PERFORMANCE ANALYSIS

Course "Parallel Computing"

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC) Wolfgang.Schreiner@risc.jku.at http://www.risc.jku.at

Evaluating Parallel Programs

We achieved a speedup of 10.8 on p = 12 processors with problem size n = 100.

- Multiple programs may satisfy this observation:
 - Program 1:

$$T = n + n^2/p.$$

- Program 2: $T = (n + n^2)/p + 100$
- Program 3:

$$T = (n + n^2)/p + 0.6p^2$$

Figure 3.1, Ian Foster: DBPP

We have to evaluate programs on varying parameters.

Speedup and Efficiency

• (Absolute) speedup S_p and efficiency E_p :

$$S_p = \frac{T}{T_p} \qquad \qquad E_p = \frac{S_p}{p} = \frac{T}{p \cdot T_p}$$

• T: execution time of sequential program.

- T_p : execution time of parallel program with p processors.
- Relative speedup \overline{S}_p and efficiency \overline{E}_p :

$$\overline{S}_p = \frac{T_1}{T_p} \qquad \qquad \overline{E}_p = \frac{\overline{S}_p}{p} = \frac{T_1}{p \cdot T_p}$$

 $\circ~$ Use for comparison the parallel program with 1 processor.

Measures "scalability" rather than "performance".

- Typical ranges: $S_p \leq \overline{S}_p \leq p$ and $E_p \leq \overline{E}_p \leq 1$.
 - If $S_p > p$, we have a "superlinear speedup".

• If
$$S_p > \overline{S_p}$$
, then $T > T_1$.

Speedup denotes the "performance" of parallelism, efficiency relates this performance to the invested "costs". 2/14

Diagrams

Logarithmic scales may yield additional insights.

Superlinear Speedups

Can the speedup be larger than the number of processors?

- Simple theoretical argument: "no".
 - We can simulate the execution of a parallel program with p processors on a single processor in time $p \cdot T_p$. Thus $T \leq p \cdot T_p$ and $S_p = T/T_p \leq p$.
- However, practical observation: "yes".
 - Cache effects: a system with *p* processors has typically also *p* times as much cache which yields more cache hits.
 - Search anomalies: if the computation involves a "search", one processor may be lucky to find the result early.
- These advantages can be "practically" not achieved on a single processor system.

However, often super-linear speedups indicate program errors.

Amdahl's Law

Assume that a workload contains a sequential fraction f.

- Amdahl's law: $S_p \leq \frac{1}{f + \frac{1-f}{f}} \leq \frac{1}{f}$
 - Speedup has an upper limit determined by f.

Amdahl's law, en.wikipedia.org

Speedup is limited by the sequential fraction of a workload.

Gustafson's Law

Assume workload can be scaled as much as time permits.

• Amdahl:
$$S_p \leq \frac{1}{f + \frac{1-f}{p}}$$

• Fixed work load $T = f \cdot T + (1 - f) \cdot T$
• $S_p \leq \frac{T}{f \cdot T + \frac{(1 - f) \cdot T}{p}} = \frac{1}{f + \frac{1-f}{p}}$
• Gustafson: $S_p \leq f + p \cdot (1 - f)$
• Scalable work load $T_p = f \cdot T + p \cdot (1 - f) \cdot T$
• $S_p \leq \frac{f \cdot T + p \cdot (1 - f) \cdot T}{f \cdot T + \frac{p \cdot (1 - f) \cdot T}{p}} = \frac{f \cdot T + p \cdot (1 - f)}{T}$
If the parallelizable
workload grows linearly
with the numer of
processors, the speedup
grows correspondingly
such that the efficiency

6/14

Gustafson's law, en.wikipedia.org

remains constant.

Scalability Analysis

We have to scale the workload to keep the efficiency constant.

• Assume
$$T_{p,n} = \frac{T_n + P_{p,n}}{p}$$

- $T_{p,n}$: the parallel time with p processors for problem size n.
- \circ T_n : the basic work performed by the sequential program.
- $P_{p,n}$: the extra work performed by the parallel program.

• Then
$$E_{p,n} = \frac{T_n}{p \cdot T_{p,n}} = \frac{T_n}{T_n + P_{p,n}}$$
.

- $E_{p,n}$: the efficiency with p processors for problem size n.
- Thus $T_n = \frac{E_{p,n}}{1-E_{p,n}} \cdot P_{p,n}$; for achieving constant efficiency E, we have to ensure $T_n = \frac{E}{1-E} \cdot P_{n,n} = K_E \cdot P_{n,n}$.
- Isoefficiency function: $I_p^E = K_E \cdot P_{p,n}$
 - I_p^E describes how much the basic work load has to grow for growing processor number p to keep efficiency E.

• *n*: problem size such that $T_n = K_E \cdot P_{p,n}$.

The less I_p^E grows, the more scalable the program is.

Example: Matrix Multiplication

Multiplication of two square matrices A, B of dimension n.

• Row-oriented parallelization.

A is scattered, B is broadcast, C is gathered.
T_n = n³ and T_{p,n} = n<sup>3+p·(n²/p)+p·n²+p·(n²/p)/p} = n^{3+(p+2)·n²}/p = n^{3+(p+2)·n²}/p = n^{3+(p+2)·n²}/p = n^{3+(p+2)·n²}/p = N_{p,n} = T_{p,n} · p - T_n = (p+2) · n²
T_n = K_E · P_{p,n}
n³ = K_E · (p+2) · n²
n = K_E · (p+2)
I^E_p = K_E · P_{p,n}
I^E_p = K_E · P_{p,n}
I^E_p = K_E · (p+2) · n² = K_E · (p+2) · (K_E · (p+2))² = (K_E)³ · (p+2)³
</sup>

The matrix dimension n must grow with $\Omega(p)$, the basic work load thus grows with $\Omega(p^3)$.

Example: Matrix Multiplication

Often only asymptotic estimations are possible/needed.

•
$$T_n = \Theta(n^3)$$
 and $P_{p,n} = \Theta(p \log p + n^2 \sqrt{p})$

 $\circ~$ Fox-Otto-Hey algorithm on $\sqrt{p}\times\sqrt{p}$ torus.

•
$$T_n = \Omega(P_{p,n})$$
•
$$n^3 = \Omega(p \log p + n^2 \sqrt{p})$$
•
$$n^3 = \Omega(n^2 \sqrt{p}) \Rightarrow n = \Omega(\sqrt{p})$$
•
$$n = \Omega(\sqrt{p}) \Rightarrow n^3 = \Omega(\sqrt{p^3}) = \Omega(p \log p)$$
•
$$n^3 = \Omega(n^2 \sqrt{p}) \land n^3 = \Omega(p \log p) \Rightarrow n^3 = \Omega(p \log p + n^2 \sqrt{p}) \checkmark$$
•
$$I_p^E = \Omega(P_{p,n})$$
•
$$I_p^E = \Omega(p \log p + n^2 \sqrt{p}) = \Omega(p \log p + p \sqrt{p}) = \Omega(p \sqrt{p})$$

The matrix dimension n must grow with $\Omega(\sqrt{p})$, the basic work load thus grows with $\Omega(p\sqrt{p})$.

Modeling Program Performance

$$T = \frac{1}{p}(T_{\rm comp} + T_{\rm comm} + T_{\rm idle})$$

- $T_{\rm comp}$: computation time.
- $T_{\rm comm}$: communication time.
- T_{idle}: idle time.

Figure 3.2, Ian Foster: DBPP

The extra work time of the parallel program mainly consists of communication time and idle time.

Communication Time

$$T_L = t_s + t_w \cdot L$$

- *T_L*: the time for sending a message of size *L*.
- *t_s*: the fixed message startup time.
- *t_w*: the transfer time per word of the message.

Figures 3.3 and 3.4, Ian Foster: DBPP

Typically $t_s \gg t_w$, thus it is better to send a single big message rather than many small messages.

Idle Time

- Apply load-balancing techniques.
- Overlap computation and communication.
 - Have multiple threads per processor.
 - Let process interleave computation and communication.

Figure 3.5, Ian Foster: DBPP

Structure the program to minimize idling.

Execution Profiles

Poor performance may have multiple reasons.

- Replicated computation.
- Idle times due to load imbalances.
- Number of messages transmitted.
- Size of messages transmitted.

Figure 3.8, Ian Foster: DBPP

Modeling/measuring execution profiles may help to improve the design of a program.

Experimental Studies

- Design experiment.
 - Identify data to be obtained.
 - Determine parameter ranges.
 - Ensure adequacy of measurements.
- Perform experiment.
 - Repeat runs to verify reproducability.
 - Drop outliers, average the others.
- Fit observed data o(i) to model m(i):
 - Least square fitting: minimize

$$\sum_{i} (o(i) - m(i))^2$$

Scaled least square fitting: minimize

$$\sum_{i} (\frac{o(i) - m(i)}{o(i)})^2$$

(giving more weight to smaller values).

Otal Time

Figure 3.9, Ian Foster: DBPP