Introduction to
Parallel and Distributed Computing
Exercise 2 (May 13, 2024)

Wolfgang Schreiner
Wolfgang.Schreiner @risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface as a .zip or
.tgz file which contains

* asingle PDF (.pdf) file with

— acover page with the title of the course, your name, matriculation number, and email
address,

— a section with the source code of the program benchmarked, the output of the
parallelizing compiler, and an explanation of the output,

— a section with the raw data of the benchmarks,

— asection with a summary table and graphical diagrams of the benchmarks.

* the source (. c/.cpp) file(s) of the programs.

Exercise 2: Shared Memory Programming with OpenMP

The goal of this exercise is to solve the “all pairs shortest paths problem” presented in Exercise 1
with OpenMP in two versions.

Verson 1 (65P): OpenMP Loop Parallelism

Parallelize the program by annotating the outermost loop of the “squaring” operation with
OpenMP pragma parallel for such that this loop gets executed in parallel by distributing
its iteration range among multiple threads (do not forget to “privatize” variables whenever
necessary). Compile the program with options -03 -openmp -openmp-report2 and explain
the compilation output. Experiment with at least two different scheduling strategies (clause
schedule(runtime), environment variable OMP_SCHEDULE) and choose the better one for your
benchmarks (describe your experiments and justify your choice).

Version 2 (35P): OpenMP Task Parallelism

Parallelize the program by rewriting the “squaring” operation to a recursive function that pro-
cesses the iteration range i € [begin, end| (left-closed, right-open interval) of the index variable i
of the outermost loop. This function performs the work of n = end — begin iterations of the loop
in a divide and conquer fashion:

e if n < 1, no work is performed.
* if n =1, row i := begin is processed.

e if n > 1, the iteration range is split into two halves [begin, mid[and [mid, end| for
mid = | (begin + end) /2] which are processed recursively (in parallel).

Implement this algorithm using the OpenMP task pragma (see the last slide of slide set
“OpenMP”, which provides a sketch of above algorithm). Compile the program as in the
first version and explain the compilation output (if any).

Tasks are scheduled dynamically; there is no need to explicitly deal with scheduling. However,
you may append to each task pragma a clause if (m >= M) where m is the number of rows
to be processed by the task (i.e., m = mid — begin or m = end — mid); in this case the task will
only be executed in parallel if m exceeds the given threshold M. Please experiment with some
values for M and report your best choice (which may also be to not use the if clause at all).

Benchmarking

Benchmark each version of the program as in Exercise 1 and present the same results (execution
times, absolute speedups and efficiencies) as in Exercise 1.

