
CafeOBJ Commands
Quick Reference

(for interpreter version February 2016 v1.5.6)

Notation

Keywords apper in type setter face, when presented in the form
like ‘x(yz)’ it means the keyword ‘xyz’ can be abbreviated to ‘x’.
‘[something]’ means ‘something’ is optional. | is used for listing al-
ternatives. Slanted face, e.g., variety is used when it varies (a meta-
variable) or is an expression of some language. For example, modexp
is for module expressions and term is for terms (you should know
what these are); others should easily be understood by their names
and/or from the context.

Starting CafeOBJ interpreter

To enter CafeOBJ, just type its name: cafeobj

‘cafeobj -help’ will show you a summary of command options.

Leaving CafeOBJ

q(uit) exits CafeOBJ.

Getting Help

Typing ? at the top-level prompt will print out a online help guidance.
This is a good startng point for navigating the system. Also try
typing com, this shows the list of major toplevel commands.

Escape

There would be a situation that you hit return expecting some feed-
back from the interpreter, but it does not respond. This occurs when
the interpreter expects some more inputs from you thinking preced-
ing input is not yet syntactically complete. If you encounter this
situation, first, try type in ’.’ and return. When this does not help,
then type in esc(escape key) and return, it will immediately be back
to you discarding preceding input and makes a fresh start.

Rescue

Occasionally you may meet a strange prompt CHAOS>> (on platform
Allegro CommonLisp) or 0] (on platform SteelBank Common Lisp)
after someerror messages. This happens when the interpreter caused
some internal errors and could not recover from it. There should be
some guides printed describing how you can recover from it, please
follow them.

Sending interrupt signal (typing C-c from keyboard, or if you are in
Emacs, some key sequence specific to the mode you are in) forces
the interpreter to break into underlying Lisp, and you will see the
same prompt as the above. This might be useful when you feel the
interpreter get confused. :q also works for returning to CafeOBJ
interpreter from Lisp.

Setting Switches

Switches are for controlling the interpreter’s behaviour in several
manner. The general form of setting top-level switch is:

set switch value

In the following, the default value of a switch is shown underlined.

switch value what?
*** – switches for rewriting
trace whole on|off trace top-level rewrite step
trace on|off trace every rewrite step
step on|off stepwise rewriting process
memo on|off enable term memoization
always memo on|off implicitly set ’memo’ attributes

to all user defined operators
clean memo on|off clean up term memo table

before normalization
stats on|off show statistics data after reduction
rwt limit number maximum number of rewriting
stop pattern [term] . stop rewriting when meets
reduce conditions on|off reduce conditional part in

apply command
verbose on|off set verbose mode
exec trace on|off trace concurrent execution
exec limit number limit maximum number of

concurrent execution
*** – switches for system’s behaviour
include BOOL on|off import BOOL implicitly
incude RWL on|off import RWL implicitly
include FOPL-CLAUSE on|off import FOPL-CLAUSE implicitly
auto context on|off change current context in automatic
reg signature on|off regularize module signature

in automatic
check regularity on|off perform regularity check of

signature in automatic
check compatibility on|off perform compatibility check

of TRS in automatic
quiet on|off system mostly says nothing

– show/display options
all axioms on|off print all axioms in

”sh(ow) modexp” command
show mode :cafeobj set syntax of printed modules

|:chaos or views
show var sorts on|off print variables with sorts
print mode :normal set term priting form

|:fancy

|:tree

|:s-expr

*** – miscellaneous settings
libpath pathname set file search path
print depth number maximum depth of terms

to be printed

The default value of pathname of set libpath command is ‘$cafeob-
jhome/share/cafeobjversion/lib/’, where version is a version number
of the release, as of this writing, it is 1.5.5, and ‘$cafeobjhome’ varies
depending on the installation options of your interpreter. By default
it is /usr/local/, so it will be /usr/local/share/cafeobj1.5/lib/.

The default value of number in ‘set rwt limit’ command is 0 meaning
no limit counter of rewriting is specified.

Omitting term in set stop pattern sets the stop pattern to empty,
i.e., no term will match to the pattern.

1

Examining Values of Switches

show switch print list of available switches
with their values

show switch switch print out the value of the
specified switch

Setting Context

select modexp

This sets the context of the interpreter (current module) to the
module specified by modexp. It must be written in single line. When
you type in modexp, the ‘;<newline>’ treated as a line continuation
(that is, it is effectively ignored), so that you can type in multiple lines
for long module expressions. Note that one or more blank characters
are required before ;.

Inspecting Module

sh(ow) and desc(ribe) commands print information on a module.
In the sequel, we use a meta-variable show which stands for either
sh(ow) or desc(ribe). Most of the cases, giving desc(ribe) for show
gives you more detailed information.

show modexp prints a module modexp. giving ‘.”
as modexp shows the current module

show sorts [modexp] prints sorts of modexp
show ops [modexp] prints operators of modexp
show vars [modexp] prints variables of modexp
show params [modexp] prints parameters of modexp
show subs [modexp] prints direct submodules of modexp
show sign [modexp] prints sorts and ops combined

modexp must be given in an one line. The same convention for long
module expressions is used as that of select command (see Setting
Context above.) If the optional [modexp] is omitted, it defaults
to the current module. Optionally supplying all before sorts, ops,
axioms, and sign, i.e., desc all ops for an instance) makes printed
out information also include imported sorts, operators, etc. otherwise
it only prints own constructs of the modexp.

The following show commands assume the current module is set to
some module.

show sort sort prints information on sort sort
show op operator prints information on operator operaotr
show [all] axioms prints (all) axioms in the current module
show [all] rules prints (all) rewrite rules in the current module

For inspecting submodules or parameters, the following show com-
mands are useful:

show param argname prints information on the parameter
show sub n prints information on the nth direct

submodule

argname can be given by position, not by name.

You can see the hierarchy of a module or a sort by the follwing sh(ow)

commands:

sh(ow) module tree modexp prints pictorial hierarchy of module.
specifying . as modexp shows the
hierarcy of the current module

sh(ow) sort tree sort prints hierarchy of sort pictorially

Evaluating Terms

red(uce) [in modexp :] term .

exec(ute) [in modexp :] term .

reduce reduces a given term term in the term rewriting system de-
rived from modexp. execute is similar to reduce, but it also considers
axioms given by transition declarations. In both cases, omitted ‘in
modexp :’ defaults to the current module.

The result term of reduce and execute is bould to special variables
$$term and $$subterm (see the next section).

Let Variables and Special Variables

let let-variable = term .

let-variable is an indentifier. Assuming the current module is set,
let binds let-variable to the given term term. Once set, let-variable
can be used wherever term can apper.

You can see the list of let bidings by:

sh(ow) let

There are two built-in special variables in the system:

$$term bound to the result term of reduce, execute,
parse, or start commands.

$$subterm bound to the result of choose command

Let variales and special variables belongs to a context, i.e., each
context has its own let variables and special variables.

Inspecting Terms

parse [in modexp :] term .

parse parses given term term in the module modexp (if omitted,
parses in the current module) and prints the result. The result is
bound to special variables $$term and $$subterm.

The following sh(ow) command assumes the current module, and
prints the term.

sh(ow) term [let-variable] [tree]

let-variable can be a name of let-variable, $$term or $$subterm, if
omitted the term bound to $$term is printed. If optional tree is
supplied, it prints the term tree structure. By setting a switch tree

horizontal to true, the term tree will be shown horizontally.

Opening/Closing Module

open modexp opens module modexp
close close the currently opening module

Opening module can be modified, i.e., you can declare new sorts,
operators, axioms. You can open only one module at a time.

Applying Rewrite Rules

Start The initial target (entire term) is set by start command.

start term .

This binds two special variables $$term and $$subterm to term.

2

Apply apply command applies actions to (subterm of) $$term.

apply action range selection

You specify an action by action, and it will be applied to the target
(sub)term specified by selection.

range is either within or at: within means at or inside the (sub)term
specified by the selection, and at means exactly at the selection.

Action action can be the followings:

red(uction) reduce the selected term
exec execute the selected term
print print the selected term
rule-spec apply specified rule to the selected term

Rule-Spec rule-spec specifies the rule with possibly substitutions
being applied, and given by

[+ | -][modexp].rule-name [substitutions]

The first optional ‘+ | -’ specifies the direction of the rule; left to
right(if + or omitted) or right to left (if -).

A rule itself is specified by ‘[modexp].rule-name]’. This means the
rule with name rule-name of the module modexp (if omitted, the
current module). rule-name is either a label of a rule or a number
which shown by sh(ow) rules command (see Showing Available
Rules below.)

substitution binds variables that apper in the selected rule before
applying it. This has the form

with variable = term , ...

Showing Available Rules To see the list of the rewrite rules, use

sh(ow) [all] rules

The list of the (all, i.e., includes imported rules if the optional all is
supplied) available rules are printed with each of which being num-
bered. The number can be used for rule-name (see above).

Selection selection is a sequence of selector separated by keyword
of specifying (sub)term of $$term:

selector { of selector } · · ·
selector description
term the entire term ($$term)
top ditto
subterm selects $$subterm

(number · · ·) selects by position
[number .. number] by range in flattened term structure
{ number , · · · } subset in flattened term structure

Step by Step Subterm Selection choose command selects a sub-
term of $$subterm and reset the $$subterm to the selected one.

choose selector

Matching Terms

match term spec to pattern

term spec specifies the term to be matched with pattern:

term spec description

term $$term

top ditto
subterm $$term

it ditto
term ordinal term

pattern description
[all][+ | -] rules match with available rewrite rules
term match with specified term

Stepper

If the switch step is set to on, invoking reduce or execute command
runs into the term rewriting stepper. The stepper has its own com-
mand interpreter loop, where the following stepper commands are
avilable:

? print out available commands.
n(ext) go one step
g(o) number go number step
c(ontinue) continue rewriting without stepping
q(uit) leave stepper continuing rewrite
a(bort) abort rewriting
r(rule) prints current rewrite rule
s(ubst) prints substitution
l(imit) prints rewrite limit counter
p(attern) prints stop pattern
stop [term] set (unset) stop pattern
rwt [number] set (unset) rwrite limit counter

You can also use families of sh(ow)(desc(ribe)) and set commands
in stepper.

Reading In Files

input file read in CafeOBJ program from file
provide feature provide the feature
require feature [pathname] require feature

requre requires a feature, which usually denotes a set of module
definitions. Given this command, the system searches for a file named
the feature, and read the file if found. If the feature contains ‘::’, they
are treated as path separators.

If a pathname is given, the system searches for a file named the
pathname instead. For example, require foo::bar would search for
‘foo/bar.cafe’ in the pathes from ‘libpath’.

Resetting System

reset recover definitions of built-in modules
full reset reset system to initial status

Protecting Your Modules

protect modexp prevent the module from redefinition
unprotect modexp allow moudle to be redefined

3

Little Semantic Tools

check reg(ularity) [modexp] reports the result of regularity
check of module

check comat(ibility) [modexp reports the result of compatibility
check of the module

For both commands, omitted modexp will perform the check in the
current module.

The following check command assumes the current module:

check laziness [operator]

This checks strictness of operator . If operator is omitted all of the
operators declared in the current modules are checked.

Miscellany

ls pathname list contents of directories
cd pathname change working directory of the interpreter
pwd prints working directory
! command fork shell command
ev lisp evaluate lisp expression lisp printing the result
evq lisp evaluate lisp expression lisp

4

