z \mapsto u\}$, where u is a fresh variable

•
$$\{y \mapsto a, x \mapsto f(b, f(a, a)), z \mapsto g(a, a)\}$$

Quantitative Equational Reasoning	Unification Problems 00000	Unification Method	Conclusion •	References
Conclusion/Outlo				

So far:

- Established quantitative analogues of central notions of equational unification (instantiation relation, mcsu)
- Solved quantitative unification over a general quantale for a very specific class of theories
- Stronger results in the case of idempotent quantales

Future research directions:

- Extend this approach to more general classes of theories
- Quantitative anti-unification

Quantitative Equational Reasoning 000000	Unification Problems	Unification Method	Conclusion O	References
References				

- Bacci, Giorgio et al. (2020). "Quantitative Equational Reasoning". In: Foundations of Probabilistic Programming. Ed. by Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva. Cambridge University Press, pp. 333–360.
- Gavazzo, Francesco and Cecilia Di Florio (Jan. 2023). "Elements of Quantitative Rewriting". In: *Proc. ACM Program. Lang.* 7.POPL.
- Mardare, Radu, Prakash Panangaden, and Gordon Plotkin (2016). "Quantitative Algebraic Reasoning". In: *Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science*. LICS '16. New York, NY, USA: Association for Computing Machinery, pp. 700–709.