
Formal Specification of Abstract Datatypes
Exercise 4 (June 17, 2024)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

The result is to be submitted by the deadline stated above via the Moodle interface as a .zip or
.tgz file which contains

• a PDF file with

– a cover page with the title of the course, your name, Matrikelnummer, and email-
address,

– the formal specifications in the style of “Thinking Programs”,

– the CafeOBJ specifications,

– comprehensive tests of the CafeOBJ specifications (sample reductions),

– optionally any explanations or comments you would like to make;

• the CafeOBJ (.mod) file(s) of the specifications.

1

Exercise: Finite and Infinite Trees

In set theory, a tree is a collection of finite sequences (called paths) such that every prefix of a
sequence in the collection also belongs to the collection. The empty tree is the tree that has no
paths. A finite tree is a tree that has only a finite set of paths. A (completely) infinite tree is a tree
that has for every path 𝑝 a longer path 𝑝′ with prefix 𝑝. A binary tree is a tree which contains for
every path 𝑝 of length 𝑛 not more than two paths 𝑝′ of length 𝑛 + 1 whose prefix is 𝑝. A labeled
tree is a tree that assigns to every path a label (also called value).
The goal of this exercise is to formalize (finite and infinite) binary labeled trees.

Finite Trees First develop a formal specification of the domain of finite binary trees with labels
of sort Value by a specification with (at least) the following entities:

spec FBTREE[sort Value] import NAT :=
free {
type Tree = empty | node(Value,Tree,Tree)
type Values = none | some(Value,Values)
type Path = null | left(Path) | right(Path)

}
then ... {
fun value: Tree → Value
fun left: Tree → Tree
fun right: Tree → Tree
fun depth: Tree → Nat
fun values: Tree × Nat → Values
pred has ⊆ Tree × Path
fun get: Tree × Path → Value
fun put: Tree × Path × Value → Tree
...

}

Here empty denotes the empty tree while node(𝑣, 𝑡1, 𝑡2) denotes that non-empty tree in which
every path 𝑝 is a sequence of elements left and right: if 𝑝 is empty, it is assigned the value 𝑣 (the
root of the tree); if 𝑝 starts with left, the value assigned to 𝑝 is the value that 𝑡1 (the left subtree)
assigns to the remainder of 𝑝; if 𝑝 starts with right, the value assigned to 𝑝 is the value that 𝑡2
(the right subtree) assigns to the remainder of 𝑝.
The function value(𝑡) denotes the root of the non-empty tree, left(𝑡) denotes its left subtree, and
right(𝑡) denotes its right subtree. If 𝑡 is empty, then depth(𝑡) = 0; otherwise depth(𝑡) is 1 plus
the maximum of the lengths of all paths in 𝑡.
The function values(𝑡, 𝑛) constructs the sequence of those values to which all paths of length
less than or equal 𝑛 are assigned by 𝑡 (thus, if 𝑛 = 0 and 𝑡 is not empty, the result contains only
the root of 𝑡); the values are sorted in lexicographic order of the paths (left comes before right).
The predicate has(𝑡, 𝑝) determines whether 𝑝 is a path of 𝑡; if this is the case, then get(𝑡, 𝑝)
denotes the value to which 𝑝 is assigned in 𝑡 while put(𝑡, 𝑝, 𝑣) denotes a new tree that is identical
to 𝑡 except that 𝑝 is assigned to 𝑣.

2

You may specify the operations in loose or in free semantics.

Infinite Trees Next develop a formal specification of the domain of infinite binary trees with
(at least) the following entities:

spec IBTREE[sort Value] import Nat :=
cofree
cotype Tree = value:Value | left:Tree | right:Tree

then free {
type Values = none | some(Value,Values) and
type Path = null | left(Path) | right(Path)

}
then ... {
fun node: Value × Tree × Tree → Tree
fun values: Tree × Nat → Values
fun get: Tree × Path → Value
fun put: Tree × Path × Value → Tree
...

}

The operations in this specification are interpreted as in the finite case. However, while in the
finite case it was necessary to specify the behavior of the observers value, left, and right, it is
now necessary to specify the behavior of the constructor node (which combines a value and two
infinite trees to another infinite tree).

If the result of an operation is of type Tree, it can be uniquely defined by the values of the
observers (e.g. value(node(𝑣, 𝑡1, 𝑡2)) = . . .).

You may specify the operations in loose or in free semantics.

CafeOBJ Implement the specification FBTREE of finite binary trees developed above in
CafeOBJ by a tight CafeOBJ parameterized over the value domain.

module* Value { signature { [Value] } }
module! FBTREE(V :: Value)
{
protecting (NAT)
...

}

Instantiate the module with module NAT as the domain of labels.

Test the CafeOBJ module with several reductions. Give the input and output of each test and
your interpretation of the results (do they indicate errors in your specification or not?). If your
specification contains errors, use the trace facilities of CafeOBJ for debugging.

Does your CafeOBJ module denote the same datatype as the one of the previous specification?
Justify your answer.

3

