PERFORMANCE ANALYSIS

Course “Parallel Computing”

4

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc. jku.at
http://www.risc. jku.at

J z U JOHANNES KEPLER
UNIVERSITY LINZ

mailto:Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at

Evaluating Parallel Programs
We achieved a speedup of 10.8 onp = 12 processors

with problem size n = 100. R 7 -
e Multiple programs may g P
satisfy this observation: o a]
o Program 1:
T =n+n?/p. N n b J
o Program 2: . . ":j?;": |
T = (n+n?)/p+ 100 "
o Program 3: n 1000 | Algorthm’
T = (n+n?)/p+ 0.6p I o y

Figure 3.1, lan Foster: DBPP

We have to evaluate programs on varying parameters.
114

Speedup and Efficiency

e (Absolute) speedup S, and efficiency E,:

T S T
1, p pIp
o T: execution time of sequential program.

o T,: execution time of parallel program with p processors.
e Relative speedup S, and efficiency E,,:

— T - S T
Tp p p- Tp
o Use for comparison the parallel program with 1 processor.
o Measures “scalability” rather than “performance”.
e Typical ranges: S, < S, <pand E, < E, < 1.
o If S, > p, we have a “superlinear speedup”.
o If S, > S,, then T > Ty.

Speedup denotes the “performance” of parallelism, efficiency
relates this performance to the invested “costs”. 2/14

Diagrams

1024 — . 256 g
ideal /
linear .
768 real 102)
a e oy
o 3 3
£ 512 3 128 2 —
| & T T 04 -
256 64 ideal ideal
02 - .
linear - linear
0 real -« real
128 192 256 64 128 192 256 64 128 192 256
processors processors processors
1024 - 256 g .
ideal . P 10 v ———
linear « S
256 real 64 o
a &
2 3]
E ® 3 18 s
: 3 3
16 4 deal ideal
linear —— 02 - linear
real —— real
4 1
1 4 16 64 256 1 4 16 64 256 1 4 16 64 256
processors processors processors

Logarithmic scales may yield additional insights.

3/14

Superlinear Speedups

Can the speedup be larger than the number of processors?

e Simple theoretical argument: “no”.

o We can simulate the execution of a parallel program with p
processors on a single processor in time p - T;,. Thus
T<p-T,and S, =T/T, < p.

e However, practical observation: “yes”.

o Cache effects: a system with p processors has typically
also p times as much cache which yields more cache hits.

o Search anomalies: if the computation involves a “search”,
one processor may be lucky to find the result early.

e These advantages can be “practically” not achieved on a
single processor system.

However, often super-linear speedups indicate program errors.

4/14

Amdahl’s Law
Assume that a workload contains a sequential fraction f.

1
e Amdahl’s law: S), < f+1 Ir 57

o Speedup has an upper limit determined by f.

Amdahl's Law

20.00
1] ||
18.00
Parallel portion
16.00 50% —
— 5%
14.00 — 90% —
. — 95%
f sequential 1200
- .
fraction 2 oo
& T
. 8.00
1—f parallelizable "
fraction :
a.00 —
1 |

- < 3
3

1024
16384

Number of processors

Amdahl’s law, en.wikipedia.org

Speedup is limited by the sequential fraction of a workload.

5/14

Gustafson’s Law

Assume workload can be scaled as much as time permits.

e Amdahl: S, < Hﬁ

o Fixed work IgadT
o S < I

=f-T+(1—f)-T
1

P pry DT T

1-7F
f"l‘T

e Gustafson: S, < f+p-(1—f)

o Scalable work load T, = f - T +p- (1 — f) -

o 8 < [TH+p-(A-f)T

= Bt — +L- (1-1)

P= e 0T

If the parallelizable
workload grows linearly
with the numer of
processors, the speedup
grows correspondingly
such that the efficiency
remains constant.

Scalability Analysis

We have to scale the workload to keep the efficiency constant.

o Assume T}, = ‘ntlen

o T, ,: the parallellotime with p processors for problem size n.
o T,: the basic work performed by the sequential program.
o P, ,: the extra work performed by the parallel program.
o Then By = j— = 7
o B, ,: the efficiency with p processors for problem size n.
o ThusT, = _Ej;j:n - P, ,; for achieving constant efficiency FE,

1
we have to ensure T, = £ - P,,, = Kg - P, .
» Isoefficiency function: I” = K - P, ,
o If describes how much the basic work load has to grow for
growing processor number p to keep efficiency E.

o n: problem size such that 7,, = Kg - P, .

The less IpE grows, the more scalable the program is.

714

Example: Matrix Multiplication

A B C

matrices A, B of dimension n.

Multiplication of two square (

« Row-oriented parallelization. |

o Ais scattered, B is broadcast, C' is gathered.
o T, =ndand T, = n’4p-(n?/p)+pn’+p-(n/p) _ n’4(p+2)-n?

P p p
0 Ty = Totbon
© Ppn=Tpmn-p—1, :(p+2)'”2

o I,=Kg-P,,
on*=Kg-(p+2) - -n?
o n=Kg-(p+2)
o IF=Kp-P,,
o Iy = Kg-(p+2)-n* = Kg-(p+2)-(Kp-(p+2))* = (Kgp)*- (p+2)°

The matrix dimension n must grow with Q(p), the basic work

load thus grows with Q(p?).
8/14

Example: Matrix Multiplication

Often only asymptotic estimations are possible/needed.

e T,,=0(n%) and P,,, = O(plogp + n2\/i))

o Fox-Otto-Hey algorithm on /p x /p torus.
o T, =Q(Ppn)

o n® = Q(plogp + n*\/p)

o n®=Q(n?/p) = n=0(,/p)

= n=Q(/p) = nd = Q(\/ﬁg) = Q(p/p) = Q(plogp)
= 13 =Q(n2/p) An® =Q(plogp) = n® = Q(plogp +n?/p) v
® I;];E = Q(Ppn)

o Iy = Q(plogp +n®\/p) = Qplogp + py/p) = Up\/p)

The matrix dimension » must grow with Q(,/p), the basic work
load thus grows with Q(p,/p).

9/14

Modeling Program Performance

1
T= ;)(Tcomp + Teomm + ,-ridle)

O Y I ST R

e Tiomp: COmMputation time.

e Teomm: COMmunication time. 0

= Computation
= Communication

o Tiqie: idle time. - Ldle

Figure 3.2, lan Foster: DBPP

The extra work time of the parallel program mainly consists of
communication time and idle time.

10/14

Communication Time

T, =ts+ty - L

T = time
t,, = cost/word

o Ty the time for sending a ol S et
. L = message length
message of size L.
10000 T T T T
e t: the fixed message i —
8000 Pumggrf

startup time.
6000

e t,,: the transfer time per
word of the message.

4000

Time (microseconds)

2000

0

0 1000 2000 3000 4000 5000
Message size (bytes)

Figures 3.3 and 3.4, lan Foster: DBPP

Typically t; > t,, thus it is better to send a single big message

rather than many small messages. 11114

Idle Time

e Apply load-balancing
techniques.

e Overlap computation and
communication.

o Have multiple threads
per processor.

o Let process interleave
computation and
communication.

Structure the program to minimize idling.

t+2
t+4
t+6
t+8
t+10 V

~—
~—

o

(@) (b)
Figure 3.5, lan Foster: DBPP

12/14

P2

Execution Profiles

Poor performance may have multiple reasons.

« Replicated computation. o\ Compuaion —-
e Number of messages transmitted. o

0.3

Computation —
Message Startup ----
Message Volume ----- 4

o Idle times due to load imbalances.

Time

e Size of messages transmitted. 02

0.1 _
0 ‘-/“’//—I 1 1 1 1

50 100 150 200 250
Processors

Figure 3.8, lan Foster: DBPP

Modeling/measuring execution profiles may help to improve the
design of a program.

13/14

Experimental Studies

e Design experiment.
o ldentify data to be obtained.
o Determine parameter ranges.
o Ensure adequacy of measurements.

Total Time

e Perform experiment.

o Repeat runs to verify reproducability.
o Drop outliers, average the others.

o Fit observed data o(7) to model m(4):
o Least square fitting: minimize

> _(o(i) = m(i)?

i

o Scaled least square fitting: minimize

ofi) ~m(i)
250

(giving more weight to smaller values).

i

10000

1000

100

10

1

0.1

T T
Data ¢

Simple Fit —

b Scaled Fit ----

10 100 1000
Problem size (N)

Figure 3.9, lan Foster: DBPP

14/14

